
A disk-aware algorithm for time series motif discovery

Abdullah Mueen,
Department of Computer Science & Engineering, University of California, Riverside, CA, USA

Eamonn Keogh,
Department of Computer Science & Engineering, University of California, Riverside, CA, USA

Qiang Zhu,
Department of Computer Science & Engineering, University of California, Riverside, CA, USA

Sydney S. Cash,
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

M. Brandon Westover,
Massachusetts General Hospital, Brigham and Women’s Hospital, Boston, MA, USA

Nima Bigdely-Shamlo
Swartz Center for Computational Neuroscience, University of California, San Diego, CA, USA

Abstract

Time series motifs are sets of very similar subsequences of a long time series. They are of interest

in their own right, and are also used as inputs in several higher-level data mining algorithms

including classification, clustering, rule-discovery and summarization. In spite of extensive

research in recent years, finding time series motifs exactly in massive databases is an open

problem. Previous efforts either found approximate motifs or considered relatively small datasets

residing in main memory. In this work, we leverage off previous work on pivot-based indexing to

introduce a disk-aware algorithm to find time series motifs exactly in multi-gigabyte databases

which contain on the order of tens of millions of time series. We have evaluated our algorithm on

datasets from diverse areas including medicine, anthropology, computer networking and image

processing and show that we can find interesting and meaningful motifs in datasets that are many

orders of magnitude larger than anything considered before.

Keywords

Time series motifs; Bottom-up search; Random references; Pruning

1 Introduction

Time series motifs are sets of very similar subsequences of a long time series, or from a set

of time series. Fig. 1 illustrates an example of a motif discovered in an industrial dataset. As

in other domains, (i.e. text, DNA, video Cheung and Nguyen 2005) this approximately

mueen@cs.ucr.edu.

HHS Public Access
Author manuscript
Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

Published in final edited form as:
Data Min Knowl Discov. 2011 January ; 22(1-2): 73–105. doi:10.1007/s10618-010-0176-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

repeated structure may be conserved for some reason that is of interest to the domain

specialists. In addition, time series motifs are also used as inputs in several higher-level data

mining algorithms, including classification (Mueen et al. 2009), clustering, rule-discovery

and summarization. Since their formalization in 2002, time series motifs have been used to

solve problems in domains as diverse as human motion analyses, medicine, entertainment,

biology, anthropology, telepresence and weather prediction.

In spite of extensive research in recent years (Chiu et al. 2003; Ferreira et al. 2006; Mueen et

al. 2009; Yankov et al. 2007), finding time series motifs exactly in massive databases is an

open problem. Previous efforts either found approximate motifs or considered relatively

small datasets residing in main memory (or in most cases, both). However, in many domains

we may have datasets that cannot fit in main memory. For example, in this work we consider

a 228GB dataset. We must somehow find the motif in this dataset, while only allowing a tiny

fraction (less than 1%) of it in main memory at any one time. In this work, we describe for

the first time a disk-aware algorithm to find time series motifs in multi-gigabyte databases

containing tens of millions of time series. As we shall show, our algorithm allows us to

tackle problems previously considered intractable, for example finding near duplicates in a

dataset of forty-million images.

The rest of this paper is organized as follows. In Sect. 2 we review related work. In Sect. 3

we introduce the necessary notation and background to allow the formal description of our

algorithm in Sect. 4. Sections. 5 and 6 empirically evaluate the scalability and utility of our

ideas, and we conclude with a discussion of future work in Sect. 7.

2 Related work

Many of the methods for time series motif discovery are based on searching a discrete

approximation of the time series, inspired by and leveraging off the rich literature of motif

discovery in discrete data such as DNA sequences (Chiu et al. 2003; Patel et al. 2002;

Ferreira et al. 2006; Minnen et al. 2007a; Yoshiki et al. 2005; Simona and Giorgio 2004).

Discrete representations of the real-valued data must introduce some level of approximation
in the motifs discovered by these methods. In contrast, we are interested in finding motifs

exactly with respect to the raw time series. More precisely, we want to do an exact search for

the most similar pair of subsequences (i.e. the motif) in the raw time series. It has long been

held that the exact discovery of motif is intractable even for datasets residing in main

memory. In a recent work the current authors have shown that motif discovery is tractable

for large in-core datasets (Mueen et al. 2009); however, in this work we plan to show that

motif discovery can be made tractable even for massive disk resident datasets.

The literature is replete with different ways of defining time series “motifs.” Motifs are

defined and categorized using their support, distance, cardinality, length, dimension,

underlying similarity measure, etc. Motifs may be restricted to have a minimum count of

participating similar subsequences (Chiu et al. 2003; Ferreira et al. 2006) or may only be a

single closest pair (Mueen et al. 2009). Motifs may also be restricted to have a distance

lower than a threshold (Chiu et al. 2003; Ferreira et al. 2006; Yankov et al. 2007), or

restricted to have a minimum density (Minnen et al. 2007b). Most of the methods find fixed

Mueen et al. Page 2

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

length motifs (Chiu et al. 2003; Ferreira et al. 2006; Mueen et al. 2009; Yankov et al. 2007),

while there are a handful of methods for variable length motifs (Minnen et al. 2007b;

Yoshiki et al. 2005; Tang and Liao 2008). Multi-dimensional motifs and subdimensional

motifs are defined (Minnen et al. 2007a) and heuristic methods to find them are explored in

(Minnen et al. 2007a,b; Yoshiki et al. 2005). Depending on the domain in question, the

distance measures used in motif discovery can be specialized, such as allowing for “don’t

cares” to increase tolerance to noise (Chiu et al. 2003; Simona and Giorgio 2004). In this

paper we explicitly choose to consider only the simplest definition of a time series motif,

which is the closest pair of time series subsequences of fixed length. Since virtually all of

the above definitions can be trivially calculated with inconsequential overhead using the

closest pair as a seed, we believe the closest pair is the core operation in motif discovery.

Therefore, we ignore other definitions for brevity and simplicity of exposition.

To the best of our knowledge, the closest-pair/time series motif problem in high dimensional

(i.e. hundreds of dimensions) disk resident data has not been addressed. There has been

significant work on spatial closest-pair queries (Nanopoulos et al. 2001; Corral et al. 2000).

These algorithms used indexing techniques such as R-tree and R*-tree which have the

problem of high creation and maintenance cost for multi-dimensional data (Koudas and

Sevcik 2000). In Weber et al. (1998), it has been proved that there is a dimensionality

beyond which every partitioning method (R*-tree, X-tree, etc.) degenerates into sequential

access. Another possible approach could be to use efficient high dimensional self similarity

join algorithms (Koudas and Sevcik 2000; Dohnal et al. 2003). If the data in hand is joined

with itself with a low similarity threshold we would get a motif set, which could be quickly

refined to find the true closest pair. However, the threshold must be at least as big as the

distance between the closest pair to filter it from the self-join results. This is a problem

because most of the time users do not have any idea about a good threshold value.

Obviously, user can choose a very large threshold for guaranteed results, but this degrades

the performance a lot. In this regard, our method is parameter free and serves the exact
purpose of finding the closest pair of time series. Besides, the datasets we wish to consider

in this work have three orders of magnitude more objects than any of the datasets considered

in Corral et al. (2000); Koudas and Sevcik (2000); Nanopoulos et al. (2001) and

dimensionality (i.e length) of the motifs are from several hundreds to a thousand whereas in

Koudas and Sevcik (2000) the maximum dimensionality is thirty. Therefore, our algorithm is

the first algorithm to find exact time series motifs in disk resident data.

Given this, most of the literature has focused on fast approximate algorithms for motif

discovery (Beaudoin et al. 2008; Chiu et al. 2003; Minnen et al. 2007b; Tanaka et al. 2005;

Guyet et al. 2007; Meng et al. 2008; Rombo and Terracina 2004; Lin et al. 2002). For

example, a recent paper on finding approximate motifs reports taking 343s to find motifs in

a dataset of length 32,260 (Meng et al. 2008), in contrast we can find motifs in similar

datasets exactly, and on similar hardware in under 100s. Similarly, another very recent paper

reports taking 15min to find approximate motifs in a dataset of size 111,848 (Beaudoin et al.

2008), however we can find motifs in similar datasets in under 4min. Finally, paper (Liu et

al. 2005) reports 5s to find approximate motifs in a stock market dataset of size 12,500,

whereas our exact algorithm takes less than 1s.

Mueen et al. Page 3

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It has long been known that the closest pair problem in multidimensional data has a lower

bound of Ω (nlogn). The optimal algorithm is derived from the divide-and-conquer paradigm

and exploits two properties of a dataset: sparsity of the data and the ability to select a “good”

cut plane (Bentley 1980). This algorithm recursively divides the data by a cut plane. At each

step it projects the data to the cut plane to reduce the dimensionality by one and then solve

the subproblems in the lower dimensional space. Unfortunately the optimal algorithm hides

a very high constant factor in the complexity expression, which is of the order of 2d and the

sparsity condition does not hold for time series subsequences (c.f. sect. 5.1). In addition, the

large worst-case memory requirement and essentially random data accesses made the

algorithm impractical for disk-resident applications.

In this paper we employ a bottom-up search algorithm that simulates the merge steps of the

divide-and-conquer approach. Our contribution is that we created an algorithm whose worst-

case memory and I/O overheads are practical for implementation on very large-scale

databases. The key difference with the optimal algorithm that makes our algorithm amenable

for large databases is that we divide the data without reducing the number of dimensions and

without changing the data order at any divide step. This allows us to do a relatively small

number of batched sequential accesses, rather than a huge number of random accesses. As

we shall see, this can make a three- to four-order-of-magnitude difference in the time it takes

to find the motifs on disk-resident datasets.

To the best of our knowledge, our algorithm is completely novel. However we leverage off

related ideas in the literature (Gonzalez et al. 2008; Jagadish et al. 2005; Yu and Wang

2007). In particular, the iDistance method of Jagadish et al. (2005) introduces the idea of

projecting data on to a single line, a core subroutine in our algorithm. Other works, for

example Gonzalez et al. (2008) also exploits the information gained by the relative distances

to randomly chosen reference points. However they use this information to solve the

approximate similarity search problem, whereas we use it to solve the exact closest-pair

problem. In Jagadish et al. (2005) and Yu and Wang (2007), Reference objects have been

used for each partition of a B+ tree index which is adapted for different data distribution.

However, we use only one reference object to do the data ordering. In Dohnal et al. (2003),

Reference objects (pivots) are used to build an index for similarity joins. While we exploit

similar ideas, the design of the index is less useful for the closest-pair problem because of

data replication and parameter setting described previously. Both Jagadish et al. (2005) and

Yu and Wang (2007) use the idea of pivots to do K-nearest neighbor search, and report

approximately one order of magnitude speedup over brute force. However we use the idea of

pivots for motif discovery and report four to five orders or magnitude. What explains this

dramatic difference in speedup? A small fraction can be attributed to the simple fact that we

consider significantly larger datasets, and pivot-based pruning is more effective for larger

datasets. However, most of the difference can be explained by our recent observation that the

speed up of pivot-based indexing depends on the value of the best-so-far variable (Mueen et

al. 2009). While this value does decrease with datasets size for K-nearest neighbor search or

full joins (Dohnal et al. 2003), it decreases much faster for motif discovery (Mueen et al.

2009), allowing us to prune over 99.99% of distance calculations for real-world problems.

Mueen et al. Page 4

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 Definition and background

As described in the previous section we focus on the simplest “core” definition of time series

motifs. In this section we define the terms formally.

Definition 1

A time series is a sequence T = (t1,t2,...,tm) of m real valued numbers.

The sequence of real valued numbers (ti) is generally a temporal ordering. Other well-

defined orderings such as shapes (Yankov et al. 2007), spectrographs, handwritten text, etc.

can also be fruitfully considered as “time series.” As with most time series data mining

algorithms, we are interested in local, not global properties of the time series and therefore,

we need to extract subsequences from it.

Definition 2

A subsequence of length n of a time series T = (t1,t2,...,tm) is a time series Ti,n = (ti,ti
+1,...,ti+n−1) for 1 ≤ i ≤ m − n + 1.

A time series of length m has m − n + 1 subsequences of length n. We naturally expect that

adjacent subsequences will be similar to each other; these subsequences are known as trivial

matches (Chiu et al. 2003). However, subsequences which are similar to each other, yet at

least some minimum value w apart suggest a recurring pattern, an idea we formalize as a

time series motif.

Definition 3

The time series motif is a pair of subsequences {Ti,n, Tj,n} of a long time series T of length

m that is the most similar. More formally, the pair {Ti,n, Tj,n}, where |i − j | ≥ w, is the time

series motif iff ∀a, b dist (Ti,n, Tj,n) ≤ dist(Ta,n, Tb,n), for |a − b | ≥ w and w > 0.

Note the inclusion of the separation window w. This means that a motif must contain

subsequences separated by at least w positions. The reason behind this separation constraint

is to prevent trivial matches from being reported as motif (Patel et al. 2002). To explain what

is a trivial match, let us consider an example (on discrete data for simplicity). If we were

looking for motifs of length four in the string:

sjdbbnvfdfpqoeutyvnABABABmbzchslfkeruyousjdq (1)

Then, in this case we probably would not want to consider the pair {ABAB,ABAB} to be a

motif, since they share 50% of their length (i.e AB is common to both). Instead, we would

find the pair {sjdb, sjdq} to be a more interesting approximately repeated pattern.In this

example, we can enforce this by setting the parameter w = 4 . Therefore, after discounting

trivial matches, the total number of possible motif pairs is exactly (m − n − w + 1)(m − n − w)
2 .

There are a number of distance measures to capture the notion of similarity between

subsequences. In Ding et al. (2008) and elsewhere it has been empirically shown that simple

Mueen et al. Page 5

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Euclidean distance is competitive or superior to many of the complex distance measures and

has the very important triangular inequality property. Note, however, that our method can

work with any distance measure that is metric. Additional reasons for using Euclidean

distance are that it is parameter-free and its calculation allows many optimizations, for

example, it is possible to abandon the Euclidean distance computation as soon as the

cumulative sum goes beyond the current best-so-far, an idea known as early abandoning
(Mueen et al. 2009). For example assume the current best-so-far has a Euclidean distance of

12.0, and therefore a squared Euclidean distance of 144.0. If, as shown in Fig. 2, the next

item to be compared is further away, then at some point the sum of the squared error will

exceed the current minimum distance r=12.0 (or, equivalently r2 = 144). So the rest of the

computation can be abandoned since this pair can’t have minimum distance. Note that we

work here with the squared Euclidean distance because we can avoid having to take square

roots at each of the n steps in the calculation.

One potential problem with Euclidean distance is that it is very sensitive to offset and scale

(amplitude). Two subsequences of a time series may be very similar but at different offsets

and/or scales, and thus report a larger distance than warranted. Normalization before

comparison helps to mitigate this effect. In this paper, we use the standard z-normalization

defined as X = x − μ
σ where X is the normalization of vector x with sample mean μ and

standard deviation σ. Z-normalization is an O(n) operation. Therefore, to avoid

renormalizing same subsequences multiple times, we compute all of the (m − n + 1)

normalized subsequences just once, store all of them in a database of time series and use

these normalized sequences when computing the distances.

Definition 4

A time series database is an unordered set of normalized time series or time series

subsequences stored in one or multiple disk blocks of fixed or varying sizes.

Although the most typical applications of motif discovery involve searching subsequences of

a long time series, one other possibility is that we may simply have m individual and

independent time series to examine, such as m gene expression profiles or m star light

curves. With the exception of the minor overhead of keeping track of the trivial matches

(Chiu et al. 2003) in the former case, our algorithm is agnostic to which situation produces

the time series and it assumes to have a time series database as the input and to output the

time series motif found in the database.

As noted earlier, there are many other definitions of time series motifs (Lin et al. 2002;

Yankov et al. 2007; Tang and Liao 2008; Minnen et al. 2007a). For example, we present two

other useful definitions below.

Definition 5

The kth-TimeSeriesmoti f is the k most similar pair in the database D. The pair {Ti, Tj} is

the kth motif iff there exists a set S of pairs of time series of size exactly k − 1 such that

∀Td ∈ D Ti, Td ∉ S and Tj, Td ∉ S and ∀ Tx, Ty ∈ S, Ta, Tb ∉ Sdist Tx, Ty
≤ dist Ti, Tj ∀dist Ta, Tb .

Mueen et al. Page 6

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 6

The Range motif with range r is the maximal set of time series that have the property that the

maximum distance between them is less than 2r. More formally, S is a range motif with

range r iff ∀Tx, Ty ∈ Sdist Tx, Ty ≤ 2r and S is maximal.

In general, these definitions impose conditions on two major features of a set of

subsequences: similarity and support. We note that all such conditions can easily be obtained

with a single pass through the data using our definition as a seed. As such the Definition 3

above is the core task of time series motif discovery.

For example, suppose we are tasked with finding all the range motifs with range r. We can

leverage of the simple observation that a necessary condition for a set S of time series to be a

range motif is that any two of the time series must be within 2r of each other, and we can

find such pairs using our algorithm. We can therefore simply do the following. Find the time

series motif (as in Definition 3) and record the distance, dist(Ti,n, Tj,n). If the distance is

greater than 2r, then we can report the null set as the answer to our query, and terminate.

Otherwise, we do a linear scan through the data, retrieving all objects that are within 2r of

both Ti,n, Tj,n. This set is a superset of the range motif, and we can trivially condense it to

the correct set.

For meaningful motif discovery, the motif pair should be significantly more similar to each

other than one would expect in a random database. In this work we gloss over the problem

of assessing significance, other than to show that the motifs have an interpretation in the

domains in question. In the next section we describe an algorithm which allows us to

efficiently find the motifs in massive time series databases.

4 Our algorithm

A set of time series of length n can be thought of as a set of points in n-dimensional space.

Finding the time series motif is then equivalent to finding the pair of points having the

minimum possible distance between any two points. Before describing the general algorithm

in detail, we present the key ideas of the algorithm with a simple example in two-

dimensional space.

4.1 A detailed intuition of our algorithm

For this example, we will consider a set of 24 points in 2D space. In Fig. 3a the dataset is

shown to scale. Each point is annotated by an id beside it. A moment’s inspection will reveal

that the closest pair of points is {4,9}. We assume that a disk block can store at most three

points (i.e. their co-ordinates) and their ids. So the dataset is stored in the disk in eight

blocks.

We begin by randomly choosing a reference point r (see Fig. 3a). We compute the distance

of each data point from r and sort all such distances in ascending order. As the data is on the

disk, any efficient external sorting algorithm can be used for this purpose (Motzkin and

Hansen 1982; Nyberg et al. 1995). A snap shot of the database after sorting is shown in Fig.

Mueen et al. Page 7

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3b. Note that our closest pair of points is separated in two different blocks. Point 4 is in the

fourth block and point 9 is in the fifth block.

Geometrically, this sorting step can be viewed as projecting the database on one line by

rotating all of the points about r and stopping when every point is on that line. We call this

line the order line since it holds all of the points in the increasing order of their distances

from r. The order line shown in Fig. 3c begins at the top, representing a distance of 0 from r
and continues downward to a distance of infinity (note that the order line shown in Fig. 3c is

representative, but does not strictly conform to the scale and relative distances of Fig. 3a).

Data points residing in the same block after the sorting step are consecutive points in the

order line and thus, each block has its own interval in the order line. In Fig. 3c the block

intervals are shown beside the order line. Note that, up to this point, we have not compared

any pairs of data points. The search for the closest pair (i.e. comparisons of pairs of points)

will be done on this representation of the data.

Our algorithm is based upon the following observation. If two points are close in the original

space, they must also be close in the order line. Unfortunately, the opposite is not true; two

points which are very far apart in the original space might be very close in the order line.

Our algorithm can be seen as an efficient way to weed out these false positives, leaving just

the true motif.

As alluded to earlier, we search the database in a bottom-up fashion. At each iteration, we

partition the database into consecutive groups. We start with the smallest groups of size 1

(i.e. one data point) and iteratively double the group size (i.e. 2,4,8,...). At each iteration, we

take pairs of disjoint consecutive groups one at a time and compare all pairs of points that

span those two groups. Fig. 3d shows a contrived segment of an order line unrelated to our

running example, where a block of eight points is shown. An arc in this figure represents a

comparison between two points. The closest four arcs to the order line {(1,2),(3,4),(5,6),

(7,8)} are computed when the group size is 1. The following eight arcs {(1,3),(1,4),(2,3),

(2,4),(5,7),(5,8),(6,7),(6,8)} are computed when the group size is 2 and the rightmost 16 arcs

are computed when the group size is 4. Note that each group is compared with one of its

neighbors in the order line at each iteration. After the in-block searches are over, we move to

search across blocks in the same way. We start by searching across disjoint consecutive pairs

of blocks and continually increasing the size of groups like 2 blocks, 4 blocks, 8 blocks, and

so on. Here we encounter the issue of accessing the disk blocks efficiently, which is

discussed later in this section.

As described thus far, this is clearly a brute force algorithm that will eventually compare all

possible pairs of objects. However, we can now explain how the order line helps to prune the

vast majority of the calculations.

Assume A and B are two objects, and B lies beyond A in the order line; in other words,

dist(A,r) ≤ dist(B,r). By the triangular inequality we know that dist(A, B) ≥ dist(B,r) −

dist(A,r). But dist(B,r) − dist(A,r) is the distance between A and B in the order line. Thus,

the distance between two points in the order line is a lower bound on the true distance

between them. Therefore, at some point during the search, if we know that the closest pair

Mueen et al. Page 8

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

found so far has a distance of y, we can safely ignore all pairs of points that are more than y
apart on the order line. For example, in Fig. 3e, if we know that the distance between the

best pair discovered so far is 4.0 units, we can prune off comparisons between points {(1,6),

(1,7),(1,8),(2,7),(2,8),(3,8)}, since they are more than 4.0 units apart on the order line.
Similarly, if the best pair discovered so far had an even tighter distance of 3.0 units, we

would have pruned off four additional pairs (see Fig. 3f).

More critically, the order line also helps to minimize the number of disk accesses while

searching across blocks. Let us assume that we are done searching all possible pairs (i.e.

inside and across blocks) in the top four blocks and also in the bottom four blocks (see Fig.

3b). Let us further assume that the smaller of the minimum distances found in each of the

two halves is y. Let x be the distance of the cut point between the two halves from r. Now,

all of the points lying within the interval (x − y, x] in the order line may need to be

compared with at least one point from the interval [x, x + y). Points outside these two

intervals can safely be ignored because they are more than y apart from the points in the

other half. Since in Fig. 3c the interval (x − y, x] overlaps with the intervals of blocks 3 and

4 and the interval [x, x + y) overlaps with the intervals of blocks 5 and 6, we need to search

points across block pairs {3,5}, {3,6}, {4,5} and {4,6}. Note that we would have been

forced to search all 16 possible block pairs from the two halves if there were no order line.

Given that we are assuming the database will not fit in the main memory, the question arises

as to how we should load these block pairs when the memory is very small. In this work, we

assume the most restrictive case, where we have just the memory available to store exactly

two blocks. Therefore, we need to bring the above four block pairs {{3,5}, {3,6}, {4,5},

{4,6}} one at a time. The number of I/O operations depends on the order in which the block

pairs are brought into the memory. For example, if we search the above four pairs of blocks

in that order, we would need exactly six block I/Os: two for the first pair, one for the second

pair since block 3 is already in the memory, two for the third pair and one for the last pair

since block 4 is already in the memory. If we choose the order {{3,5}, {4,6}, {3,6}, {4,5}}

we would need seven I/Os. Similarly, if we chose the order {{3,5}, {4,5}, {4,6}, {3,6}}, we

would need five I/Os. In the latter two cases there are reverse scans; a block (4) is replaced

by a previous block (3) in the order line. We will avoid reverse scans and avail of sequential

loading of the blocks to get maximum help from the order line.

To complete the example, let us seehow the order line helps in pruning pairs across blocks.

When we have two blocks in the memory, we need to compare each point in one block to

each point in the other block. In our running example, during the search across the block pair

{3,6}, the first and second data points in block 3 (i.e. 8 and 10 in the database) have

distances larger than y to any of the points in block 6 in the order line (see Fig. 3c). The third

point (i.e. 11) in block 3 has only the first point (i.e. 6) in block 6 within y in the order line.

Thus, for block pair {3,6}, instead of computing distances for all nine pairs of data points

we would need to compute the distance for only one pair, 11, 6 .

At this point, we have informally described how a special ordering of the data can reduce
block I/Os as well as reduce pair-wise distance computations. With this background, we

Mueen et al. Page 9

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

hope the otherwise daunting detail of the technical description in the next section will be less

intimidating.

4.2 A formal description of our algorithm

For the ease of description, we assume the number of blocks (N) and the block size (m) are

restricted to be powers of two. We also assume that all blocks are of the same size and that

the main memory stores only two disk blocks with a small amount of extra space for the

necessary data structures. Readers should note that in the pseudocode, all variable and

method names are in italics and globally accessible elements are in bold. Shaded lines

denote the steps for the pruning of pairs from being selected or compared. We call our

algorithm DAME which is an abbreviated form of Disk Aware Motif Enumeration.

Our algorithm is logically divided into subroutines with different high-level tasks. The main

method that employs the bottom-up search on the blocks is DAME_Motif shown in Table 1.

The input to this method is a set of blocks B which contains every subsequence of a long

time series or a set of independent time series. Each time series is associated with an id used

for finding its location back in the original data. Individual time series are assumed to be z-

normalized. If they are not, this is done in the sorting step.

DAME_Motif first chooses r random time series as reference points from the database and

stores them in Dref. These reference time series can be from the same block, allowing them

to be chosen in a single disk access. DAME_Motif then sorts the entire database, residing on

multiple blocks, according to the distances from the first of the random references named as

r. The reason for choosing r random reference time series/points will be explained shortly.

The computeInterval method at line 5 in Table 1 computes the intervals of the sorted blocks.

For example, if si and ei are respectively the smallest and largest of the distances from r to

any time series in Bi, then [si, ei] is the block interval of Bi. Computing these intervals is

done during the sorting phase, which saves a few disk accesses. Lines 7–14 detail the

bottom-up search strategy. Let t be the group size, which is initialized to one, and iteratively

doubled until it reaches N
2 . For each value of t, pairs of time series across pairs of successive

t-groups are searched using the searchAcrossBlock method shown in Table 2.

The searchAcrossBlocks method searches for the closest pair across the partitions [top,mid)

and [mid,bottom). The order of loading blocks is straightforward (lines 1 and 8). The

method sequentially loads one block from the top partition, and for each of them it loads all

of the blocks from the bottom partition one at a time (lines 4 and 11). D1 and D2 are the two

memory blocks and are dedicated for the top and bottom partitions, respectively. A block is

loaded to one of the memory blocks by the load method shown in Table 3. load reads and

stores the time series and computes the distances from the references.

DAME_Motif and all subroutines shown in Tables 1, 2, 3, 4, and 5 maintain a variable bsf
(best so far) that holds the minimum distance discovered up to the current point of search.

We define the distance between two blocks p and q by sq − ep if p < q. Lines 2–3 in Table 2

encode the fact that if block p from the top partition is more than bsf from the first block

(mid) of the bottom partition, then p cannot be within bsf of any other blocks in the bottom

Mueen et al. Page 10

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

partition. Lines 9–10 encode the fact that if block q from the bottom partition is not within

bsf of block p from the top partition, then none of the blocks after q can be within bsf of p.

These are the pruning steps of DAME that prune out entire blocks.

Lines 5–6 and 12–13 check if the search is at the bottom-most level. At that level,

searchInBlock shown in Table 4 is used to search within the loaded block. Lines 14–15 do

the selection of pairs by taking one time series from each of the blocks. Note the use of istart
at lines 14 and 19. istart is the index of the last object of block p which finds an object in q
located farther than bsf in the order line. Therefore, the objects indexed by i ≤ istart do not

need to be compared to the objects in the blocks next to q. So, the next time series to istart is

the starting position in p when pairs across p and the next of q are searched. For all the pairs

that have escaped from the pruning steps, the update method shown in Table 5 is called.

The method searchInBlock is used to search within a block. This method employs the same

basic bottom-up search strategy as the DAME_Motif, but is simpler due to the absence of a

memory hierarchy. Similar to the searchAcrossBlocks method, the search across partitions is

done by simple sequential matching with two nested loops. The pruning step at lines 11–12

in Table 4 terminates the inner loop over the bottom partition at the jth object which is the

first to have a distance larger than bsf in the order line from the ith object. Just as with

searchAcrossBlocks method, every pair that has escaped from pruning is given to the update
method for further consideration.

The update method shown in Table 5 does the distance computations and updates the bsf and

the motif ids (i.e. L1 and L2). The pruning steps described in the earlier methods essentially

try to prune some pairs from being considered as potential motifs. When a potential pair is

handed over to update, it also tries to avoid the costly distance computation for a pair. In the

previous section, it is shown that distances from a single reference point r provides a lower

bound on the true distance between a pair. In update, distances from multiple (R) reference

points computed during loads are used to get r lower_bounds, and update rejects distance

computation as soon as it finds a lower_bound larger than bsf. Although r is a preset

parameter like N and m, its value is not very critical to the performance of the algorithm.

Any value from five to sixty produces near identical speedup, regardless of the data r
(Mueen et al. 2009). Note that the first reference time series r is special in that it is used to

create the order line. The rest of the reference points are used only to prune off distance

computations. Also note the test for trivial matches (Chiu et al. 2003; Mueen et al. 2009) at

line 6. Here, a pair of time series is not allowed to be considered if they overlapped in the

original time series from which they were extracted.

4.3 Correctness of DAME

The correctness of the algorithm can be described by the following two lemmas. Note that

pruning steps are marked by the shaded regions in the pseudocode of the previous section.

Lemma 1—The bottom-up search compares all possible pairs if the pruning steps are

removed.

Mueen et al. Page 11

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Proof In searchInBlock we have exactly m time series in the memory block D. The bottom-

up search does two-way merging at all levels for partition sizes t = 1, 2, 4, …, m
2 successively.

For partitions of size t, while doing the two-way merge, the number of times update is called

is mt
2 . Therefore, the total number of calls to update is 20 + 21 + 22 + ⋯ + 2x − 1 m

2 , where m

= 2x. This sum exactly equals the total number of possible pairs m(m − 1)
2 . Similarly,

DAME_Motif and searchAcrossBlocks together do the rest of the search for partition sizes

t = m, 2m, 4m, …, Nm
2 to complete the search over all possible pairs.

Lemma 2—Pruning steps ignore pairs safely.

Proof Follows from the description.

Before ending the description of the algorithm, we describe the worst-case scenario for

seachAcrossBlocks. If the motif distance is larger than the spread of the data points in the

order line, then all possible pairs are compared by DAME because no pruning happens in

this scenario. Therefore, DAME has the worst-case complexity of O(n2). Note, however, that

this situation would require the most pathological arrangement of the data, and hundreds of

experiments on dozens of diverse real and synthetic datasets show that average cost is well

below n2.

5 Scalability experiments

In this section we describe experimental results to demonstrate DAME’s scalability and

performance. Experiments in Sects. 5.1–5.4 are performed in a 2.66GHz Intel Q6700 and

the rest of the experiments are performed on an AMD 2.1GHz Turion-X2. We use internal

hard drives of 7200rpm. For the ease of reproducibility, we have built a webpage

(Supporting Webpage) that contains all of the code, data files for real data, data generators

for synthetic data and a spreadsheet of all the numbers used to plot the graphs in this paper.

In addition, the webpage has experiments and case studies which we have omitted here due

to space limitations.

Note that some of the large-scale experiments we conduct in this section take several days to

complete. This is a long time by the standards of typical empirical investigations in data

mining; however, we urge the reader to keep in mind the following as they read on:

• Our longest experiment (the “tiny images” dataset Torralba et al. 2008) looks at

40,000,000 time series and takes 6.5 days to finish. However, a brute force

algorithm would take 124 years to produce the same result. Even if we could

magically fit all of the data in main memory, and therefore bypass the costly disk

accesses, the brute force algorithm would require (40,000,000*39,999,999)/2

Euclidean comparisons, and require 8 years to finish.

• Our largest experiment finds the motif in 40,000,000 time series. If we sum up

the sizes of the largest datasets considered in papers (Minnen et al. 2007b;

Mueen et al. 2009; Ferreira et al. 2006; Chiu et al. 2003; Patel et al. 2002) which

Mueen et al. Page 12

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

find only approximate motifs, they would only sum to 400,000. So we are

considering datasets of at least two orders of magnitude larger than anything

attempted before.

• In many of the domains we are interested in, practitioners have spent weeks,

months or even years collecting the data. For example, the “tiny images” dataset

(Torralba et al. 2008) took eight months to collect on a dedicated machine

running 24h a day (R. Fergus, Personal Communication, Email on 12/28/08).

Given the huge efforts in both money and time to collect the data, we believe that

the practitioners will be more than willing to spend a few days to uncover hidden

knowledge from it.

5.1 Comparison with divide and conquer approach

In this section, we show why it is a necessity to device a specialized algorithm that finds

closest pair of subsequences termed as time series motifs. To facilitate that, we have placed

our algorithm in the context of the divide and conquer methods for closest-pair which is

prevalent in the text books of computational geometry. The divide and conquer (DaC)

approach for finding closest pair in multidimensional space is described in great detail in

Bentley (1980). DaC works in O(nlogdn) time for any data distribution, which is expensive

for large d. For “sparse” data DaC works in O(n log n). The relevant definition of sparsity is

given “as the condition that no d-ball in the space (that is, a sphere of radius d) contains
more than some constant c points. (Bentley 1980)” This condition ensures that the conquer

step remains a linear operation with no more than cn pairs of close points to be compared.

But subsequences of a long time series form a trail in the high dimensional space which may

cross itself arbitrary number of times to violate the sparsity condition for efficient DaC

algorithm [16]. A simple 3D demonstration is shown in Fig. 4 (top-left) by plotting all

triplets of successive real numbers in an ECG time series.

If we are only considering independent time series objects (c.f. sect. 6.4), it is still not a

good choice to use DaC, because it divides the data by hyper planes perpendicular to an axis.

This is because the range of the distribution of referenced distances (Fig. 4 bottom-right) is

much larger than the range of possible values in a particular normalized dimension (Fig. 4

bottom-left). If the closest pair of time series has 95% correlation between them, the

minimum Euclidian distance for m = 128 is 3.57. For this minimum distance, a

perpendicular hyper plane through 0 would have all the points within [−3.57,3.57] and thus

resulting in no pruning being achieved. In contrast, the reference point ordering has a larger

range and can prune many pairs of points using the same bracket.

Considering the above two observations, we may expect DAME to perform much better than

divide and conquer algorithm in Bentley (1980). As shown in Fig. 4 (top-right), this is the

case. For a motif length of 128 we tested up to 1 million points of EEG time series and DaC

performs 100 times more distance computations than DAME for the larger datasets. These

results are in spite of the fact that we allowed DaC to “cheat”, by always using the best axis

(the one that has minimum number of points within the bracket [−δ,δ]) to divide the data at

each step.

Mueen et al. Page 13

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2 Sanity check on large databases

We begin with an experiment on random walk data. Random walk data is commonly used to

evaluate time series algorithms, and it is an interesting contrast to the real data (considered

below), since there is no reason to expect a particularly close motif to exist. We generate a

database of four million random walks in eighty disk blocks. Each block is identical in size

(400MB) and can store 50,000 random walks of length 1024. The database spans more than

32GB of hard drive space. We find the closest pair of random walks using DAME on the

first 2, 4, 8, 16, 32, 64 and 80 blocks of this database. Figure 5 left shows the execution

times against the database size in the number of random walks.

In another independent experiment we use DAME on a very long and highly oversampled

real time series (EOG trace, cf. Sect. 6.5) to find a subsequence-motif of length 1024. We

start with a segment of this long time series created by taking the first 100,000 data points,

and iteratively double the segment-sizes by taking the first 0.2, 0.4, 0.8, 1.6, 3.2 and 4.0

million data points. For each of these segments, we run DAME with blocks of 400MBs,

each containing 50,000 time series, as in the previous experiment. Figure 5: left also shows

the execution times against the lengths of the segments. Because of the oversampled time

series, the extra “noise” makes the motif distance larger than it otherwise would be, making

the bsf larger and therefore reducing the effectiveness of pruning. This is why DAME takes

longer to find a motif of the same length than in a random-walk database of similar size.

Since no other algorithm is reported to find motifs exactly on such large databases of such

large dimensionalities, we have implemented three possible versions of the naïve brute force

algorithm to compare with DAME:

• CompletelyInMemory: The database is in the main memory.

• CompletelyInDisk: The database is in the disk and memory is free enough to

store only two disk blocks and negligible data structures for comparisons.

• NoAdditionalStorage: There is no database. Only the base time series is stored in

the main memory. Subsequences must be normalized again and again every time

they are extracted from the base time series.

Figure 5 right tabulates the performances of the above three algorithms as well as DAME’s.

CompletelyInMemory algorithm has been run until memory allocation request is honored;

therefore, estimated time for four million time series is unattainable, as it would need 32GB

of main memory. The other two algorithms have been executed until time becomes critical.

The estimated execution times demonstrates that DAME is the only tractable algorithm for

exact discovery of time series motifs.

5.3 Performance for different block sizes

As DAME has a specific order of disk access, we must show how the performance varies

with the size of the disk blocks. We have taken the first one million random walks from the

previous section and created six databases with different block sizes. The sizes we test are

40, 80, 160, 240, 320 and 400MBs containing 5, 10, 20, 30, 40 and 50 thousands of random

walks, respectively. Since the size of the blocks is changed, the number of blocks also

Mueen et al. Page 14

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

changes to accommodate one million time series. We measure the time for both I/O and

CPU separately for DAME_Motif (Fig. 6, left) and for searchAcrossBlocks (Fig. 6, right).

Figure 6 left shows that I/O time decreases as the size of the blocks gets larger and the

number of blocks decreases. On the other hand, the CPU time is worse for very low or very

high block sizes. Ideally it should be constant, as we use the same set of random walks. The

two end deviations are caused by two effects: when blocks are smaller, block intervals

become smaller compared to the closest pair distance, and therefore, almost every point is

compared to points from multiple blocks and essentially istart loses its role. When the blocks

become larger, consecutive pairs on the order line in later blocks are searched after the

distant pairs on the order line in an earlier block. Therefore, bsf decreases at a slower rate for

larger block sizes.

Figure 6 right shows that the search for a motif using the order line is a CPU-bound process

since the gap between CPU time and I/O time is large, and any effort to minimize the

number of disk loads by altering the loading order from the current sequential one will make

little difference in the total execution time.

5.4 Performance for different motif lengths

To explore the effect of the motif length (i.e. dimensionality) on performance, we test

DAME for different motif lengths. Recall that the motif length is the only user-defined

parameter. We use the first one-million random walks from Sect. 4.1. They are stored in 20

blocks of 50,000 random walks, each of length 1024. For this experiment, we iteratively

double the motif length from 32 to 1024. For each length x, we use only the first x temporal

points from every random walk in the database. Figure 7 shows the result, where all the

points are averaged over five runs.

The linear plot demonstrates that DAME is free of any exponential constant (2d) in the

complexity expression, as in the optimal algorithm. The linear increase in time is due to the

distance computation, which needs a complete scan of the data. Note the gentle slope

indicating a sub-linear scaling factor. This is because longer motifs allow greater benefit

from early abandoning (Mueen et al. 2009).

5.5 In-Memory search options

While searching within a memory block, DAME does a bottom-up search starting with pairs

of consecutive time series, continuing until it covers all possible pairs. Thus, DAME has a

consistent search hierarchy from within blocks to between blocks. There are only two other

exact methods we could have used, the classic brute-force algorithm or the recently

published MK algorithm (Mueen et al. 2009). We measure

thetimethateachofthesemethodstakestosearchin-memoryblocksofdifferentsizes, and

experiment on different sizes of blocks ranging from 10,000 to 50,000 random walks of

length 1024. For all of the experiments, the databases are four times the block sizes and

values are averaged over ten runs.

From the Fig. 8, brute force search and the MK algorithm perform similarly. The reason for

MK not performing better than brute force here is worth considering. MK performs well

Mueen et al. Page 15

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

when the database has a wide range and uniform variability on the order line. Since the

database in this experiment is four times the block size, the range of distances for one block

is about one fourth of what it would be in an independent one-block database of random

walks. Therefore, MK cannot perform better than brute force. The bottom-up search

performs best because it does not depend on the distribution of distances from the reference

point, and moreover, prunes off a significant part of the distance computations.

5.6 Lower bound options

In our algorithm we compute distances from r reference points to all of the objects. In the

update method, we use each reference point one at a time to compute a lower bound on the

distance between a pair and check to see if the lower bound is greater than the current best.

This lower bound is a simple application of the triangular inequality computed by circularly

projecting the pair of objects onto any line that goes through the participating reference

point. We call this idea the “linear bound” for clarity in the following discussion. Since we

pre-compute all of the distances from r reference points, one may think about getting a

tighter lower bound by combining these referenced distances. In the simplest case, to find a

“planar bound” for a pair of points using two reference points, we can project both the points

(x and y) onto any 2D plane, where two reference points (r1 and r2) reside, by a circular

motion about the axis connecting the reference points. After that, simple 2D geometry is

needed to compute the lower bound (dashed line) using five other pre-computed distances

(solid lines in Fig. 9, mid).

We have computed both the bounds on one million pairs of time series of length 256. In 56%

of the pairs, planar bounds are larger than linear bounds. Intuitively it seems from this value

that the planar bound is tighter. But the true picture is more complex. The average value of

linear bounds is 30% larger than that of planar bounds and standard deviation of linear

bounds is 37% larger than that of planar bounds. In Fig. 9 right, it is clear that the linear

bound is significantly tighter than the planar one when the actual distances between pairs are

larger. Moreover, the planar bound is complex to compute compared to a simple subtraction

in the case of a linear bound. Therefore, we opt to use the linear bound in update to prune off

distance computations.

6 Experimental case studies

In this section we consider several case studies to demonstrate the utility of motifs in solving

real-world problems.

6.1 Motifs for brain–computer interfaces

Recent advances in computer technology make sufficient computing power readily available

to collect data from a large number of scalp electroencephalographic (EEG) sensors and to

perform sophisticated spatiotemporal signal processing in near-real time. A primary focus of

recent work in this direction is to create brain–computer interface (BCI) systems.

In this case study, we apply motif analysis methods to data recorded during a target

recognition EEG experiment (Bigdely-Shamlo et al. 2008). The goal of this experiment is to

create a real-time EEG classification system that can detect “flickers of recognition” of the

Mueen et al. Page 16

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

target in a rapid series of images and help Intelligence Analysts find targets of interest

among a vast amount of satellite imagery. Each subject participates in two sessions: a

training session in which EEG and behavior data are recorded to create a classifier and a test

session in which EEG data is classified in real time to find targets. Only the training session

data is discussed here.

In this experiment, overlapping small image clips from a publicly available satellite image of

London are shown to a subject in 4.1s bursts comprised of 49 images at the rate of 12 per

second. Clear airplane targets are added to some of these clips such that each burst contains

either zero (40%) or one (60%) target clip. To clearly distinguish target and non-target clips,

only complete airplane target images are added, though they can appear anywhere and at any

angle near the center of the clip.

Figure 10 shows a burst trial timeline. After fixating a cross (left) for 1s, the participant

views the RSVP burst and is then asked to indicate whether or not he/she has detected a

plane in the burst clips, by pressing one of two (yes/no) finger buttons.

In training sessions only, visual error/correct feedback is provided. The training session

comprises of 504 RSVP bursts organized into 72 bouts with a self-paced break after each

bout. In all, each session thus includes 290 target and 24,104 non-target image presentations.

The EEG from 256 scalp electrodes at 256 Hz and manual responses are recorded during

each session.

Each EEG electrode receives a linear combination of electric potentials generated from

different sources in and outside the brain. To separate these signals, an extended-infomax

Independent Component Analysis (ICA) algorithm (Lee et al. 1999; Delorme and Makeig

2003) is applied to preprocessed data from 127 electrodes to obtain about 127 maximally

independent components (ICs). The ICA learns spatial filters in the form of an unmixing

matrix separating EEG sensor data into temporally maximally independent processes, most

appearing to predominantly represent the contribution to the scalp data of one brain EEG or

non-brain artifact source, respectively.

It is known that among ICs representing brain signals, some show changes in activity after

the subject detects a target. However, the exact relationships are currently unknown. In an

ongoing project, we attempt to see if the occurrences of motifs are correlated with these

changes.

We use DAME to discover motif of length 600 ms (153 data points), on IC activity from 1s

before until 1.5s after image presentation. Figure 11 shows the discovered motif.

Figure 12 shows the start latencies of all of the 600ms segments which are within a distance

of twice the motif distance (i.e. twice the Euclidean distance between the two time series

shown in Fig. 11) from either of the motif segment. Note that the distribution of these

latencies is highly concentrated around 100ms after target presentation (showed by the blue

line). This is significant because no information about the latency of the target has been

provided beforehand, and thus the algorithm finds a motif that is highly predictive of the

latency of the target.

Mueen et al. Page 17

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.2 Finding repeated insect behavior

In the arid to semi-arid regions of North America, the Beet leafhopper (Circulifer tenellus)

shown in Fig. 13, is the only known vector (carrier) of curly top virus, which causes major

economic losses in a number of crops including sugarbeet, tomato, and beans (Kaffka et al.

2000). In order to mitigate these financial losses, entomologists at the University of

California, Riverside are attempting to model and understand the behavior of this insect

(Stafford and Walker 2009).

It is known that the insects feed by sucking sap from living plants; much like the mosquito

sucks blood from mammals and birds. In order to understand the insect’s behaviors,

entomologists glue a thin wire to the insect’s back, complete the circuit through a host plant

and then measure fluctuations in voltage level to create an Electrical Penetration Graph

(EPG) as shown in Fig. 13.

This method of data collection produces large amounts of data, in Fig. 14 we see about a

quarter hour of data, however the entomologists data archive currently contains thousands of

hours of such data, collected in a variety of conditions. Up to this point, the only analysis of

this data has been some Fourier analyses, which has produced some suggestive results

(Stafford and Walker 2009). However, Fourier analysis is somewhat indirect and removed

from the raw data. In contrast motif discovery operates on the raw data itself and can

potentiality produce more intuitive and useful knowledge. In Fig. 15 we show the motif of

length 480 discovered in the entire 33,021 length time series shown in Fig. 14.

As we can see, the motifs are uncannily similar, even though they occur minutes apart.

Having discovered such a potentially interesting pattern, we followed up to see if it is really

significant. The first thing to do is to see if it occurs in other datasets. We have indexed the

entire archive with an iSAX index (Shieh and Keogh 2008) so we quickly determined the

answer to be affirmative, this pattern does appear in many other datasets, although the

“plateau” region(approximately from 300 to 380 in Fig. 15) may be linearly scaled by a

small amount (Stafford and Walker 2009). We recorded the time of occurrence and looked at

the companion video streams which were recorded synchronously with the EPGs. It appears

that the motif occurs immediately after phloem (plant sap) ingestion has taken place.

The motif discovered in this stream happens to be usually smooth and highly structured,

however motifs can be very complex and noisy. Consider Fig. 16 which shows a motif

extracted from a different trace of length 18,667.

In this case, examination of the video suggests that this is a highly ritualized grooming

behavior. In particular, the feeding insect must get rid of honeydew (a sticky secretion,

which is by-product of sap feeding). As a bead of honeydew is ejected, it temporarily forms

a highly conductive bridge between the insect and the plant, drastically affecting the signal.

Note that these examples are just a starting point for entomological research. It would be

interesting to see if there are other motifs in the data. Having discovered such motifs we can

label them, and then pose various hypotheses. For example: “Does motif A occur more
frequently for males than females?” Furthermore, an understanding of which motifs

Mueen et al. Page 18

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

correlate with which behaviors suggests further avenues for additional data collection and

experiments. For example, it is widely believed that Beet leafhoppers are repelled by the

presence of marigold plants(Tagetes).It may be possible touse the frequency of (now) known

motifs to detect if there really is a difference between the behavior of insect with and

without the presence of marigolds. We defer further discussion of such issues to future and

ongoing work.

6.3 Automatically constructing EEG dictionaries

In this example of the utility of time series motifs we discuss an ongoing joint project

between the authors and Physicians at Massachusetts General Hospital (MGH) in

automatically constructing “dictionaries” of recurring patterns from electroencephalographs.

The electroencephalogram (EEG) measures voltage differences across the scalp and reflects

the activity of large populations of neurons underlying the recording electrode (Niedermeyer

and Lopes da Silva 1999). Figure 17 shows a sample snippet of EEG data.

Medical situations in which EEG plays an important role include, diagnosing and treating

epilepsy; planning brain surgery for patients with intractable epilepsy, monitoring brain

activity during cardiac surgery and in certain comatose patients; and distinguishing epileptic

seizures from other medical conditions (e.g. “pseudoseizures”).

The interpretation of EEG data involves inferring information about the brain (e.g. presence

and location of a brain lesion) or brain state (e.g. awake, sleeping, having a seizure) from

various temporal and spatial patterns, or graphoelements (which we see as motifs), within

the EEG data stream. Over the roughly 100 years since its invention in the early 1900s,

electroencephalographers have identified a small collection of clinically meaningful motifs,

including entities named “spike-and-wave complexes”, “wicket spikes”, “K-complexes”,

“sleep spindles” and “alpha waves”, among many other examples. However, the full

“dictionary” of motifs that comprise the EEG contains potentially many yet-undiscovered

motifs. In addition, the current, known motifs have been determined based on subjective

analysis rather than a principled search. A more complete knowledge of the full complement

of EEG motifs may well lead to new insights into the structure of cortical activity in both

normal circumstances and in pathological situations including epilepsy, dementia and coma.

Much of the recent research effort has focus on finding typical patterns that may be

associated with various conditions and maladies. For example, (Stern and Engel 2004)

attempts to be an “Atlas of EEG patterns”. However, thus far, all such attempts at finding

typical patterns have been done manually and in an ad hoc fashion.

A major challenge for the automated discovery of EEG motifs is large data volumes. To see

this, consider the following experiment. We conducted a search for the motif of length 4s,

within a 1h EEG from a single channel in a sleeping patient. The data collection rate was

500 Hz, yielding approximately 2 million data points, after domain standard smoothing and

filtering, an 180,000 data point signal was produced. Using the brute force algorithm in the

raw data, finding the motif required over 24h of CPU time. By contrast, using the in memory

version of the algorithm described in this paper, the same result requires 2.1min, a speedup

Mueen et al. Page 19

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of about factor of about 700. Such improvements in processing speed are crucial for tackling

the high data volume involved in large-scale EEG analysis. This is especially the case in

attempting to complete a dictionary of EEG motifs which incorporates multi-channel data

and a wide variety of normal situations and disease states.

Having shown that automatic exploration of large EEG datasets is tractable, our attention

turns to the question, is it useful? Figure 18 left shows the result of our first run of our

algorithm and Fig. 18 right shows a pattern discussed in a recent paper (Stefanovic et al.

2007).

It appears that this automatically detected motif corresponds to a well-known pattern, the K-

complex. K-complexes were identified in 1938 (Niedermeyer and Lopes da Silva 1999;

Loomis et al. 1938) as a characteristic event during the sleep.

This figure is at least highly suggestive that in this domain, motif discovery can really find

patterns that are of interest to the medical community. In ongoing work we are attempting to

see if there are currently unknown patterns hiding in the data.

6.4 Detecting near-duplicate images

Finding near-duplicate images in an image database can be used to summarize the database,

identify forged images and clean out distorted copies of images. If we can convert the two-

dimensional ordered images into one-dimensional (possibly unordered) vectors of features,

we can use our motif discovery algorithm to find near-duplicate images.

To test this idea, we use the first 40 million images from the dataset in Torralba et al. (2008).

We convert each image to a pseudo time series by concatenating its normalized color

histograms for the three primary colors (Hafner and Sawhney 1995). Thus, the lengths of the

“time series” are exactly 768. We run DAME on this large set of time series and find

1,719,443 images which have at least one and on average 1.231 duplicates in the same

dataset. We also find 542,603 motif images which have at least one non-identical image

within 0.1 Euclidean distances of them. For this experiment, DAME has taken 6.5 days

(recall that a brute-force search would take over a century, cf. Sect. 5). In Fig. 19, samples

from the sets of duplicates and motifs are shown. Subtle differences in the motif pairs can be

seen; for example, a small “dot” is present next to the dog’s leg in one image but not in the

other. The numbers in between image pairs are the ids of the images in the database.

6.5 Discovering patterns in polysomnograms

In polysomnography, body functions such as pulse rate, brain activity, eye movement,

muscle activity, heart rhythm, breathing, etc. are monitored during a patient’s sleep cycle. To

measure the eye movements an Electrooculogram (EOG) is used. Eye movements do not

have any periodic pattern like other physiological measures such as an ECG and respiration.

Repeated patterns in the EOG of a sleeping person have attracted much interest in the past

because of their potential relation to dream states. We use DAME to find a repeated pattern

in the EOG traces from the “Sleep Heart Health Study Polysomnography Database”

(Goldberger et al. 2000). The trace has about 8,099,500 temporal values at the rate of 250

Mueen et al. Page 20

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

samples per second. Since the data is oversampled, we downsample it to a time series of

1,012,437 points. A subset of 64s is shown in Fig. 20.

After a quick review of the data, one can identify that most of the natural patterns are shorter

in length (i.e. 1 or 2 s) and are visually detectable locally in a single frame. Instead of

looking for such shorter patterns, we search for longer patterns of 4.0s long with the hope of

finding visually undetectable and less frequent patterns. DAME has finished the search in

10.5h (brute force search would take an estimated 3 months) and found two subsequences

shown in Fig. 21 which have a common pattern, and very unusually this pattern does not

appear anywhere else in the trace. Note that the pattern has a plateau in between seconds 1.5

and 2.0, which might be the maximum possible measurement by the EOG machine.

We map these two patterns back to the annotated dataset. Both the subsequences are located

at points in the trace just as the person being monitored was going back and forth between

arousal and sleep stage 1, which suggests some significance to this pattern.

6.6 Extension to multidimensional motifs

Because DAME works with any metric distance measure, it is very easily extendible to

multidimensional time series, so long as we use a metric to measure distances among them.

We can use multidimensional Euclidean distance for multidimensional time series which is

computed by taking the Euclidean distance for all the values along each of the dimensions.

The squared errors from different dimensions can be weighted by their relative importance.

Any weighting scheme preserves the metric property of Euclidean distance and thus our

algorithm is directly applicable to multidimensional data.

A good example of multidimensional time series is human motion capture data where the

3D positions and angles of several joints of the body are recorded while a subject performs a

specific motion. The positions of different joints are synchronous time series and can be

considered as different dimensions of a multidimensional time series. While computing the

similarity of motion segments, we must define the relative importance (weights) of different

body parts. For example, to compare Indian dances we may need to put larger weights on the

hands and legs than head and chest. To test the applicability of DAME on multidimensional

data, we use two dance motions from the CMU motion capture databases and identified the

motion-motif shown in Fig. 22. Each of the dance motions are more than 20s long and we

search for motif of length 1s. The motion-motif we found is a dance segment that denotes

“joy” in Indian dance.

7 Conclusion and future work

In this paper we introduced the first scalable algorithm for exact discovery of time series

motif. Our algorithm can handle databases of the order of tens of millions of time series,

which is at least two orders of magnitude larger than anything attempted before. We used

our algorithm in various domains and discovered significant motifs. To facilitate scalability

to the handful of domains that are larger than those considered here (i.e. star light curve

catalogs), we plan to consider parallelization, given that the search for different group sizes

Mueen et al. Page 21

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

can easily be delegated to different processors. Another avenue of research is to modify the

algorithm to find multidimensional motifs in databases of similar scale.

References

Abe H, Yamaguchi T (2005) Implementing an integrated time-series data mining environment—a case
study of medical Kdd on chronic hepatitis. In: Presented at the 1st international conference on
complex medical engineering (CME2005)

Androulakis I, Wu J, Vitolo J, Roth C (2005) Selecting maximally informative genes to enable
temporal expression profiling analysis, In: Proceddings of foundations of systems biology in
engineering

Arita D, Yoshimatsu H, Taniguchi R (2005) Frequent motion pattern extraction for motion recognition
in real-time human proxy. In: Proceedings of JSAI workshop on conversational informatics, pp 25–
30

Beaudoin P, Van de Panne M, Poulin P, Coros S (2008) Motion-motif graphs, symposium on computer
animation

Bentley JL (1980) Multidimensional divide-and-conquer. Commun ACM 23(4):214–229

Bigdely-Shamlo N, Vankov A, Ramirez R, Makeig S (2008) Brain activity-based image classification
from rapid serial visual presentation. IEEE Trans Neural Syst Rehabil Eng 16(4)

Böhm C, Krebs F (2002) High performance data mining using the nearest neighbor join. In:
Proceedings of 2nd IEEE international conference on data mining (ICDM), pp 43–50

Celly B, Zordan V (2004) Animated people textures. In: Proceedings of 17th international conference
on computer animation and social agents (CASA)

Cheung SS, Nguyen TP (2005) Mining arbitrary-length repeated patterns in television broadcast. ICIP
3:181–184

Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: ACM SIGKDD,
Washington, DC, pp 493–498

Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in spatial
databases. In: SIGMOD

Delorme A, Makeig S (2003) EEG changes accompanying learning regulation of the 12-Hz EEG
activity. IEEE Trans Rehabil Eng 11(2):133–136

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series
data: experimental comparison of representations and distance measures. In: VLDB

Dohnal V, Gennaro C, Zezula P (2003) Similarity join in metric spaces using eD-Index, vol 2736 In:
DEXA, pp 484–493

Duchêne F, Garbay C, Rialle V (2007) Learning recurrent behaviors from heterogeneous multivariate
time-series. Artif Intell Med 39(1):25–47 [PubMed: 16935482]

Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series
databases. In: SIGMOD, pp 419–429

Ferreira P, Azevedo PJ, Silva C, Brito R (2006) Mining approximate motifs in time series. Discov Sci

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB,
Peng C-K, Stanley HE (2000) PhysioBank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. Circulation 101(23):e215–e220 [PubMed:
10851218]

Gonzalez EC, Figueroa K, Navarro G (2008) Effective proximity retrieval by ordering permutations.
IEEE Trans Pattern Anal Mach Intell 30(9):1647–1658 [PubMed: 18617721]

Guyet T, Garbay C, Dojat M (2007) Knowledge construction from time series data using a
collaborative exploration system. J Biomed Inform 40(6):672–687 [PubMed: 17988953]

Hafner J, Sawhney H et al. (1995) Efficient color histogram indexing for quadratic form distance
functions. IEEE Trans Pattern Anal Mach Intell 17(7):729–736

Hamid R, Maddi S, Johnson A, Bobick A, Essa I, Isbell C (2005) Unsupervised activity discovery and
characterization from event-streams. In: Proceedings of the 21st conference on uncertainty in
artificial intelligence (UAI05)

Mueen et al. Page 22

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jagadish HV, Ooi BC, Tan K, Yu C, Zhang R (2005) iDistance: An adaptive B+-tree based indexing
method for nearest neighbor search. ACM Trans Database Syst 30(2)

Kaffka S, Wintermantel B, Burk M, Peterson G (2000) Protecting high-yielding sugarbeet varieties
from loss to curly top. http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm

Keogh EJ (2003) Efficiently finding arbitrarily scaled patterns in massive time series databases. In:
Proceedings of the 7th European conference on principles and practice of knowledge discovery in
databases (PKDD), pp 253–265

Keogh EJ, Wei L, Xi X, Lee S-H, Vlachos M (2006) LB_Keogh supports exact indexing of shapes
under rotation invariance with arbitrary representations and distance measures. In: VLDB, pp 882–
893

Koudas N, Sevcik KC (2000) High dimensional similarity joins: algorithms and performance
evaluation. IEEE Trans Knowl Data Eng 12(1):3–18

Lee T, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax
algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11(2):417–441
[PubMed: 9950738]

Lin J, Keogh E, Lonardi S, Patel P (2002) Finding motifs in time series. In: 2nd workshop on temporal
data mining (KDD’02)

Liu Z, YU JX, Lin X, Lu H, Wang W (2005) Locating motifs in time-series data. In: PAKDD, pp 343–
353

Loomis AL, Harvey E, Hobart G (1938) Disturbance patterns in sleep. J Neurophysiol 2:413–430

McGovern A, Rosendahl D, Kruger A, Beaton M, Brown R, Droegemeier K (2007) Understanding the
formation of tornadoes through data mining. In: 5th conference on artificial intelligence and its
applications to environmental sciences at the American meteorological society

Meng J, Yuan J, Hans M, Wu Y (2008) Mining motifs from human motion. In: Proceedings of
EUROGRAPHICS

Minnen D, Isbell CL, Essa I, Starner T (2007a) Detecting subdimensional motifs: an efficient
algorithm for generalized multivariate pattern discovery. In: IEEE ICDM

Minnen D, Isbell CL, Essa I, Starner T (2007b) Discovering multivariate motifs using subsequence
density estimation and greedy mixture learning. In: 22nd conference on artificial intelligence

Motzkin D, Hansen CL (1982) An efficient external sorting with minimal space requirement. Int J
Parallel Program 11(6):381–396

Mueen A, Keogh E, Zhu Q, Cash S, Westover B (2009) Exact discovery of time series motif. In: SDM

Murakami K, Doki S, Okuma S, Yano Y (2005) A study of extraction method of motion patterns
observed frequently from time-series posture data. In: Proceedings of IEEE international
conference on systems, man and cybernetics (SMC), pp 3610–3615

Nanopoulos A, Theodoridis Y, Manolopoulos Y (2001) C2P: clustering based on closest pairs. In:
International conference on very large data bases (VLDB), pp 331–340

Niedermeyer E, Lopes da Silva F (eds) (1999) Electroencephalography: basic principles, clinical
applications and related fields. Williams and Wilkins, Baltimore

Nyberg C, Barclay T, Cvetanovic Z, Gray J, Lomet D (1995) Alphasort: A cache-sensitive parallel
external sort. VLDB J 4(4):603–628

Patel P, Keogh E, Lin J, Lonardi S (2002) Mining motifs in massive time series databases. In: IEEE
international conference on data mining

Rombo S, Terracina G (2004) Discovering representative models in large time series databases. In:
Proceedings of the 6th international conference on flexible query answering systems, pp 84–97

Shieh J, Keogh E (2008) iSAX: Indexing and mining terabyte sized time series. In: IGKDD, pp 623–
631

Simona R, Giorgio T (2004) Discovering representative models in large time series databases. Int Conf
Query Answ Syst 3055:84–97

Stafford C, Walker G (2009) Characterization and correlation of DC electrical penetration graph
waveforms with feeding behavior of beet leafhopper (submission)

Mueen et al. Page 23

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm

Stefanovic BJ, Schwindt W, Hoehn M, Silva AC (2007) Functional uncoupling of hemodynamic from
neuronal response by inhibition of neuronal nitric oxide synthase. J Cereb Blood Flow Metab
27:741–754 [PubMed: 16883353]

Stern JM, Engel J Jr (2004) Atlas of EEG patterns. Williams & Wilkins, Lippincott Supporting
Webpage www.cs.ucr.edu/~mueen/DAME/index.html

Tanaka Y, Iwamoto K, Uehara K (2005) Discovery of time-series motif from multi-dimensional data
based on MDL principle. Mach Learn 58(2–3):269–300

Tang H, Liao SS (2008) Discovering original motifs with different lengths from time series source.
Knowl-Based Syst 21(7):666–671

Tata S (2007) Declarative querying for biological sequences, Ph.D Thesis, The University of Michigan,
(Advisor Patel Jignesh M.)

Torralba A, Fergus R, Freeman WT (2008) 80 million tiny images: a large database for non-parametric
object and scene recognition. IEEE PAMI 30(11):1958–1970

Ueno K, Xi X, Keogh E, Lee D (2006) Anytime classification using the nearest neighbor algorithm
with applications to stream mining. In: Proceedings of of IEEE international conference on data
mining (ICDM)

Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-
search methods in high-dimensional spaces. In: International conference on very large data bases
(VLDB), pp 194–205

Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms machine
learning, vol 38 Kluwer, Dordrecht, pp 257–286

Yankov D, Keogh E, Medina J, Chiu B, Zordan B (2007) Detecting motifs under uniform scaling. In:
SIGKDD

Yoshiki T, Kazuhisa I, Kuniaki U (2005) Discovery of time-series motif from multi-dimensional data
based on MDL principle. Mach Learn 58(2–3):269–300

Yu C, Wang S (2007) Efficient index-based KNN join processing for high-dimensional data. Inf Softw
Technol 49(4)

Mueen et al. Page 24

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.ucr.edu/~mueen/DAME/index.html

Fig. 1.
(Top) The output steam flow telemetry of the Steamgen dataset has a motif of length 640

beginning at locations 589 and 8,895. (Bottom) By overlaying the two motifs we can see

how remarkably similar they are to each other

Mueen et al. Page 25

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
A visual intuition of early abandoning. Once the squared sum of the accumulated gray hatch
lines exceeds r2, we can be sure the full Euclidean distance exceeds r

Mueen et al. Page 26

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
a A sample database of 24 points. b Disk blocks containing the points sorted in the order of

the distances from r. The numbers on the left are the ids. c All points projected on the order
line. d A portion of an order line for a block of 8 points. e After pruning by a current motif

distance of 4.0 units. f After pruning by 3.0 units

Mueen et al. Page 27

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
(Top-left) Plot of successive triplets of numbers of a time series. (Top-right) Comparison of

DAME with divide and conquer approach. (Bottom) Distribution of 10,000 random walks

along (left) a plane perpendicular to an axis and (right) the order line

Mueen et al. Page 28

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
(Left) Execution times in days on random walks and EOG data. (Right) Comparison of the

three different versions of brute-force algorithm with DAME

Mueen et al. Page 29

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Total execution times with CPU and I/O components recorded on one million random walks

for different block sizes (left) for the DAME_Motif method and (right) for the

searchAcrossBlocks method

Mueen et al. Page 30

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Execution times on one million random walks of different lengths

Mueen et al. Page 31

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Comparison of in-memory search methods

Mueen et al. Page 32

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
(Left) Two points x and y are projected on a plane by a rotation around the axis joining two

reference points r1 and r2. (Mid) Known distances and the lower bound after the projection.

(Right) Planar and linear bound are plotted against true distances for 40,000 random pairs

Mueen et al. Page 33

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
A burst trial time line

Mueen et al. Page 34

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
Two subsequences corresponding to the first motif

Mueen et al. Page 35

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
Motif 1 start latencies in epochs

Mueen et al. Page 36

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 13.
A schematic diagram showing the apparatus used to record insect behavior

Mueen et al. Page 37

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 14.
An electrical penetration graph of insect behavior. The data is complex and highly non-

stationary, with wandering baseline, noise, dropouts, etc.

Mueen et al. Page 38

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 15.
The motif of length 480 found in the insect telemetry shown in Fig. 14. Although the two

instances occur minutes apart they are uncannily similar

Mueen et al. Page 39

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 16.
The motif of length 400 found in an EPG trace of length 18,667. (Inset) Using the motifs as

templates, we can find several other occurrences in the same dataset

Mueen et al. Page 40

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 17.
The first 10s of an EEG trace. In the experiment discussed below, we consider a full hour of

this data

Mueen et al. Page 41

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 18.
(Left) Bold lines the first motif found in one hour of EEG trace LSF5. Light lines the ten

nearest neighbors to the motif. (Right) A screen dump of Fig. 6, from paper Stefanovic et al.

(2007)

Mueen et al. Page 42

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 19.
(Left) Five identical pairs of images. (Right) Five very similar, but non-identical pairs

Mueen et al. Page 43

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 20.
A section of the EOG from the polysomnogram traces

Mueen et al. Page 44

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 21.
Motif of length 4.0 s found in the EOG

Mueen et al. Page 45

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 22.
An example of multidimensional motif found in the motion captures of two different Indian

dances. In the top row, four snapshots of the motions aligned at the motif are shown. In the

bottom, the top-view of the dance floor is shown and the arrows show the positions of the

subjects

Mueen et al. Page 46

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 47

Table 1

DAME_Motif is the bottom up search procedure for disk blocks

Procedure DAME_Motif (B)

B: array of disk blocks containing time series

L1,L2: Indices of the motif pair

bsf: The smallest distance

1 bsf ← INF, L1 ← −1 L2 ← −1

2 Dref ← Randomly pick r time series

3 r ← Dref1

4 sort(B,r)

5 s,e ← computeInterval(B)

6 t ← 1

7
while t ≤ N

2
8 top ← 1

9 while top < N

10 mid ← top+t

11 bottom ← top+2t

12 searchAcrossBlocks(top, mid, bottom)

13 top ← bottom

14 t ← 2t

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 48

Table 2

searchAcrossBlocks compares pairs among disjoint set of blocks

Procedure searchAcrossBlocks (top,mid,bottom)

top, mid, bottom: indices of the array of disk blocks, B

1 for p ← top to mid-1

2 if smid − ep ≥ bsf and mid-top != 1

3 continue

4 D1,Dist1 ← load(Bp)

5 if mid-top = 1

6 searchlnBlock(D1,Dist1)

7 istart ← 0

8 for q ← mid to bottom-1

9 if sq − ep ≥ bsf and bottom-mid != 1

10 break

11 D2,Dist2 ← load(Bq)

12 if bottom-mid = 1

13 searchInBlock (D2,Dist2)

14 for i ← istart + 1 to m

15 for j ← l to m

16 if Dist11,i − Dist21,j < bsf

17 update(Dl,D2,Distl,Dist2,i,j)

18 else

19 istart ← i

20 break

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 49

Table 3

load loads a disk block and computes the referenced distances

Procedure load(b)

b:An index of the array of disk blocks, B

1 D ← read(b)

2 for i ← 1 to R

3 for j ← 1 to m

4 Disti,j ← dist(Drefi,Dj)

5 return D,Dist

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 50

Table 4

searchInBlocks compares pairs within a disk block

Procedure searchInBlock(D,Dist)

D: A disk block

Dist: An array storing the distances from the reference point

1 t ← 1

2
while t ≤ m

2
3 top ← 1

4 while top < m

5 mid ← top+t

6 bottom ← top + 2t

7 for i ← top to mid-1

8 for j ← mid to bottom-1

9 if Dist1,i − Dist1,j < bsf

10 update(D,D,Dist,Dist,i,j)

11 else

12 break

13 top ← bottom

14 t ← 2t

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mueen et al. Page 51

Table 5

update checks a pairs lower bound and update best-so-far if necessary

Procedure update(D1,D2,Dist1,Dist2,x,y)

D1, D2: Disk blocks

Dist1, Dist2: Arrays storing the distances from the reference point

x, y: Indices of the comparing time series in D1 and D2

1 reject ← false

2 for i ← 2 to R

3 lower_bound |Dist1i, x − Dist2i, y|
4 if lower_bound > bsf

5 reject ← true, break

6 if reject = false and trivial(D1x,D2y) = false

7 if dist(D1x,D2y) < bsf

8 bsf ← dist(D1x,D2y)

9 L1 ← id(D1x), L2 ← id(D2y)

Data Min Knowl Discov. Author manuscript; available in PMC 2020 March 09.

	Abstract
	Introduction
	Related work
	Definition and background
	Definition 1
	Definition 2
	Definition 3
	Definition 4
	Definition 5
	Definition 6

	Our algorithm
	A detailed intuition of our algorithm
	A formal description of our algorithm
	Correctness of DAME
	Lemma 1
	Lemma 2

	Scalability experiments
	Comparison with divide and conquer approach
	Sanity check on large databases
	Performance for different block sizes
	Performance for different motif lengths
	In-Memory search options
	Lower bound options

	Experimental case studies
	Motifs for brain–computer interfaces
	Finding repeated insect behavior
	Automatically constructing EEG dictionaries
	Detecting near-duplicate images
	Discovering patterns in polysomnograms
	Extension to multidimensional motifs

	Conclusion and future work
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14
	Fig. 15
	Fig. 16
	Fig. 17
	Fig. 18
	Fig. 19
	Fig. 20
	Fig. 21
	Fig. 22
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

