
Achievable Rates for Pattern Recognition

M. Brandon Westover,
Department of Neurology, Massachusetts General Hospital, Boston, MA 02114-2622 USA

Joseph A. O’Sullivan [Fellow, IEEE]
Department of Electrical engineering, Washington University, St. Louis, MO 63130 USA

Abstract

Biological and machine pattern recognition systems face a common challenge: Given sensory data 

about an unknown pattern, classify the pattern by searching for the best match within a library of 

representations stored in memory. In many cases, the number of patterns to be discriminated and 

the richness of the raw data force recognition systems to internally represent memory and sensory 

information in a compressed format. However, these representations must preserve enough 

information to accommodate the variability and complexity of the environment, otherwise 

recognition will be unreliable. Thus, there is an intrinsic tradeoff between the amount of resources 

devoted to data representation and the complexity of the environment in which a recognition 

system may reliably operate.

In this paper, we describe a mathematical model for pattern recognition systems subject to 

resource constraints, and show how the aforementioned resource–complexity tradeoff can be 

characterized in terms of three rates related to the number of bits available for representing 

memory and sensory data, and the number of patterns populating a given statistical environment. 

We prove single-letter information-theoretic bounds governing the achievable rates, and 

investigate in detail two illustrative cases where the pattern data is either binary or Gaussian.

Index Terms—

Distributed source coding; multiterminal information theory; pattern recognition

I. Introduction

PATTERN recognition is the problem of inferring the state of an environment from 

incoming and previously stored data. In real-world operating environments, the volume of 

raw data available often exceeds a recognition system’s resources for data storage and 

representation. Consequently, data stored in memory only partially summarizes the 

properties of patterns, and internal representations of incoming sensory data are likewise 

imperfect approximations. In other words, pattern recognition is frequently a problem of 

inference from compressed data. However, excessive compression precludes reliable 
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recognition. This apparent tradeoff raises a fundamental question: In a given environment, 

what are the least amounts of memory data and sensory data consistent with reliable pattern 

recognition?

The paper is organized as follows. In Section II, we introduce the general problem 

informally. Relationships between the present work and other pattern recognition research is 

briefly described in Section III. In Section IV, we formalize our problem as that of 

determining which combinations of three key rates are achievable, that is, determining which 

rate combinations allow the theoretical possibility of reliable pattern recognition. These rates 

quantify the information available for representing memory and sensory data, and the 

number of distinct patterns which the recognition system can discriminate. Our main results 

are single-letter formulas providing inner and outer bounds on the set of achievable rates, 

presented in Section V. In Section VI, we consider some instructive special cases of the main 

results, and compare our results to those for the related problem of distributed source coding. 

In Section VII, we explore explicit formulas for the bounds in two special binary and 

Gaussian cases. Section VIII contains concluding remarks. Proofs for most of the results are 

placed in the Appendices. The entire discussion is organized around the block diagram in 

Fig. 1.

II. Informal Problem Statement

In this section, we use an imagined example to motivate the mathematical model studied in 

the later technical sections. Suppose that our pattern recognition system consists of a 

homunculus living inside the head of some animal. The homunculus has access to a video 

monitor which displays data captured by the animal’s retinas, and a set of index cards for 

storing information about the patterns in the environment relevant to survival, constituting a 

“memory.” The homunculus must identify each pattern by comparing viewed images with 

information stored in memory. These identifications are then used to guide the animal’s 

behavior. Let us consider which factors govern the difficulty of our homunculus’ task.

A. Pattern Rate

First, the number of patterns that must be discriminated, Mc, obviously cannot exceed the 

number of images registerable on the animal’s retinas, which depends in turn on the number 

of retinal photoreceptors and the number of distinct signaling states of each photoreceptor. 

Denoting the state of the retinas as Y = (Y1, Y2, …, Yn), where each Yi takes values in a 

finite alphabet Y, the number of possible retinal images is |Y|n. In a very simple animal with 

n = 8 photoreceptors, each able only to distinguish “bright” (Y = 1) from “dark” (Y = 0) (so 

Y ∈ 0, 1 ), the absolute upper limit on Mc would be |Y|n = 28 = 256.

With higher resolution eyes (larger n) an exponential explosion in the number of possible 

images rapidly overwhelms memory and computational resources. In humans, for whom 

Y ≈ 256, and n ≈ 2 × 106 [1], [2], |Y|n 102, 408, 200, far exceeding estimates of the number 

of particles in the universe [3]. Fortunately, two features of real-world pattern recognition 

intervene: First, sensory data exhibits strong statistical structure, p(y), so that the vast 

majority of the |Y|n possible images are never experienced.1 Second, much of the animal’s 
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visual experience can be filtered out as irrelevant to survival. Thus, we express the number 

of patterns our homunculus must discriminate as Mc = |Y|nRc′, where Rc′ is called the pattern 

rate, 0 < Rc′ < 1, and generally Mc ≪ |Y|n. Equivalently, we can express Mc in binary units, 

as Mc = 2nRc, in which case Rc = Rc′log2 Y .

B. Sensory Data Compression Rate

Our homunculus accesses sensory data indirectly through a video monitor that has limited 

display capacity. That is, whereas the retinas can be in up to |Y|n distinct signaling states, the 

homunculus’ internal monitor can display at most My = 2nRy ≪ |Y|n, where Ry is thus the 

sensory data compression rate. Analogous data reductions arise in real recognition problems 

for various reasons, both computational (e.g., dimensionality reduction, sparsification, 

regularization, or other “feature extraction” operations), and economic (e.g., energy 

constraints, processing time constraints, storage limitations). We represent the 

transformation from retinal data Y to video data J by the action of an encoder ϕ, resulting in 

the displayed data J = ϕ(Y).

This sensory data compression step places another restriction on the number of 

discriminable patterns, so that, in general, Mc ≪ My ≪ |Y|n; or Rc ≤ Ry ≤ log2 Y .

C. Memory Data Compression Rate

The job of our homunculus is to recognize patterns. More formally, the homunculus must 

assign to each viewed image Y one of Mc class labels, which we take to be integers 

ℳc = 1, 2, …, Mc . As pre-job training, we imagine the homunculus studies a set of labeled 

class prototypes or “templates,” T(w) = (X(w), w), w = 1, 2, …, Mc = ℳc, each drawn from 

a distribution p(x), where each template has dimensionality identical to that of the sensory 

data, X(w) = (X1(w), …, Xn(w)).

The homunculus creates index cards, on which it writes the class labels and descriptive 

information about each class template. However, the number of cards and the amount of 

information per card are limited, allowing only a compressed summary of the available data. 

We represent the information memorized about a class M(w) as the output of an encoder f, 
i.e., M(w) = (I(w), w) = f(T(w)), where I(w) is the compressed description of X(w) and w is 

the memorized class label. The degree of compression is quantified by specifying either the 

number of index cards comprising the memory, Mx, or by a compression rate (given in bits) 

Rx = 1
n logMx.

As above, memory data compression restricts the number of discriminable patterns Mc, so 

that Mc ≪ Mx ≪ |X|n; or, in terms of rates, Rc ≤ Rx ≤ log2 X .

1If this were not the case, visual experience would be like watching television white noise.
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D. Image Formation and Testing

The “testing” phase of our homunculus-driven pattern recognition system involves two 

processes:, image formation and recognition.

Image formation proceeds as follows. Nature selects a pattern class W ∈ ℳc at random, then 

generates an image Y which is registered on the animal’s retinas. (The class label W is not 

observable by the homunculus.) We model the image formation process as the transmission 

of the class template X(w) through a random channel p(y|x). The retinal image Y thus 

represents a “signature” of the underlying pattern X(w), and the channel p(y|x) represents 

two types of difficulties intrinsic to most real-world pattern recognition problems: signature 
variation (differences in the sensory data generated on repeated viewings of the same 

underlying pattern); and signature ambiguities (distinct patterns may produce similar 

signatures).2

The homunculus receives the compressed sensory data J = ϕ(Y), compares it with the 

memory data Cu = M(1), …, M Mc , and finally reports the class label of the best match, 

Ŵ. The inference procedure used to make these comparisons can reflect knowledge of the 

pattern source p(x) and image formation process p(y|x), but at the time of testing, it must be 

specified so as to depend only on the available data, i.e., g must be function only of Cu and J, 

W = g J, Cu . We judge the homunculus’ performance by the probability of error Pe. We will 

consider the system reliable if for some acceptable ϵ it achieves Pe ≤ ϵ.

E. Interpretations of the Problem Formulation

We have now introduced the basic elements of our problem, which is to determine the rate 

combinations (Rx, Ry, Rc) compatible with the possibility of reliable pattern recognition 

systems, where a “reliable” system is one for which the probability of recognition error can 

be made arbitrarily small. To summarize, these basic elements are 1) a model for the 

underlying patterns, consisting of the number of patterns Mc = 2nRc, a set of class labels w ∈ 

{1, …, Mc}, and the class prototypes X(w) together with their generative model p(x); 2) a 

model of the channel connecting class prototypes to the sensory data p(y|x); and 3) budgets 

specifying the number of bits allowed for representing sensory data Ry and memory data Rx 

inside the system.

We pause here to consider a few different possible perspectives on the problem under study.

Optimization views.—From an optimization point of view, we can ask our central 

question in two different but equivalent ways: Given the pattern rate Rc, what are the least 

amounts of sensory and memory data Ry and Rx, needed for reliable pattern recognition? 

Alternatively, given fixed information budgets for memory and sensory data representation 

Rx and Ry, what is the maximum achievable pattern recognition rate Rc?

2Grenander [4] and Mumford [5] have argued that four “universal transformations” (noise and blur, superposition, domain warping, 
and interruptions) account for most of the ambiguity and variability in naturally occurring signals.

Westover and O’Sullivan Page 4

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Regarding “n.”—Second, the problem has a different “feel” depending on whether one 

views the data dimensionality n either as a fixed or an increasing parameter. In the preceding 

discussion, we have primarily taken the static view, in which there are a fixed number 

Mc = 2nRc of patterns, or “states of nature” of interest, and the problem is to investigate how 

many memory states Mx and sensory states My are needed to recognize them reliably. 

Alternatively, we may regard n as a dynamic, increasing parameter. Biologically, allowing n 
to increase might correspond to studying a series of animals with increasingly better eyes 

and memory organs. In engineering applications, the increase might correspond to building a 

sequence of machines with progressively higher camera resolution and data storage 

capacities [6]. Obviously, if while increasing n we hold the bit-budgets Rx and Ry fixed, then 

the number of memory and sensory states available for data representation grows 

exponentially, Mx = 2nRx, My = 2nRy. Less obviously, the maximum number of 

discriminable patterns also grows exponentially,3 with a constant rate Rc, i.e., Mc = 2nRc. 

The “fixed n” and “increasing n” perspectives correspond to the familiar, complementary 

mathematical methods of proving a given inequality, respectively, either by the “adversarial” 

approach (given any ϵ, choose n large enough…); or the “asymptotic approach” (take the 

limit as n → ∞…).

An important final point regarding n is that, like many results in information theory, our 

results rely on asymptotic arguments. Thus, we only prove the results valid only for 

“sufficiently large n,” depending in turn on an ϵ corresponding to the tolerable error rate. 

The needed magnitude of n for a given ϵ (i.e., the issue of error exponents) will depend on 

the application, and is an important open problem.

III. Related Work

A. Machine Learning Approaches

Pattern recognition is a central topic in machine learning [7]–[10]. The machine learning 

approach to pattern recognition centers around the following problem: Given a set of labeled 

sensory data D = Y (i), w(i), i = 1…N , we wish to find a rule g that predicts the labels for 

future sensory data, i.e., if Y is in fact a signature of pattern class w ∈ {1, 2, …, Mc}, we 

want Pr(g(Y) ≠ W) ≤ ϵ for some acceptable ϵ > 0. Broadly speaking, two competing 

approaches dominate the literature. In the “generative modeling” approach, one attempts to 

estimate the distribution underlying the data p(w, y), and then to use the conditional 

distribution p(w, y) to infer w from Y, i.e., w = g(Y ) = argmaxw ∈ Mcp(w|Y ). Alternatively, in 

the “discriminative” approach, one attempts to learn the optimal decision region boundaries 

directly, without estimating p(w, y).

Our problem formulation resonates with the “generative modeling” approach, in that we 

allow the homunculus access to p(w, y).4 Informally, such knowledge might come from 

3One should probably beware of the strange (and unnecessary) interpretation that, as we upgrade our camera (i.e., as we increase n), 
the number of patterns in the world consequently increases. More naturally, we may view the world as always presenting a practically 
unlimited number of patterns, while the number of patterns that can be taken advantage of by a system grows with increasing 
information processing resources.

Westover and O’Sullivan Page 5

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allowing a very large volume of training data. Nevertheless, the distinction between 

generative and discriminative approaches then may become practically unimportant, as in 

many instances either approach can achieve asymptotically optimal performance.

In any case, in the present work we are not directly concerned with the problem of classifier 

learning. Rather, we investigate the conditions under which reliable classifiers can exist at 

all, regardless of how they are deigned or learned; we describe performance bounds to which 

all pattern recognition systems are subject.

It is also worth pointing out the distinction between the machine learning concept of 

“Vapnik–Chervonenkis (VC) dimension” and Mc in the present work. Informally, the VC 

dimension is the number of distinct patterns that can be shattered by a given family of 

classifiers (see [10], [12] for a detailed description). As such, VC dimension is a measure of 

the complexity of the decision boundaries that can be fit with a given family of classifiers. In 

contrast, Mc in our work is the number of patterns or pattern classes that can be 

distinguished, with no constraints on the family of classifiers.

B. Related Work in Combined Data Compression and Inference

Neuroscientist Horace Barlow has argued for more than four decades that data compression 

is an essential principle underlying learning and intelligent behavior in animal brains (see, 

e.g., [13]–[17]). Barlow and many others have amassed substantial experimental evidence 

showing efficient data coding mechanisms at work in the sensory systems of diverse 

animals, including monkeys, cats, frogs, crickets, and flies [18]. More recently, data 

compression is gaining appreciation as a mechanism for managing metabolic energy costs in 

neural systems [19].

In the engineering pattern recognition literature, data compression usually arises indirectly 

in the context of feature extraction, i.e., techniques for transforming raw data such that 

“irrelevant” data is discarded and the residual data is rendered into some advantageous 

format which facilitates storage and comparison, and is robust (“invariant”) with respect to 

signature variations [20], [21]. In the information theory literature, probably the first direct 

investigation of the interplay between data compression and statistical inference is due to 

Ahlswede and Csiszár [22]. In [23] Han and Amari reviewed work up through 1998 on rate-

constrained inference problems, including hypothesis testing, pattern recognition, and 

parameter estimation. Recently, Ishwar et al. have studied the problem of joint classification 

and reconstruction of sensory data subject to a fidelity constraint, in the context of video 

coding [24], [25]. In contrast to the problem studied in this paper, in that work there is no 

data compression constraint on memory data. Work on practical algorithms for joint 

classification and data compression includes [26]–[28].

IV. Problem Statement

We now proceed to the formal presentation of the main results.

4In particular, our formulation is consistent with the “General Pattern Theory” framework of Grenander and colleagues, which has 
provided a basis for much of the generative modeling work in pattern recognition research [11].
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A. Notation

We adopt the following notational conventions. Random variables are denoted by capital 

letters (e.g., U), their values by lowercase letters (e.g., u), their alphabets by script capital 

letters (e.g., U). Sequences of symbols are denoted either by boldface letters or with a 

superscript, e.g., u = un = (u1, u2, …, un). The probability distribution for a random variable 

U ∈ U is denoted by pU(u), or p(u) simply when the implied subscript is clear from the 

context. Entropy, mutual information, and conditional mutual information are denoted in the 

usual ways, e.g., for random variables U, V, W, we write H(U), I(U; V), and I(U; V|W), 

respectively. All logarithms are understood to be base two, i.e., log = log2. Finally, to 

express statements such as “X and Z are conditionally independent given Y,” i.e., p(x, y, z) = 

p(y) p(x | y)p(z | y), we write “X – Y – Z form a Markov chain,” or simply X −.Y – Z.

B. Definitions and Assumptions

Definition 1: The environment ℰ for a pattern recognition system is a set of eight objects

ℰ = ℳc, X, Y, p(x), p(y x), p(w), Cx, Φ

where

• ℳc, X, Y are finite alphabets;

• p(w), p(xy) = p(x)p(y|x), are probability distributions over ℳc, and Xn × Yn, 

respectively;

• Cx = T (1), …T Mc  is a set of pairs T(w) = (X(w), w) of random vectors X(w) 

drawn independent and identically distributed (i.i.d.) ~p(x), labeled by 

w ∈ 1, 2, …, Mc = ℳc;

• Φ is a mapping from labels ℳc to vectors in Cx, Φ : ℳc Cx, Φ(w) = X(w).

We make the following simplifications:

• the distribution over class labels is uniform, p w = 1/ ℳc  for all w ∈ ℳc;

• the pattern components are i.i.d., p(x) = ∏i = 1
n p xi ;

• the observation channel is memoryless, p(y |x) = ∏i = 1
n p yi |xi .

Definition 2: An (Mc, Mx, My, n) pattern recognition code for an environment ℰ consists of 

three sets of integers

ℳc = 1…Mc , ℳx = 1…Mx , ℳy = 1…My

and three mappings
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f:Xn × ℳc ℳx × ℳc, f(t(w)) = f(x, w) = (i, w) ≜ m(w)
ϕ:Yn ℳy, ϕ(y) = j
g:ℳy × ℳx

Mc ℳc, g j, Cu = w

where Cu denotes the result of applying f to the entries of Cx

Cu = f(T (1)), …, f T Mc = m(1), …, m Mc ) .

We call Cx the pattern templates; f, the memory encoder; Cu, the memorized data; ϕ, the 

sensory encoder; and g, the recognition function or classifier.

Definition 3: The operation of a pattern recognition system (“agent”) implementing a given 

(Mc, Mx, My, n) pattern recognition code (f, ϕ, g) for an environment ℰ is defined in terms 

of the following events.

Memorization phase:

• The agent observes Cx, and uses f to compute the memory data Cu.

• Access to Cx is taken away, and thereafter the agent knows of Cx only what is 

retained in Cu.

Testing phase

• Nature selects an index W ~ p(w).

• Nature encodes the pattern according to X(W) = Φ(W).

• The pattern X(W)passes through the channel p(y|x), giving rise to an observable 

signal Y.

• The agent computes J = ϕ(Y).

• The agent infers W by computing W = g J, Cu .

With respect to the events just described, the probability of error for a code (f, ϕ, g) in ℰ is

Pen(w) = Pr(W ≠ w W = w)

and the average probability of error of the code is

Pen = ∑
w ∈ ℳc

p(w)Pr(W ≠ w W = w)

= 1
Mc ∑

w ∈ ℳc
Pen(w) .

Definition 4: The rate R = (Rc, Rx, Ry) of an (Mc, Mx, My, n) code is

Westover and O’Sullivan Page 8

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rc = 1
nlog2Mc, Rx = 1

nlog2Mx, Ry = 1
nlog2My

where the units are bits-per-symbol.

Definition 5: A rate R = (Rc, Rx, Ry) is achievable in a recognition environment ℰ if for any 

ϵ > 0 and for n sufficiently large, there exists an (Mc, Mx, My, n) code (f, ϕ, g) with rates

Rc′ = 1
nlogMc, Rx′ = 1

nlogMx, Ry′ = 1
nlogMy

such that Rc′ ≥ Rc, Rx′ ≤ Rx, Ry′ ≤ Ry and Pe
n < ϵ.

Definition 6: The achievable rate region ℛ for a recognition environment ℰ is the set of all 

achievable rates R = (Rc, Rx, Ry).

Our ultimate goal in an information-theoretic analysis of this problem is to characterize the 

achievable rate region ℛ in a way that does not involve the unbounded parameter n, that is, 

to exhibit a single-letter characterization of ℛ.

V. Main results

In this section, we present inner and outer bounds on the achievable rate region ℛ. The 

bounds are expressed in terms of sets of “auxiliary” random variable pairs UV, defined 

below. In these definitions, U and V are assumed to take values in finite alphabets U and V
and have a well-defined joint distribution with the “given” random variables XY. To each 

such pair of auxiliary random variables UV we associate a set of rates

ℛUV = R:Rx ≥ I(U; X)Ry ≥ I(V ; Y )Rc ≤ Rx + Ry − I(XY ; UV ) .

Next, define two sets of random variable pairs

Pin  = UV :U − X − Y , X − Y − V , U − (X, Y ) − V ,

and

Pout = UV :U − X − Y , X − Y − V .

We will also sometimes summarize the independence constraints in Pin as a single “long” 

Markov chain U – X − Y − V.

Next, define two additional sets of rates

ℛin = R:R ∈ ℛUV  for some UV ∈ Pin
ℛout  = R:R ∈ ℛUV  for some UV ∈ Pout
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and denote the convex hull of ℛin by ℛin.

Our main results are the following.

Theorem 1 (Inner Bound):

ℛin ⊆ ℛ .

That is, every rate R ∈ ℛin is achievable.

Theorem 2 (Better Inner Bound):

ℛin ⊆ ℛ

That is, every rate R ∈ ℛin is achievable.

Theorem 3 (Outer Bound):

ℛout ⊇ ℛ .

That is, no rate R ∉ ℛout is achievable.

Finally, to ensure computability, we include a cardinality bound.

Theorem 4: Regions ℛin and ℛout are unchanged if we restrict the cardinality of UV to

U V ≤ X Y + 2.

Theorem 4 is a simple consequence of the Support Lemma [29 (p. 310)]: we must have 

X Y − 1 letters to ensure preservation of p(xy|uv), and three additional letters to satisfy the 

constraints on I(X; U), I(Y; V) and I(XY; UV).

Remark 1: If either X = U or Y = V, or both, then the outer bound collapses to the inner 

bound, since in this case the extra Markov condition U – (X, Y) – V in the definition of Pin
is extraneous. For example, if U = X, then the condition is equivalent to I(U; V | XY) = I(X; 
V | XY) = 0, which is obviously true. Similar comments apply if U and V are any 

deterministic functions of X and Y, e.g., if V = γ(Y), then I(U; V | XY) = I(U; γ(Y)|XY) = 

0.

Remark 2: The bounds ℛin and ℛout can be expressed in various ways. For example, it is not 

difficult to show that the following replacements for ℛUV  lead to the same sets of rates ℛin
and ℛout:

ℛUV′ = R:Rx ≥ I(U; X)Ry ≥ I(V ; Y )Rc ≤ I(U; V ) − I(U; V XY ) (1)
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ℛUV″ = R:Rc ≤ I(U; V ) − I(U; V XY )Rx ≥ I(XY ; U V ) + RcRy ≥ I(XY ; V
U) + RcRx + Ry ≥ I(XY ; UV ) + Rc . (2)

That is, if we define

ℛ*′ = R:R ∈ ℛUV′  for some UV ∈ P*
ℛ*″ = R:R ∈ ℛUV″  for some UV ∈ P*

where * stands for either “in” or “out,” then ℛin = ℛin′ = ℛin″ , and ℛout = ℛout′ = ℛout″ . 

These equivalencies are proved in Appendix E, and are used in Sections VI-B and VII.

Remark 3: In general, ℛin is not a convex set, as evidenced by the examples studied in 

Section VIII. Thus, ℛin is in fact an improvement on ℛin. ℛout is a convex set, as shown in 

Appendix C.

The proofs for Theorems 2 and 3 appear in Appendices A and B. Theorem 1 follows 

immediately from Theorem 2. In sketch-form, the method we use to prove achievability (the 

inner bound), based on ℛ′UV  (1), is as follows. We represent the memory and sensory data 

using codewords U(i), i ∈ 1…2nRx  and V(i), j ∈ 1…2nRy  that are typical according to 

p(u) and p(v), respectively, and the recognition system stores a list of these codewords. 

Making Rx ≥ I(X; U) and Ry ≥ I(Y; V) provides enough U’s and V’s to “cover” Xn and Yn. 

During pretesting, the system matches each of the labeled template patterns (X(w), w), w = 

1, …, Mc presented to it with a unique memory codeword, and attaches to this codeword the 

corresponding class label (with matching defined in the sense of joint typicality according to 

p(xu)). The resulting set of Mc “active,” labeled codewords constitutes the system’s memory. 

During subsequent testing, suppose Nature selects class w, generating sensory data Y ~ p(y|

X(w)). The system receives the index J of the codeword for Y, and uses it to retrieve the 

sensory codeword V(J). The system can then narrow down the list of Mc active memory 

codewords by a factor of 2−nI(U; V) using knowledge of p(uv).5 Thus, the correct memory 

vector U(w) can be uniquely identified so long as Mc = 2nRc ≤ 2nI(U; V ), i.e., if Rc ≤ I(U; V).

It is also possible to prove the achievability result using a binning argument, which induces 

the set ℛUV″  (2): Generate 2nI(X; V) U’s and 2nI(Y; V)V’s, and divide these equally among 

roughly 2nRx and 2nRy bins each, respectively. A pattern X(w) is encoded in memory by 

searching for a bin containing a matching (jointly typical) codeword U(X), and the 

Mc = 2nRc bins thus selected are each assigned the class label w of the pattern stored therein. 

Sensory data Y is encoded as the bin index of a matching codeword V(Y). This number of 

U’s and V’s is sufficient to ensure that any given pair X and Y will have a matching (jointly 

typical) U(X), and V(Y), and the Markov lemma ensures joint typicality of the quadruple 

(U(X), X, Y, V(Y)). Given encoded sensory data J = ϕ(Y), recognition is done by comparing 

5This step relies on the long Markov chain U − X − Y − V and the Markov lemma.
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the roughly 2nI(Y ; V )/2nRy sensory codewords in bin J with the 2nI(X; U)/2nRx memory 

codewords in each of the 2nRc memory bins, then reporting the class label w assigned to the 

bin containing the matching memory codeword. No matches other than the correct one, 

(U(X), V(Y)), will be found provided the number of (U, V) comparisons grows exponentially 

with n at a rate less than I(U; V), that is, provided I(Y; V) − Ry + I(X; U) – Rx + Rc ≤ I(U; 

V), which simplifies to the rate–sum constraint Rx + Ry ≥ I(XY; UV) + Rc. The “side” 

constraints Rx ≥ I(XY; U|V) + Rc and Ry ≥ I(XY; V|U) + Rc then follow from requiring that 

each bin contain at least one codeword. The final inequality Rc ≤ I(U; V) follows from the 

first three.

VI. Discussion of the Main Results

A. The Gap Between Bounds

In general, there is a gap between ℛin and ℛout, so that ℛin  ⊊ ℛ ⊊ ℛout . This gap is due to 

the different constraints in the definitions of Pin and Pout: Whereas distributions in satisfy 

three independence constraints U – X – Y, X – Y – V, and U – (X, Y) – V (equivalently, the 

single “long chain” constraint U – X – Y – V), distributions in Pout only need satisfy the 

first two “short chain” constraints.

Further insight into the nature of the gap can be gained by attempting to construct Pout by 

combining distributions from Pin in various ways, and then considering whether the 

resulting distributions can be used to expand the achievable rate region.6 We consider two 

such constructions. In both, let Q ∈ Q be a finite random variable, independent of X and Y. 

Holding p(xy) fixed, to describe a pair of auxiliary random variables U ∈ U, V ∈ V with 

joint distribution p(xyuv), we need only to specify the marginal distribution p(uv | xy). 

Consider the following two sets:

Pmix = UV : p(uv xy) = ∑
q ∈ Q

p(q)p(u xq)p(v yq) (3)

Pconv = UV :U = UQ, Q , V = V Q, Q , UqV q ∈ Pin ∀q ∈ Q . (4)

In words, Pmix is the set of UV whose distributions p(uv | xy) can be constructed as 

“mixtures” of product marginals; and Pconv is the set of “convexifying” random variables 

(this terminology is explained below).7 In both of these sets it is possible to have 

dependencies between U and V given XY; i.e., in general p(uv | xy) ≠ p(u | x) p(v | y), hence, 

in general, Pmix, Pconv ⊋ Pin.

There is a gap similar to the one under discussion between the best known bounds for the 

distributed source coding problem (DSC), established by Berger and Tung (see Section VI-

6Alternatively, one can search for ways to tighten the outer bound.
7The random variables in these sets behave differently in mutual information computations. For example, compare I(XY; UV) for UV 
in either set, using the same set of distributions p(u | xq), p(v | yq) as ingredients. For UV ∈ Pmix
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B). In both problems, the bounds are given in terms of sets with independence (Markov) 

constraints identical to those in Pin and Pout.8 Berger has suggested that in the DSC 

problem the gap is due to the fact that Pout admits convex mixtures of product marginal 

distributions, whereas Pin does not; i.e., in our notation, Pin ⊊ Pmix ⊆ Pout [31]. The 

inclusion Pmix ⊆ Pout is verified by checking U – X – Y and X – Y – V: Write

p(u |xy) = ∑
v

p(uv |xy)

= ∑
q

p(q)p(u |xq)∑
v

p(v |yq)

= ∑
q

p(q)p(u |xq)

≜ p(u |x)

hence, U – X – Y; and a symmetric calculation shows X – Y – V. While clearly Pmix is a 

larger set than Pin, it is unclear whether the admission of mixtures can account for all of the 

gap between Pin and Pout. That is, we know of no proof that Pmix = Pout. Moreover, we 

know of no way to use auxiliary random variables from Pmix in achievability arguments.

It is also straightforward to verify that the second set Pconv is contained in Pout

I(U; Y X) = I UQ, Q; Y X
= I(Q; Y X) + I UQ; Y X, Q

=(a) 0 + ∑
q

p(q)I Uq; Y X, Q = q

=(b) 0

(where the reasons are: (a) Q is independent of X and Y, and (b) UqV q ∈ Pin; hence, U – X – 

Y; and a symmetric calculation shows X − Y − V. Pconv has a form sometimes introduced in 

time-sharing arguments, as a means to convexify a given rate region. For example, for 

UV ∈ Pconv, we have

Imix = I(XY ; UV ) = ∑
xyuv

p(xy) ∑
q

p(q)p(u xq)p(v yq)

× log
∑q p(q)p(u xq)p(v yq)

∑q p(q)p(u q)p(v q)

whereas for UV ∈ Pconv

Iconv  = I(XY ; UV )
= ∑

q
p(q) ∑

xyuv
p(xy)p(u xq)p(v yq)log p(u xq)p(v yq)

p(u q)p(v q) .

It follows from the log–sum inequality [30, p. 29] that Iconv ≥ Imix
8The notation is ours.
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I(XY ; UV ) = I XY ; UQ, V Q, Q
= I(XY ; Q) + I XY ; UQ; V Q Q

=(a) ∑
q

p(q)I XY ; UqV q Q = q

≜ ∑
q

p(q)I XY ; UqV q

(where (a) is because Q is independent of X and Y) and similarly I(X; U) = Σqp(q)I(X; Uq), 

and I(Y; V) = Σqp(q)I(Y; Vq). It follows that the convex hull of ℛin may be represented as

ℛin = R:R ∈ ℛUV  for some UV ∈ Pconv . (5)

In contrast to Pmix, auxiliary variables from Pconv can be used as the basis for standard 

achievability arguments, as we have done in the proof of Theorem 2 (see Appendix A). From 

this, we have the following logical statement:

If Pout  = Pconv
then ℛout = ℛin . (6)

Unfortunately, we have no proof that Pout = Pconv. Notwithstanding, in Subsection VII-A, 

we examine one case where it appears that ℛout = ℛin does hold, giving grounds to 

conjecture that this equality may hold at least under special conditions.

B. Relationship With Distributed Source Coding

There are interesting connections between the results of Tung and Berger [32], [33] for the 

DSC problem and our results in Theorems 1 and 3. Briefly, the situation treated in the DSC 

problem is as follows (see Fig. 2). Two correlated sequences, X and Y, are encoded 

separately as i = f(X), j = ϕ(Y) and the decoder g must reproduce the original sequences 

subject to a fidelity constraint Edx(X, X), Edy(Y , Y ) ≤ D, where D = (Dx, Dy). The problem 

is to characterize, for any given distortion D, the set of achievable rates ℛ(D).

The best known inner and outer bounds for the DSC problem can be expressed as follows.9 

Let Pin and Pout be defined as above, and define two new sets incorporating the distortion 

constraint

Pin (D) = Pin  ∩ PUV (D)
Pout (D) = Pout  ∩ PUV (D)

where

PUV (D) = UV : ∃X(U, V ), Y (U, V )  s.t. Edx(X, X), Edy(Y , Y ) ≤ D .

9But see the footnote at the end Section VIII.
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Parallelling (1), also define the sets of rates

ℛUV = R:Rx ≥ I(XY ; U V )Ry ≥ I(XY ; V U) Rx + Ry ≥ I(XY ; UV ) (7)

and

ℛin (D) = R:R ∈ ℛUV  for some UV ∈ Pin (D)
ℛout (D) = R:R ∈ ℛUV  for some UV ∈ Pout (D) .

Then the Berger–Tung bounds for the DSC problem are ℛin (D) ⊆ ℛ(D) and 

ℛout(D) ⊇ ℛ(D).

There are strong formal similarities between our bounds and the DSC bounds. Most 

importantly, the gap between bounds for both problems is due to the difference between the 

length-four constraint U − X − Y − V and the less stringent length-three constraints U − X – 

Y, X − Y − V. Further, note the formal similarity between the sets ℛUV  (7) and ℛUV′′ . To 

carry this comparison further, suppose in the problem under study that, in addition to 

recognizing patterns, we also wish to reproduce an estimate of the original signals subject to 

a fidelity constraint, as in the DSC problem.10 Denote the achievable rate region for this 

“joint recognition and recovery” problem by ℛ(D). Making this addition in fact adds little 

technical difficulty, and the resulting bounds can be expressed, not surprisingly, as 

ℛin(D) ⊆ ℛ(D) and ℛout(D) ⊇ ℛ(D), where

ℛin(D) = R:R ∈ ℛUV  for some UV ∈ Pin(D)
ℛout(D) = R:R ∈ ℛUV  for some UV ∈ Pout(D) .

Apparently, the pattern recognition problem can be construed as a kind of generalization of 

the DSC problem, with the added complication that the “decoder” receives with Y not one 

sequence X but Mc = 2nRc such sequences X(1),…,X(Mc) and must first determine which is 

the appropriate one with which to jointly decode Y. This extra discrimination evidently 

requires that extra information be included at the encoders. This “rate excess” is the 

difference between the minimum encoding rates required for the DSC and pattern 

recognition problems.11 Comparing ℛUV′′  (7) with ℛUV  (7), this rate excess is the same at 

both decoders, and is equal to Rc. Thus, Rc can be interpreted as the number of extra bits 

needed at both encoders to decide which of the possible Mc = 2nRc patterns X(w) the sensory 

data Y represents, beyond the information required to simply reproduce the pair Y, X(w) 

within the allowed distortion limits.

10This is related to the problem addressed in [24], [25], except that in that work there is no requirement that the memory data be 
compressed.
11Similar comments are made in [24].
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C. Degenerate Cases

We now briefly examine the degenerate cases where either X = U, or Y = V, or both. In 

these cases, I(U; V | XY) = 0. Hence, using (1), we see that both inner and outer bounds on 

ℛ both reduce to the three inequalities Rx ≥ I(U; X), Ry ≥ I(V; Y), Rc ≤ I(U; V)}. Clearly, in 

these cases the bounds are tight, in that the inner and outer bounds are equal; there is no gap 

(see Remark 1). These degenerate cases have simple interpretations and are thus useful for 

building intuition about Theorems 1–3.

Sharp memory, sharp eyesight.—First, consider a system in which the budgets for 

memory and sensory representations are unrestricted, i.e., no compression is required. In this 

case, we can effectively treat the memories and sensory representations as veridical; i.e., we 

can set U = X and V = Y. The theorem constraints then become Rx ≥ I(X; X) = H(X), Ry ≥ 

I(Y; Y) = H(Y), and

Rc ≤ I(U; V ) = I(X; Y ) . (8)

This result indicates that, in the absence of compression, the recognition problem is formally 

equivalent to the following classical communication problem: Transmit one of Mc = 2nRc

possible messages (patterns) to a receiver (the recognition module) [6]. In this case, the 

patterns can be thought of as random codewords stored without compression and available to 

the decoder; Shannon’s random coding for communication [30], [34] applies, yielding the 

mutual information I(X; Y) (see (8)) as the bound on Rc.

Sharp memory, poor eyesight.—Next, suppose that memory is effectively unlimited, so 

that we can put U = X, but sensory data may be compressed. In this case, we can readily 

rewrite the condition on Rc as

Rc ≤ I(X; Y ) − I(X; Y V ) = I(X; V ) . (9)

We check the extreme cases: If V is fully informative about Y, Y = ϕ−1(V), then I(X; Y | V) 

= H(Y | V)−H(Y | X, V) = 0, and we recover the case discussed above, Rc ≤ I(X; Y). For 

intermediate cases, where V is partially informative, the effect of V is to degrade the 

achievable performance of the system below that possible with “perfect senses,” and the 

reduction incurred is I(X; Y | V). In the extreme case that V is utterly uninformative (e.g., a 

constant V = 0, or otherwise independent of Y), I(X; Y | V) = I(X; Y), and we get Rc = 0, or 

Mc ≤ 2nRc = 1; hence, the system is useless.

Poor memory, sharp eyesight.—In the case of limited memory but unrestricted 

resources for sensory data representation (V = Y), we get an expression symmetric with the 

previous case

Rc ≤ I(X; Y ) − I(X; Y U) = I(U; Y ) . (10)
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As before, if the memory is perfect (U = X), we get I(X; Y | U) = I(X; Y | X) = 0, recovering 

the channel coding constraint Rc ≤ I(X; Y); assuming useless memories (U = 0) yields Rc ≤ 

I(X; Y) − I(X; Y) = 0; and intermediate cases place the system between these extremes.

VII. Examples

In this section, we investigate the achievable rate regions for binary and Gaussian versions of 

our problem. For this purpose, it will be convenient to characterize the sets ℛ, ℛin and ℛout

by their surfaces in the positive orthant ℝ+
3 . The surface of ℛ can be expressed as

r rx, ry = max
R ∈ C rx, ry

Rc

C rx, ry = R:R ∈ ℛ, Rx = rx, Ry = ry .

Similarly, by direct extension of Theorems 1 and 3, and using the representation of ℛin and 

ℛout based on ℛUV′  (1), the surfaces of ℛin and ℛout are

rin rx, ry = max
UV ∈ Cin  rx, ry

I(U; V ) − I(U; V |XY )
(11)

rout rx, ry = max
UV ∈ Cout  rx, ry

I(U; V ) − I(U; V |XY )
(12)

where

Cin rx, ry = UV ∈ Pin: I(U; X) = rx, I(V ; Y ) = ry
Cout rx, ry = UV ∈ Pout: I(U; X) = rx, I(V ; Y ) = ry

The expression for the inner bound surface (11) reduces to

rin = max
UV ∈ Cin rx, ry

I(U; V ) .

An alternative expression for the outer bound surface which will be used in Subsection VII-

B, based on RUV (1), is

rin = rx + ry − min
UV ∈ Cin rx, ry

I(XY ; UV ) .
(13)

Finally, denote the convex hull of the inner and outer bound surfaces rin rx, ry , rout  rx, ry .

In the specific cases studied in the following examples we seek to convert these implicit 

characterizations into explicit formulas not involving the optimization over Cin rx, ry  and 

Cout rx, ry .
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A. Binary Case

We first investigate the inner and outer bound surfaces for a case in which the template 

patterns and sensory data alphabets are binary, X = Y = 0, 1 . Let the template patterns X = 

(X1,…,Xn) consist of n independent drawings from a uniform Bernoulli distribution Xi ~ 

B(1/2), i = 1…n, and let the sensory data Y = (Y1,…,Yn) be the output of a binary-

symmetric channel with crossover probability q, p(y |x) = qδ(x, y)qδ(x, y) where 

q = 1 − q; δ(x, y) = 1 − δ(x, y); and δ(x, y) = 1 if x = y, and otherwise δ(x, y) = 0. Equivalently, 

we can represent Y as Y = X ⊕ W, where W ~ B(q) and is independent of X.

1) Numerical Results: We have taken two approaches to studying the surfaces of ℛin
and ℛout for this binary case. First, we carried out the optimizations in (11) and (12) 

numerically. This calculation was via a Monte Carlo method which executed a dense random 

sampling of the set of probability distributions p(uv | xy) associated with Pin and Pout.12 

For each sample p(uv | xy), we calculated I(X; U), I(Y; V) and I(XY; UV); then, for each 

value of rx, ry ∈ [0,1] the numerical estimate of rin(rx, ry) or rout(rx, ry) was the largest 

sample value found by the Monte Carlo search for rx + ry – I(XY; UV). From here on, we 

denote the numerical surface estimates by rin rx, ry  and rout  rx, ry .

The cardinality bound in Theorem 4 is not necessarily tight. Therefore, to assess the 

alphabet sizes required of U and V for the binary case, we performed our numerical 

experiments for increasing values of U  and V . For the inner bound surface, we found 

U = V = 2 was sufficient: no further increase in rin rx, ry  was afforded by allowing U , 

V = 3, 4. For the outer bound surface, U = V = 3 was sufficient.

The surface plots from our numerical experiments are shown in Fig. 3. Fig. 4 shows 

representations of the distributions p(uv | xy) underlying 25 different points (rx, ry) for Fig. 3 

(a) the inner and Fig. 3 (b) the outer bounds, in which probabilities are represented by the 

area of white squares.13, 14 The row–column format of the matrix p(uv | xy) is xy = 00, 01, 

10, 11 moving down rows; moving across columns, for the inner bound with U, V = 0, 1
the format is uv = 00, 01, 10, 11, whereas for the outer bound with U, V = 0, 1, e , the 

column format is uv = 00, 01, 1e, 10, 1e, e0, e1, ee. (The choice of for the third letter of U
and V is explained below.)

2) Conjectured Formulas: Second, we guessed formulas for the inner and outer bound 

surfaces, which turned out to fit the numerical results just described. We first present the 

formulas, then discuss the motivations behind them.

Our formulas involve the following two functions. First, define

12The optimization over distributions p(xyuv) reduces to a search over conditional distributions p(uv | xy) because p(xy) is fixed. 
Details of the optimization algorithm are given in [35].
13These are called Hinton diagrams in the machine learning literature, after their inventor Geoffrey Hinton.
14These distributions are not unique, as the mutual informations are unchanged under various reassignments of values of x, y, u, v, 
and consequent rearrangements of the entries of p(uv | xy); the distributions shown have been accordingly rearranged into a common 
format to facilitate comparison.
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s rx, ry = 1 − ℎ qx * q * qy ,

where

qx = ℎ−1 1 − rx ,
qy = ℎ−1 1 − ry ;

h(·) is the binary entropy function

ℎ(x) = − xlog(x) − (1 − x)log(1 − x);

“*” denotes binary convolution

x * y = x 1 − y + y 1 − x ;

and qx, qy ∈ [0, 1/2] to ensure that h(·) is invertible. Next, let s*(rx, ry) denote the upper 
concave envelope of s(rx, ry)

s* rx, ry = supθs rx1, ry1 + θs rx2, ry2

where θ = 1 − θ; and the supremum is over all combinations (θ, rx1, ry1, rx2, ry2) such that

rx, ry = θ rx1, ry1 + θ rx2, ry2

and each variable in the optimization is restricted to the unit interval [0, 1]. As explained in 

Appendix F, in both this case and for the corresponding Gaussian formulas in the next 

section, the expression for this convex hull simplifies to

s* rx, ry = supθs rx′′ ry′

with the supremum over all combinations θ, rx′ , ry′  such that

rx, ry = θ rx′ , ry′ .

Conjecture 1: For the binary case the surfaces of ℛin and ℛout are

rin rx, ry = s rx, ry (14)

rout rx, ry = s* rx, ry (15)

and the surface of the achievable rate region ℛ is
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r rx, ry = rin rx, ry = rout rx, ry . (16)

3) Rationale for the Inner Bound (14): The surfaces rin(rx, ry), rout(rx, ry) are 

specified in terms of probability distributions p(xyuv) = p(xy)p(uv | xy) that maximize (11) 

and (12). For rin(rx, ry), the distribution factorizes as p(uv | xy) = p(u | x)p(v | y), and a 

natural guess is that in the maximizing distribution both p(u | x) and p(v | y) are binary 

symmetric channels

p(u|x) = qxδ(x, u)qxδ(x, u), p(v|y) = qyδ(y, v)qyδ(y, v);

or, equivalently, U = X ⊕ Wx, V = Y ⊕ Wy, where Wx ~ B(qx), Wx ~ B(qy), and qx, 

qy ∈ 0, 1
2 ; see Fig. 5(a). For this choice of U and V we calculate

rx = I X; U
= H X −H X U
= 1 −H U ⊕ W x U
= 1 −H W x
= 1 − ℎ qx

and likewise ry = 1 − h(qy). Then

I U; V = H V −H V U
= 1 −H U ⊕ W x ⊕ W ⊕ W y U
= 1 − ℎ qx ∗ q ∗ qy
= s rx, ry .

Clearly, s(rx, ry) is a lower bound on rin(rx, ry), since: 1) U – Y − V, hence UV ∈ Pin; 2) 

UV ∈ C rx, ry ; and 3)

rin rx, ry = max
UV ∈ C rx, ry

I(U; V ) ≥ 1 − ℎ q * qx * qy

= s rx, ry .

The converse, rin(rx, ry), ≤ s(rx, ry) is unproven, so the identification of rin(rx, ry) with s(rx, 

ry) remains a conjecture. Nevertheless, in our numerical optimization we found no points 

outside of this region for any choice of (rx, ry), and the distributions which emerge from our 

computer experiments (Fig. 4(a)) closely resemble the long binary-symmetric channel in the 

calculation of s(rx, ry). This provides strong experimental evidence supporting (14) in 

Conjecture 1.

4) Rationale for the Outer Bound (15): Clearly, s*(rx, ry) is a lower bound on rout, 

since, for all rx, ry ∈ [0, 1]

• rout  rx, ry ≥ rin  rx, ry rout  rx, ry ≥ rin  rx, ry ;
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• ℛout is convex, ⇒ rout  rx, ry = rout  rx, ry ;

• rin  rx, ry ≥ s rx, ry rin rx, ry ≥ s rx, ry = s* rx, ry ;

and together these imply rout(rx, ry) ≥ s*(rx, ry). Unfortunately, we do not have a proof of the 

converse, rout(rx, ry) ≤ s*(rx, ry), so the identification of rout(rx, ry) with s*(rx, ry) remains a 

conjecture. Nevertheless, empirically (i.e., according to our numerical experiments) the outer 

bound surface is identical to the convex hull of the inner bound surface. Moreover, 

empirically, the cardinalities required to construct the outer bound are U = V = 3.

We can provide an explicit construction of the conjectured outer bound surface and the 

probability distributions that achieve it as follows. The distributions in this construction also 

agree with those found empirically, shown in Fig. 4(b). Let U = V = 0, 1, e . Consider the 

channel diagrammed in Fig. 5(b), which could be called a “synchronous erasure channel.” 

Here, U and V are generated by first passing X and Y through binary-symmetric channels, 

followed by an “erasure” E ∈ {0, 1} event in which both channel outputs are preserved with 

probability θ = Pr(E = 0), or both are erased (UV = ee) with probability 

θ = 1 − θ = Pr(E = 1). An explicit formula for this channel is

p(uv |xy)
= θδe(u, v)θδe(u, v)

qxδ(x, u)qxδ(x, u)qyδ(y, v)qyδ(y, v) δe(u, v)
Δe(u, v)

where

δ(α, β) = 1,  if α = β
0,  if α ≠ β

δe(α, β) = 1,  if (α, β) = (e, e)
0,  if (α, β) ≠ (e, e)

Δe(α, β) =
0,  if α = e, β ≠ e
0,  if α ≠ e, β = e
1,  otherwise 

and

δ(α, β) = 1 − δ(α, β), δe(α, β) = 1 − δe(α, β) .

Equivalently, we can represent U and V as follows. Let W ~ B(q), Wx ~ B(qx), Wy ~ B(qy), 

E ~ B(θ) be Bernoulli random variables that are independent of each other and independent 

of X and Y, and define

Y = X ⊕ W
U = X ⊕ W x ⊗ E
V = Y ⊕ W y ⊗ E

where the multiplication by E is defined by
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α ⊗ E = α, if E = 0
e, if E = 1 .

It is straightforward to verify UV ∈ Pout. To check U – X − Y, write

I(U; Y X) = I X ⊕ W x ⊗ E; X ⊕ W X
= I W x ⊗ E; W X

=0

where the last line follows from the independence of W, Wx and E from each other and X. A 

similar calculation shows X – Y – V. Finally, calculating the rate region surface associated 

with this choice of UV we get, first

rx = I X; U
= I X; X ⊕ W x ⊗ E, E
= I(X; E) + I X; X ⊕ W x ⊗ E E
= 0 + θI(X; E E = 1) + θI X; X ⊕ W x E = 0
= 0 + 0 + θ 1 − ℎ qx

where the last step follows from the previous calculations for the inner bound; and a similar 

calculation shows ry = θ(1 – h(qy)). Then, using U – X – Y, X – Y – V to write

I(U; V ) − I(U; V XY )
= I(X; U) + I(Y ; V ) − I(XY ; UV )
= I(X; U) + I(Y ; V ) − H(U) + H(U V ) − H(UV XY )

we have (suppressing some detail)

H U = H U, E
= H E + H U E
= ℎ(θ) + θH(U E = 0) + θH(U E = 1)
= ℎ(θ) + θ + 0

H U V = H U V , E
= θH(U V , E = 0) + θH(U V , E = 1)
= θℎ qx ∗ q ∗ qy

H UV XY = H E XY +H UV XY , E
= ℎ(θ) + θ H(U X, E = 0) + H V Y , E = 1
= ℎ(θ) + θ ℎ qx + ℎ qy .

Putting these together and canceling terms

I(U; V ) − I(U; V XY ) = θ 1 − ℎ qx ∗ q ∗ qy
= s* rx, ry .

Westover and O’Sullivan Page 22

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, we have constructed an explicit example which achieves s*(rx, ry) with U = V = 3.

B. Gaussian Case

We now consider a Gaussian version of our problem. Let X and Y be zero-mean Gaussian 

random variables with correlation coefficient ρxy. We propose explicit formulas for the 

surfaces of ℛin and ℛout for the Gaussian case, in terms of the following two functions. In 

both formulas, put

rx = − 1
2log 1 − ρxu2

ry = − 1
2log 1 − ρyv2 .

Note that these expressions determine the correlation coefficients ρxu and ρyv. Define

S rx, ry = − 1
2log 1 − ρxy2 ρyv2 ρxu2 (17)

and

S* rx, ry = rx + ry + 1
2log 1 + 2ργ − β

1 − ρ2 (18)

where

γ = ρxyρxuρyv
β = ρxu2 + ρyv2 − 1 − ρxy2 ρxu2 ρyv2 ,

ρ = β
2γ − β

2γ
2

− 1 .
(19)

Conjecture 2: In the Gaussian case, the surfaces of ℛin and ℛout are

rin rx, ry = S rx, ry (20)

rout rx, ry = S* rx, ry . (21)

Fig. 6 shows plots of the inner and outer bounds and their difference, as well as the 

difference between the outer bound and the convex hull of the inner bound. Interestingly, 

unlike the binary case, for the Gaussian case the outer bound is not equal to the convex hull 

of the inner bound.

The following proof relies on some basic properties of the mutual information between 

Gaussian random variables, given as lemmas in Appendix G.

In the analysis that follows, we assume that the maximizing distributions are Gaussian. 

Under this assumption, we solve the inner and outer bounds. Except for this unproved 

assumption, the proof of the conjecture is complete.
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Proof: (Conjecture 2, eq. (20)) As noted in Appendix G, mutual informations between 

jointly Gaussian random variables are completely determined by their correlation 

coefficients. For a length-4 Markov chain U – X – Y – V of jointly Gaussian random 

variables I(U; V | XY) = 0 and, applying Lemma 9 from Appendix G we have ρuv = 

ρxuρxyρyv, hence

I(U; V ) − I(U; V |XY ) = − 1
2log 1 − ρxu2 ρxy2 ρyv2 .

This mutual information is maximized when the constraints I(X; U) ≤ rx, I(Y; V) ≤ ry are 

satisfied with equality, hence when ρxu and ρyv satisfy rx = − 1
2 log 1 − ρxu2  and 

ry = − 1
2 log 1 − ρyv2 .

The following proof for the surface of the outer bound region uses the form of rout(rx, ry) 

given by (13). In this case, the optimization problem reduces to minimizing I(XY; UV) 

subject to the length-3 Markov constraints U – X – Y, X – Y – V.

Proof: (Conjecture 2, eq. (21)) Using Lemma 10 from Appendix G, we have

Cxy, uv =
ρxu ρxv
ρyu ρyv

=
1 ρxy
ρxy 1

ρxu 0
0 ρyv

.

The left-hand matrix in this decomposition is Cxy,xy, denoted hereafter simply as C, and we 

denote the right-hand matrix by D. Then applying Lemma 8 from Appendix G yields

I(XY ; UV )
= 1

2log C − 1
2log C − Cxy, uvCuv, uv−1 Cuv, yx

= 1
2log C − 1

2log C − CDCuv, uv−1 DC

= − 1
2log C − 1

2log C−1 − DCuv, uv−1 D .

Substituting for the 2 × 2 matrices in this last expression and rearranging terms yields

I(XY ; UV ) = − 1
2log 1 +

2ρuvγ − β
1 − ρuv2

where γ and β are defined in (19).

By assumption, ρxu and ρyv are fixed, so we optimize I(XY; UV) only with respect to ρuv. 

Setting ∂I(XY; UV)/∂ρuv = 0 and solving, we obtain that, if β > 2γ > 0, then the maximum 

is achieved at ρuv* = ρ, where ρ is defined in (19).

To complete the proof we must show that β > 2γ > 0. Noting that β, γ > 0 and substituting, 

the desired inequality becomes
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ρxu2 + ρyv2 − ρxu2 ρyv2 > 2ρxyρxuρyv − ρxy2 ρxu2 ρyv2 .

Subtracting from each side and factoring yields the equivalent inequality

− 1 − ρxu2 1 − ρyv2 > − 1 − ρxyρxuρyv
2 .

To show that this holds for all ρxy, note that the maximum of the right-hand side is achieved 

by ρxy = 1, so that the inequality becomes

1 − ρxu2 1 − ρyv2 − 1 − ρxuρyv
2 < 0.

This inequality holds, since

1 − ρxu2 1 − ρyv2 − 1 − ρxuρyv
2

= − ρxu2 − ρyv2 + 2ρxuρyv
= ρxu − ρyv ρyv − ρxu
= − ρxu − ρyv

2
<0.

VIII. Conclusion

We have presented an information-theoretic analysis of pattern recognition systems subject 

to data compression constraints. Our main results consist of fundamental bounds 

characterizing the minimum sensory and memory information budgets required for reliable 

pattern recognition, or, equivalently, the maximum number of patterns that can be 

discriminated on given sensory and memory data budgets.

As a starting point, we have focused on the case of unstructured data, in which patterns are 

representable as vectors with i.i.d. components, and the sensory data observation channel is 

memoryless. In recent years, there has been much theoretical and experimental work aimed 

at developing methods to render data into a format with independent (or approximately 

independent) components (see, e.g., [36]–[39]). Such methods have been especially 

successful in the study of “natural” signals, e.g., sounds and imagery in naturally occurring 

environments. Nevertheless, a decomposition into independent components is often 

impossible or only approximate, and it will be important in future work to extend our results 

to cover the case of correlated components and channels with memory.

We have focused on “reliable” pattern recognition systems, in the sense that the recognition 

error rate is able to be made arbitrarily close to zero. Nevertheless, in some applications it is 

of interest (or unavoidable) to allow less-than-perfect accuracy. This can be partly addressed 

by recasting the recognition problem as a “coarse-to-fine” search, where the system is given 

information in several successive stages, and at each stage is required only to partially 

recognize the pattern, i.e., to identify the pattern as belonging to a particular subclass, 
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postponing definitive identification for the final stage. Extending our results to this 

successive refinement setting is relatively straightforward; see [40]. The more direct 

approach of explicitly allowing a strictly positive error rate is an open problem.

Much work remains to be done in designing practical pattern recognition systems that 

achieve the bounds described herein. One of the most challenging problems in this regard is 

the design of adequate statistical models of real-world signals. For examples of progress on 

this exciting front, see [11], [36], [41]–[48]. Another significant challenge is that of learning 

optimal classifiers from training data. In this connection, it will likely prove fruitful to 

explore connections between the present results and those established in machine learning 

theory; see, e.g., [7]–[10]. Another practical challenge is to build systems that make optimal 

use of time. Donald Geman and colleagues have been developing the theory of systems that 

reach their pattern recognition decisions with a minimum amount of computation [49]. It 

will be interesting to explore the relationship of this concept with our results concerning 

recognition using the minimum amount of information.

Open theoretical problems include the calculation of error exponents and, most importantly, 

the closing of the gap between our inner and outer bounds. As discussed in Section VI-B, 

the gap in our problem bears close resemblance to that in the distributed source coding 

problem. A solution to the distributed source coding problem would likely lead to a solution 

to ours, and vice versa.15
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Appendix A: Proof of the Inner Bound

In this section we prove the inner bound ℛin  ⊆ ℛ, Theorem 2. The proof relies on standard 

random coding arguments and properties of strongly jointly typical sets [30]. Given a joint 

distribution p(xyuv), the strongly jointly δ-typical set is defined by

TUVXY
δ = xyuv: N(xyuv xyuv)/n − p(xyuv) ≤ δ∀xyuv ∈ XYUV

where N(xyuv | xyuv) is the number of times the symbol combination xyuv occurs in xyuv. 

Likewise, we write. e.g., TX
δ , TXY

δ , TXY U
δ  for singles, pairs, and triples. We will also use 

conditionally strongly jointly δ-typical sets, for example

15During the review process for this paper, Servetto indeed claimed a solution to the distributed source coding problem using a novel 
approach. Unfortunately, he suffered an untimely death on 7/24/2007, before finalizing his work. The most recent public draft of his 
paper on this topic is available on the arXiv (see [50]).

Westover and O’Sullivan Page 26

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TxU
δ = u:(xu) ∈ TXU

δ .

The subscripts are omitted when context allows. We will also need the fact that for any 

positive numbers δ, ϵ > 0, fixed vector x, and large enough n

2−n[I(X; Y ) + ϵ] ≤ Pr xY ∈ TxY
δ ≤ 2−n[I(X; Y ) − ϵ] . (22)

Theorem 1: Suppose R is a point in the convex hull of ℛin, R ∈ ℛin. That is, 

R = ∑q ∈ Q p(q)Rq, where p(q) is a probability distribution over some finite alphabet Q, and 

for each q ∈ Q, Rq = Rxq, Ryq, Rcq ∈ ℛin.

We wish to show that for any ϵ > 0 and large enough n, there exists an (Mc, Mx, My, n) code 

(f, ϕ, g) with rates Rc′ = 1
n logMc, Rx′ = 1

n logMx, Ry′ = 1
n logMy such that Rc′ ≥ Rc, Rx′ ≤ Rx, 

Ry′ ≤ Ry, and Pe
n ≤ ϵ.

By definition, Rq ∈ ℛin implies that for each q ∈ Q there exist random variables Uq, Vq such 

that

pq(xyuv) = p(xy)pq(u x)pq(v y)

and

Rxq = I X; Uq + αxq
Ryq = I Y ; V q + αyq
Rcq = Rxq + Ryq − I XY ; UqV q − γq

for some values αxq, αyq, γq > 0 such that γq ≥ αxq + αyq.16 Now let

Rxq′ = I X; Uq + αxq/4, Rx′ = ∑
q ∈ Q

p(q)Rxq′

Ryq′ = I Y ; V q + αyq/4, Ry′ = ∑
q ∈ Q

p(q)Ryq′

and

Rcq′ = Rxq′ + Ryq′ − I XY ; UqV q − γq/4
Rc′ = ∑

q ∈ Q
p(q)Rcq′ .

With these choices, we have Rx′ ≤ Rx, Ry′ ≤ Ry, Rc′ ≥ Rc.

16This last condition ensures Rcq ≤ Rxq + Ryq − I(XY; UqVq).
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Given

Xn ∏
i = 1

n
p xi , Y n ∏

i = 1

n
p yi

divide the sequences into |Q| segments with lengths nq = np(q), denoted Xnq, Y nq, i.e.,

Xn = Xn1Xn2…Xn Q , Y n = Y n1Y n2…Y n Q .

Finally, we will use the additional notation: Mxq = 2nqRxq′ , Myq = 2nqRyq′  and 

ℳxq = 1, …, Mxq , ℳyq = 1, …, Myq .

We will construct the desired overall code (f, ϕ, g) with rate Rc′, Rx′ , Ry′  by first constructing 

encoders fq, ϕq with rates Rxq′ , Ryq′  for the |Q| component sequences Xnq, Y nq, then 

constructing a classifier g which acts on the combined outputs of the encoders.

Please refer to Fig. 7 for a summary of the notation introduced below.

1. Codebooks: For each q ∈ Q, from pq(xyuv) compute the marginal distributions 

pq(u),pq(v). To serve as memory codewords, select Mxq length-nq vectors by 

sampling with replacement from a uniform distribution over the set TU
δ . Assign 

each codeword a unique index iq ∈ ℳxq = 1, 2, …, Mxq . To serve as sensory 

codewords, similarly select Myq length-nq vectors by from TV
δ , and assign each 

an index jq ∈ ℳyq = 1, 2, …, Myq . Denote the codebooks

ℬu(q) = unq(1), …, unq Mxq
ℬv(q) = vnq(1), …, vnq Myq .

2. Encoders: We define encoders fq and ϕq in terms of maps

φxq:Xnq Unq bxq:Unq ℳxq
φyq:Ynq Vnq byq:Vnq ℳyq

as follows. Given any xnq ∈ Xnq, search the codebook ℬu(q) for a codeword unq

such that xnq, unq ∈ TXU
δ . If this search is successful, set φxq xnq = unq, 

bxq unq = iq, bxq
−1 iq = unq, where iq is the index of unq in ℬu(q). If the search fails, 

(arbitrarily) set unq = unq(1) so that φxq and bxq are defined for all of Xnq. In the 

same way, given any ynq ∈ Ynq, search ℬv(q) for a codeword vnq such that 

ynq, vnq ∈ TY V
δ . If successful, denote the index of the found codeword jq, and 
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set φyq ynq = vnq, byq vnq = jq, byq
−1 jq = vnq. For search failure, set jq =1, 

vnq = vnq(1) so that φyq and byq are defined for all of Ynq.

Finally, define

fq:Xnq ℳxq, fq xnq = iq ≜ bxq φxq xnq

ϕq:Ynq ℳyq, ϕq ynq = jq ≜ byq φyq ynq .

Now, given vectors xn = xn1…xn|Q|  and yn = yn1…yn|Q| , the encoders above each produce 

|Q| vectors φxq xnq = unq, φyq ynq = vnq, and |Q| indices bxq unq = iq, byq ynq = jq. Denote the 

concatenations of these

Note that the vector of integers i ranges over Mx = ∏q ∈ QMxq different values i(i),i = 1…

Mx. Let the map between the vectors i and the corresponding integers i be ℓx, i.e., if i = i(i), 

let ℓx(i) = i, and lx
−1(i) = i. Similarly, j ranges over My = ∏q ∈ QMyq values, j(j),j = 1…My 

and we define ℓy such that if j = j(j), then ℓy(j) = j and ly
−1(j) = j. Then we can specify 

encoders f′:Xn ℳx and ϕ:Yn ℳy for full length-n vectors xn and yn by

f′ xn = i ≜ lx bx φx xn

ϕ yn = j ≜ ly by φy yn .

To finalize the construction of the memory encoder, for any given labeled template pattern 

t(w) = (xn, w), let f:Xn × ℳc ℳx × ℳc be defined by

f(t(w)) = m(w) = (i, w) ≜ f′ xn , w .

The rates of the encoders are Rx′ , Ry′ , as verified by calculating

1
nlogMx = 1

nlog ∏
q ∈ Q

Mxq = 1
n ∑

q ∈ Q
log 2nqRxq′

= ∑
q ∈ Q

p(q)Rxq′ = Rx′

1
nlogMy = 1

nlog ∏
q ∈ Q

Myq = 1
n ∑

q ∈ Q
log 2nqRyq′

= ∑
q ∈ Q

p(q)Ryq′ = Ry′ .

3. Memorization: Given a realization of the template patterns 

Cx = t(1)…t Mc , t(w) = xn(w), w  and the encoders defined above f and ϕ, 

compute the memory data Cu = f Cx ≜ f(t(1)), …, f t Mc = m(1), …, m Mc .
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4. Recognition Function: Given the stored memory data Cu, we proceed to 

construct the classifier g as follows.

For each q ∈ Q, given any pair of length nq vectors unq, vnq, define a function that tests the 

pair for strong joint typicality

ρq unq, vnq = T unq, vnq ∈ TUV
δ

where T[ ⋅ ] is the truth-indicator function T[A] = 1 if A is true, and T[A] = 0 if A is false.

Now, given the sensory data j, compute its vector representation j = j1…j Q = ly
−1(j). For 

each q ∈ Q, retrieve from ℬv(q) the corresponding codeword vnq = byq
−1 jq . Similarly, for 

each memory m(w) = (i, w) ∈ Cu, compute the corresponding vector i = iq…i Q = lx
−1(i), 

and from the memory codebook ℬu(q) retrieve unq = bxq
−1 iq . Next, define a function 

rw:ℳy 0, 1  that tests each vnq in vn = vn1…vn|Q|  against the corresponding unq in 

un = un1…un|Q| , reporting a 1 if all compared pairs are jointly typical and zero otherwise

rw(j) = T ρ1 un1, vn1 …ρQ un Q , vn Q = 1 Q

where 1|Q| denotes the length-|Q| all-ones vector.

We can now specify the recognition function g as follows. Given the encoded sensory data j, 
the recognition module searches for a unique w′ ∈ ℳc such that rw′ (j) = 1. If this search is 

successful, set w = w′. Otherwise, if there is none or more than one such value, declare an 

error and (arbitrarily) set w = 1. Thus, we have defined g:ℳy × ℳx
Mc ℳc, g j, Cu = w, 

as desired.

A. Performance Analysis

1) Error Events:

We analyze the probability of error for a given W = w, T(w) = (Xn(w), w), Yn. Denote the 

results of processing these with the components of the code (f, ϕ, g) above by M(w) = (I(w), 

w) = f(T(w)), J(w) = ϕ(Yn); Unq(w) = φxq Xnq , V nq(w) = φyq Y nq  for each q ∈ Q, and Rw = 

rw(J(w)). The following is an exhaustive list of possible errors.

First, in words, the possible errors are as follows:

• the sensory data and pattern template are not jointly typical;

• the pattern template is unencodable;

• the sensory data is unencodable;

• the codewords for the memory and sensory data are not jointly typical;
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• the sensory data is jointly typical with more than one memory codeword;

• two different patterns are assigned the same memory codeword.

More formally, we express the error events thus: For events Ei, let Ek = ∪i = 1
k Ei

c
, where 

Ac denotes the complement of A. For each q ∈ Q

• E1(q) = Xnq, Y nq ∉ TXY
δ ;

• E2(q) = E1(q) ∩ ∀Unq ∈ ℬu(q): Xnq, Unq ∉ TXU
δ ;

• E3(q) = E1(q) ∩ ∀V nq ∈ ℬv(q): Y nq, V nq ∉ TY V
δ ;

• E4(q) = E3(q) ∩ Unq(w), V nq(w) ∉ TUV
δ ; and letting Ei ≜ ∪q ∈ Q Ei(q), i = 1…4

• E5 = E4 ∩ ∃w′ ∈ ℳc:w′ ≠ w, rw′(J(w)) = 1 ;

• E6 = E5 ∩ ∃w′ ∈ ℳc:w′ ≠ w, I w′ = I(w) .

Each of these vanishes as n → ∞, for the following reasons:

• P(E1(q)) → 0, by the strong asymptotic equipartition property (AEP);

• P(E2(q)) → 0, because Rxq′ ≥ I X; Uq ;

• P(E3(q)) → 0, because Ryq′ ≥ I Y ; V q ;

• P(E4(q)) → 0, because of the factorization pq(xyuv) = p(xy)pq(u | x)pq(v | y) and 

the Markov lemma.

• Regarding P(E5) Rewrite E5 as

E5 = E4 ∩ ∃w′ ∈ ℳc:w′ ≠ w, rw′(J(w)) = 1

= E4 ∩ ∪
w′ ∈ ℳc\w

∀q ∈ Q, Unq w′ , V nq(w) ∈ TUV
δ .

Then

P E5 ≤ Cu ∏
q ∈ Q

2−nq I Uq; V q − ϵq

≤ Mc ∏
q ∈ Q

2−nq I Uq; V q − ϵq

= 2nRc′2−n∑q ∈ Q p(q) I Uq; V q + ϵq
= 2n Rc′ − ∑q ∈ Q p(q)I Uq; V q − ϵ .

So, P(E5) → 0 as n → ∞ if. Rc′ ≤ ∑q ∈ Q p(q)I Uq; V q + ϵ. This is indeed the 

case, since
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Rc′ = ∑
q ∈ Q

p(q)Rcq′

= ∑
q ∈ Q

p(q) Rxq′ + Ryq′ − I XY ; UqV q − γq

= ∑
q ∈ Q

p(q) I X; Uq + I Y ; V q −I XY ; UqV q + αxq + αyq − γq

≤
(a) ∑

q ∈ Q
p(q) I X; Uq + I Y ; V q −I XY ; UqV q + ϵ

≤
(b) ∑

q ∈ Q
p(q)I Uq; V q + ϵ

where (a) is because (γ – αxq + αyq); and (b) follows from elementary properties 

of mutual information and from the factorization. p(q)p(xy)p(u | xq) p(v | yq).

• Regarding P(E6): Denoting the components of the codeword for each memory 

M(w) ∈ Cu by Unq(w), rewrite event E6 as

E6 = E5 ∩ ∃w′ ∈ ℳc:w′ ≠ w, I w′ = I(w)
= E5 ∩ ∃w′ ∈ ℳc:w′ ≠ w, ∀q ∈ Q: Xnq w′ , Unq(w) ∈ TXU

δ .

Then

P E6 ≤ Mc ∏
q ∈ Q

2−nq I X; Uq − ϵq

= 2n Rc′ − ∑q ∈ Q p(q)I X; Uq − ϵ .

So as if P(E6) → 0 as n → ∞ if Rc′ ≤ ∑q ∈ Q p(q)I X; Uq + ϵ]. This is indeed the 

case: From our preceding calculation for P(E5), we have 

Rc′ ≤ ∑q ∈ Q p(q)I Uq; V q + ϵ; and the assumed factorization of pq(xyuv) implies 

that the following is a Markov chain: Uq – X – Y − Vq. Hence, by the data 

processing inequality

Rc ≤ ∑
q ∈ Q

p(q)I Uq; V q + ϵ

≤ ∑
q ∈ Q

p(q)I Uq; X + ϵ .

This concludes the proof of the inner bound.

Appendix B: Proof of the Outer Bound

In this section we prove Theorem 1, which states the outer bound ℛ ⊆ ℛout. In the proof let 

W be the test index, selected from a uniform distribution p(w) over the pattern indices ℳc; 

let T = T(W) = (X, W)be the selected test pattern from the set of template patterns Cx; let M 

= M(W) = (I, W) = f(T) be the compressed, memorized form of T; let Cu = f Cx  be the 

memorized data; let Y be the sensory data; let J = J(W) = ϕ(Y) be the encoded sensory data, 
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and let W = g J, Cu  be the inferred value of W. Note that M, W  are random variables 

through their dependence on X, W, Y, and Cx. The mutual informations in the proof are 

calculated with respect to the joint distribution (and its marginals) over (W, Cx, Cu, X, Y, M, 

I, J, W ). We can verify that this distribution is well defined by writing it out explicitly. Let 

T[ ⋅ ] be the truth-indicator function T[A] = 1 if A is true, and T[A] = 0 if A is false. Then

p w, Cx, Cu, x, y, m, j
= p(w)p Cx p Cu Cx p x w, Cx
p(y x)p(m x, w)p(j y)p w j, Cu

where

p(w) = 1
Mc

T w ∈ ℳc

p Cx = ∏
w = 1

Mc
∏

i = 1

n
p xi(w)

p Cu|Cx = T Cu = f Cx
p x|w, Cx = T x = x(w) ∈ Cx

p(y |x) = ∏
i = 1

n
p yi |xi

p(m|x, w) = T[m = f(x, w)]
p(j |y) = T[j = ϕ(y)]
p w| j, Cu = T w = g j, Cu .

The independence relationships underlying the structure of this distribution are evident from 

the block diagram of Fig. 1.

Proof: (Theorem 3) Assume R = Rx, Ry, Rc ∈ ℛ. Then there exists a sequence of (Mx, My, 

Mc, n) codes (f, ϕ, g), such that for any ϵ > 0

Mc ≥ 2nRc

Mx ≤ 2nRx

My ≤ 2nRy

and Pe
n = Pr(W ≠ W ) ≤ ϵ. To show that R ∈ ℛout , we must construct a pair of auxiliary 

random variables UV such that UV ∈ Pout and R ∈ ℛUV .

We construct the desired pair UV in three steps: 1) We introduce a set of intermediate 

random variable pairs UiVi, i = 1,2,…,n, individually contained in Pout ; 2) we derive mutual 

information inequalities for Rx, Ry, and Rc involving sums of the intermediate variables; 3) 

we convert the sum-inequalities into inequalities in the desired pair UV.

Step 1:

Let the intermediate auxiliary random variables be
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Ui = M, Xi − 1

V i = J, Y i − 1

for i = 1,2,…,n. Each pair is in Pout . This is verified for the Ui by calculating

I Ui; Y i Xi = H Yi Xi − H Yi M, Xi − 1, Xi
= H Yi Xi − H Yi M, Xi

≤
(a)
H Yi Xi − H Yi M, Xn

=(b) H Yi Xi − H Yi Xn

=(c) H Yi Xi − H Yi Xi
= 0

where the reasons for the lettered steps are (a) conditioning does not increase entropy, (b) the 

Yi are independent of all other variables given Xn, and (c) the pairs XiYi are i.i.d. Hence, Ui 

− Xi − Yi is a Markov chain. By a similar argument, Xi − Yi − Vi is also a Markov chain. 

Hence, UiV i ∈ Pout for each i = 1,2,…,n.

Step 2:

First, for the sensory encoder rate

nRy ≥ H(J)

=(a) H(J) − H J Y n

= ∑
i = 1

n
H Yi − H Yi Y i − 1J

= ∑
i = 1

n
H Xi −H Xi V i

= ∑
i = 1

n
I Xi; V i

where (a) follows from J = ϕ(Yn).

Next, taking account of all Mc memorized patterns, for the memory encoder rate we have
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Mc nRx = Mc logMx
≥ H Cu
= H Cu −H Cu|Cx
= H Cx −H Cx|Cu

= ∑
w = 1

Mc
H(T(w)) − H(T(w) |M(w))

=(a) ∑
w = 1

Mc
H Xn(W ) |W = w −H Xn(W ) |I, W = w

=(b) ∑
w = 1

Mc
H Xn −H Xn|I, W = w

=(c) Mc ∑
w = 1

Mc
p(w) H Xn −H Xn|I, W = w

=(d) Mc H Xn −H Xn|I, W

=(e) Mc ∑
i = 1

n
H Xi −H Xi |Xi − 1, I, W

=(f) Mc ∑
i = 1

n
H Xi −H Xi |Ui

= Mc ∑
i = 1

n
I Xi; Ui

where (a) is simply a matter of variable definitions and notation, (b) follows from the 

assumption that the Xn(W)’s all have the same distribution and are drawn independently of 

W, (c) follows from the definition of p(w), (d) follows from the definition of conditional 

entropy, (e) follows from p xn = ∏i = 1
n p xi  and the telescoping property, and (f) follows 

from the definition of Ui. Hence, nRx ≥ ∑i = 1
n I Xi; Ui .

Finally nRc ≤ logMc
= H(W )
= I W ; Cu, J + H W Cu, J

≤
(a)

I W ; Cu, J + nϵn
= I W ; Cu + I W ; J Cu + nϵn
=(b) 0 + I W ; J Cu + nϵn
= I W , Cu; J − I J; Cu + nϵn
≤ I W , Cu; J + nϵn
=(c) I(M; J) + nϵn

=(d) ∑
i = 1

n
I Xi; Ui + I Yi; V i − I XiYi; UiV i + nϵn .

The lettered steps are justified as follows.

a. By assumption, Pr(w ≠ W ) = Pe
n 0, where W = g J, Cu . Thus, applying Fano’s 

inequality yields

H W Cu, J ≤ H Pen + Pen log Mc − 1 ≤ nϵn

Westover and O’Sullivan Page 35

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ϵn → 0.

b. The test index W and patterns Cx are drawn independently, hence, 

I W ; Cu = I W ; f Cx = 0.

c. Writing Cu = Cu* ∪ M, Cu* = Cu\M, we have

I W , Cu; J = I W , M, Cu*; J
= I(M; J) + I W , Cu*; J M
= I(M; J) + I W , Cu*; J I, W
= I(M; J) + I Cu*; J I, W
= I(M; J) + 0,

since the M(i) = (I(i), i) are independent of J for i ≠ W.

d. To justify this step, we invoke the following two results, proved in Appendix D. 

Let A, α, B, β and γ be arbitrary discrete random variables.

Then we get the following.

Lemma 6:

I(α; β) ≥ I(A; α) + I(B; β) − I(AB; αβ),

with equality if and only if I(Aα; Bβ) = I(A; B).

Lemma 7: Let Zi = (γ; Ai−1), i =1,2,…,n where the Ai are i.i.d. Then

∑
i = 1

n
I Ai;Zi = I An; γ .

To apply Lemma 6, make the substitution (α, β, A, B) → (M, J, Xn, Yn). Then the condition 

for equality is satisfied

I Xn, M; Y n, J
= I Xn, I, W ; Y n, J
= I Xn, W ; Y n, J + I I; Y n, J Xn, W
= I Xn, W ; Y n, J + I I, W ; Y n, J Xn, W
=(a) I Xn, W ; Y n, J + 0
= I Xn, W ; Y n + I Xn, W ; J Y n

=(b) I Xn, W ; Y n + 0
= I Xn; Y n + I W ; Y n Xn

=(c) I Xn; Y n + 0

since (a) M = (I, W) = f(Xn, W), (b) J = ϕ(Yn), and (c) Yn only depends on W through Xn = 

Xn(W), so that H(Yn | Xn, W) = H(Yn | Xn). Thus, we have
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I(M; J) = I Xn; M + I Y n; J − I Xn, Y n; M, J . (23)

Next, apply Lemma 7 three times with the substitutions

Zi, γ, Ai − 1 Ui, M, Xi − 1 ,
V i, J, Y i − 1 ,
UiV i, MJ, Xi − 1Y i − 1

to obtain

∑
i = 1

n
I Xi; Ui = I Xn; M

∑
i = 1

n
I Yi; V i = I Y n; J

∑
i = 1

n
I XiYi; UiV i = I XnY n; MJ .

Adding the first two expressions and subtracting the third yields

∑
i = 1

n
I Xi, Ui + I Y i; V i − I Xi, Y i; Ui, V i

= I Xn; M + I Y n; J − I XnY n; MJ .
(24)

Combining (23) and (24) yields

I(M; J) = ∑
i = 1

n
I Xi; Ui + I Yi; V i − I Xi, Y i; Ui, V i

as claimed.

Step 3:

For this step, we use the following lemma, proved in Appendix C as part of the 

demonstration that ℛout  is convex.

Lemma 1: Suppose UiV i ∈ Pout, i = 1,2,…,n. Then there exists UV ∈ Pout such that
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1
n ∑

i = 1

n
I Xi; Ui = I(X; U)

1
n ∑

i = 1

n
I Yi; V i = I(Y ; V )

1
n ∑

i = 1

n
I XiYi; UiV i = I(XY ; UV ) .

Applying Lemma 1 to the results of Steps 1 and 2, we obtain

Rx ≥ 1
n ∑

i = 1

n
I Xi; Ui = I(X; U)

Ry ≥ 1
n ∑

i = 1

n
I Yi; V i = I(Y ; V )

Rc ≤ Rx + Ry − 1
n ∑

i = 1

n
I XiYi; UiV i

= Rx + Ry − I(XY ; UV )

where UV ∈ Pout . With respect to this UV, by definition we have R ∈ ℛUV . Hence, 

R ∈ ℛout , and the proof is complete. □

Appendix C: Convexity of the Outer Bound

In this appendix, we prove a slightly more general version of Lemma 1 from Appendix B, 

and use this result to show that the outer bound rate region ℛout  is convex.

In the following, let Q be any finite alphabet, and assume that we have pairs XqYq for all 

q ∈ Q which are i.i.d. ~ p(xy).

Lemma 2: Suppose UqV q ∈ Pout for all q ∈ Q, and let Q p(q), q ∈ Q be any discrete random 

variable independent of the pairs {XqYq}. Then there exists a pair of discrete random 

variables UV ∈ Pout such that

∑
q ∈ Q

p(q)I Xq; Uq = I(X; U)

∑
q ∈ Q

p(q)I Yq; V q = I(Y ; V )

∑
q ∈ Q

p(q) I Xq; Uq + I Yq; V q − I XqYq; UqV q

= I(X; U) + I(Y ; V ) − I(XY ; UV ) .

Remark 4: Lemma 1 in Appendix B follows immediately from the above Lemma, by 

choosing Q = 1, 2, …, n  and p(q) = 1/n for all q ∈ Q.

Westover and O’Sullivan Page 38

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proof: As a candidate for the pair UV in the lemma, consider UV ∈ Pconv for the given Q 

(see (4)), i.e., U = (UQ,Q) and V = (VQ,Q). To verify that UV ∈ Pout, we proceed to check 

that U − X − Y and X − Y − V are Markov chains.

By the assumption UqV q ∈ Pout for each q ∈ Q, we have I(Uq; Yq | Xq) = 0 and I(Vq; Xq | 

Yq) = 0. Hence

0 = ∑
q ∈ Q

p(q)I Uq; Yq |Xq

= ∑
q ∈ Q

p(q)I Uq; Yq |Xq, Q = q

= I UQ; YQ|XQQ

=(a) I UQ; Y |X, Q
= I UQQ; Y |X − I(Q; Y |X)

=(b) I UQQ; Y |X
= I(U; Y |X)

where in (a) we are able to drop the subscript Q on XQ and YQ because the Xq and Yq are 

i.i.d. and independent of Q; and similarly (b) is because I(Q;Y | X) = 0, due to the 

independence of Q and Y. By an analogous calculation, we also find I(V; X | Y) = 0. Hence, 

U − X − Y and X − Y − V, and UV ∈ Pout as desired.

It remains to demonstrate the three equalities in the lemma. For the first, write

I(X; U) = I X; UQQ
= I X; UQ Q + I(X; Q)

=(a) I X; UQ Q

=(b) I XQ; UQ Q
= ∑

q ∈ Q
p(q)I Xq; Uq

where, as above, (a) and (b) follow from the fact that the Xq are i.i.d. and independent of Q. 

Similar calculations yield

I(Y ; V ) = ∑
q ∈ Q

p(q)I Yq; V q ,

and

I(XY ; UV ) = ∑
q ∈ Q

p(q)I XqYq; UqV q .

The convexity of ℛout follows readily from the preceding lemma.

Lemma 3: ℛout is convex. That is, let Rq be any set of rates such that Rq ∈ ℛout for all q ∈ Q, 

where Q is a finite alphabet, and let p(q) be any probability distribution over Q. Then 

R = ∑q ∈ Q p(q)Rq ∈ ℛout.
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Proof: Fix an arbitrary distribution p(q) and rates Rq ∈ ℛout for all q ∈ Q. By the definition 

of ℛout, for each rate Rq, there exists a pair UqV q ∈ Pout such that Rq ∈ ℛUqV q. 

Consequently

Rx = ∑
q ∈ Q

p(q)Rx, q ≥ ∑
q ∈ Q

p(q)I Xq; Uq

Ry = ∑
q ∈ Q

p(q)Ry, q ≥ ∑
q ∈ Q

p(q)I Yq; V q

Rc = ∑
q ∈ Q

p(q)Rc, q

≤ ∑
q ∈ Q

p(q) I Xq; Uq + I Yq; V q − I XqYq; UqV q .

As in the proof of Lemma 2, use these pairs to construct a new pair UV, by defining U = 

(UQ, Q), V = (VQ, Q). From the proof of Lemma 2, we know 1) that UV ∈ Pout, and 2) the 

sums on the right-hand sides of the inequalities above can be replaced with expressions in U 

and V, yielding

Rx ≥ I(X; U)
Ry ≥ I(Y ; V )
Rc ≤ I(X; U) + I(Y ; V ) − I(XY ; UV )
≤ Rx + Ry − I(XY ; UV )

which means that R ∈ ℛUV  for the given UV. Hence, R = ∑q ∈ Q p(q)Rq ∈ ℛout. Since p(q) 

and Rq ∈ ℛout were arbitrary, we conclude that ℛout is convex. □

Appendix D: Mixing Lemmas

In this appendix, we prove Lemmas 6 and 7, which are used in proving the outer bound.

Consider the elementary Shannon inequalities, stated in the following two lemmas. The 

variables A, B, α, β, γ, δ appearing in the lemmas denote arbitrary discrete random 

variables.

Lemma 4:

I(A; α) = I(A; α, γ) − I(A, α; γ) + I(α; γ) .

Proof:

I(A; γ α) = I(A; α, γ) − I(A; α)
= I(A, α; γ) − I(γ; α) .

Lemma 5:

I(A; α) + I(B; β) = I(A;B) + I(α; β) − I(A, α; B, β) + I(A, B; α, β) .

Proof:
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I(A, α; B, β) − I(A, B; α, β)
= H(A, α) + H(B, β) − H(A,B) − H(α, β)
= − I(A; α) − I(B; β) + I(A;B) + I(α; β) .

Lemma 6 follows directly from the preceding lemmas.

Lemma 6:

I(α; β) ≥ I(A; α) + I(B; β) − I(A, B; α, β)

with equality if and only if I(A, α; B, β) = I(A; B).

Proof: Rearrange Lemma 5 to get

I(α; β) = I(A; α) + I(B; β) − I(A, B; α, β) + [I(A, α; B, β) − I(A;B)] .

The lemma now follows readily from the preceding expression: We obtain equality in the 

lemma if (and only if) the term in brackets is zero. Otherwise, the bracketed term is 

nonnegative, since

I(A, α; B, β) − I(A;B)
= H(α A) + H(β B) − H(α, β A,B)
= H(α A) − H(α A,B) + H(β B) − H(β A,B, α)
≥ 0,

where the inequality is due to the fact that conditioning does not increase entropy. □

Lemma 7: If Ui = (γ, Ai−1), then

I An; γ = ∑
i = 1

n
I Ai; Ui − ∑

i = 2

n
I Ai; Ai − 1 ,

Proof: In Lemma 4, put A = Ai, α = Ai−1 Note that U1 = γ. Hence, substituting and 

summing from 2 to n yields

∑
i = 2

n
I Ai; Ai − 1

= ∑
i = 2

n
I Ai; Ui − I An; γ + I A1; γ

= ∑
i = 2

n
I Ai; Ui − I An; γ + I A1; U1

= ∑
i = 1

n
I Ai; Ui − I An; γ .
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Appendix E: Alternative Representations of Rin and Rout

Here we show that the alternative representations of the inner and outer bound surfaces 

introduced in Remark 2 are in fact equivalent, i.e., ℛin  = ℛin ′ = ℛin′′ , ℛout  = ℛout ′ = ℛout′′ .

We show first that ℛout′ = ℛout′′ . Suppose R ∈ ℛout′ . Then, using U − X − Y, X − Y − V we 

have

Rc ≤ I(U; V ) − I(U; V XY )
= I(X; U) + I(Y ; V ) − I(XY ; UV ) (25)

which implies

Rx ≥ I(X; U)
≥ I(XY ; UV ) − I(Y ; V ) + Rc
= I(XY ; U V ) + Rc

and similarly Ry ≥ I(XY; V | U) + Rc; and

Rx + Ry ≥ I(X; U) + I(Y ; V )
≥ I(XY ; UV ) + Rc .

We conclude that R ∈ ℛout′′ , hence ℛout ′ ⊆ ℛout′′ . A symmetrical argument shows 

ℛout ′′ ⊆ ℛout′ , proving ℛout ′ = ℛout′′ .

Next, we show that ℛout and ℛout′  are identical. To this end, note that these sets correspond 

to regions in the positive orthant ℝ+
3 , and that two such regions are identical if they have the 

same surfaces. Following the presentation in Section VII, the surfaces of ℛout and ℛout′  are

rout rx, ry = max
UV ∈ Cout  rx, ry

rx + ry − I(XY ; UV )

rout ′ rx, ry = max
UV ∈ Cout  rx, ry

I(U; V ) − I(U; V |XY )

where

Cout rx, ry = UV ∈ Pout:I(U; X) = rx, I(V ; Y )) = ry .

rout ′ rx, ry
= max

UV ∈ Cout  rx, ry
I(X; U) + I(Y ; V ) − I(XY ; UV )

= max
UV ∈ Cin rx, ry

rx + ry − I(XY ; UV )

= rout  rx, ry .
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Thus, the desired equivalence ℛout = ℛout′  follows simply from the fact that at the surfaces, 

the inequalities defining each region become equalities.

The same line of argument as above of course also shows ℛin = ℛin′ = ℛin′′ .

Appendix F: Simplification of Convex Hulls

In this appendix, we argue geometrically that the expressions for the convex hulls of the 

inner bound regions simplify to just one term in both the binary and Gaussian cases. To 

discuss both cases simultaneously, let us represent the surface of either inner bound by a 

positive-valued function f:D ℝ+. Here, D is a square region

D = r = (x, y) ∈ ℝ2:0 ≤ x ≤ M, 0 ≤ y ≤ M

and M is a positive constant. In the binary case, f(r) = s(r), and D = [0, 1] × [0, 1]; in the 

Gaussian case, f(r) = S(r) and D = [0, ∞) × [0, ∞). Some important properties shared by both 

cases are that for all D = [0, ∞) × [0, ∞)

f(x, y) ≥ 0, f(0, y) = f(x, 0) = 0
fx(r), fy(r) > 0, fxx(r), fyy(r) < 0

where the subscripts denote partial derivatives.

Denote the convex hull of f(r) by c(r). Generically, the boundary of the convex hull is

c(r) = maxθf r1 + θf r2

where the maximum is over all triples (θ, r1, r2) such that r=θr1 + θr2, θ ∈ [0, 1], and 

r1, r2 ∈ D. However, as argued next, for the cases under study this simplifies to

c(r) = maxθf r′

where r = θr′.

The convex hull of a surface can be characterized in terms of its tangent planes. Given any 

point r′ = (x, y) ∈ D, if its tangent plane lies entirely above the surface, then (r′, f(r′)) is on 

the convex hull. If the tangent plane cuts through the surface at one or more other points, or 

if the tangent plane lies below the surface, then (r, f(r)) is not on the convex hull. If the 

tangent plane intersects the surface at exactly two points, then both points are on the convex 

hull.

The tangent plane at an arbitrary point r′ = x′, y′ ∈ D is the set of points satisfying

z(x, y) = fx x − x′ + fy y − y′ + z′
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where the partial derivatives are evaluated at r′, i.e., fx = fx(r′), fy = fy(r′), and z′ = f(r′). 

The tangent plane intersects the z = 0 plane in a line. Setting z(r) = 0 and solving

y = mx + b, where
m = − fx/fy
b = 1/fy x′fx + y′fy − z′ .

Since fx, fy > 0, the slope m = −(fx/fy) is negative. This line intersects the positive orthant 

whenever the intercept b ≥ 0, in which case the tangent plane cuts through the surface, since 

f ≥ 0. Thus, the only points on the original surface f(x,y) that can be on the convex hull are 

those for which b ≤ 0.

Next, consider any path through D along a line segment y = αx, α > 0, starting from one of 

the “outer edges” of D, where x = M or y = M, and consider what happens to the tangent 

plane’s line of intersection ℓ with the z = 0 plane as we move in along the path toward the 

origin (0, 0). Initially, the tangent planes lie entirely above the surface, and the intercept of ℓ 
is negative, b < 0. This intercept increases along the path until b = 0, at which point ℓ 
intersects (0, 0). Here, the tangent plane contains a line segment attached on one end to the 

point of tangency, and at the other end to the point (r, f(r)) = (0, 0, 0); everywhere else, the 

tangent plane is above the surface. Continuing toward the origin, all other points along the 

path have tangent planes such that ℓ has a positive intercept b > 0, hence, these points are 

excluded from the convex hull.

These considerations imply that the convex hull c(r) is composed entirely of two kinds of 

points. First, points which coincide with the original surface, c(r), = θf(r) with θ = 1. These 

points occur at values of r = (x, y) “up and to the right” of (0, 0). Second, points along line 

segments connecting surface points “up and to the right” (r′, f(r′)) with the point (r, f(r)) = 

(0, 0, 0), that is c(r) = θf r′ + θf(0, 0) = θf r′ , where r = θr′ and θ ∈ [0, 1]. Hence, for all 

r ∈ D, c(r) has the desired form.

Two more examples of functions that behave in the same way just described are f(x, y) = (1 

− (1 − x)2)(1 − (1 − y)2) and f(x, y) = xy, with D = [0, 1] × [0, 1].

Appendix G: Properties of Gaussian Mutual Information

Our analysis of the Gaussian pattern recognition problem relies on the following well-known 

results, stated below without proof.

Lemma 8: The mutual information between two Gaussian random vectors X and Y depends 

only on the matrices of correlation coefficients. Specifically

I(X; Y ) = 1
2log detCx, x − 1

2log detCx, x y

where
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Cx, x y = Cx, x − Cx, yCy, y−1Cy, x .

In the special case Y = X + W, where X and W are independent Gaussian random variables 

with variances P and N, respectively, we have

I(X; Y ) = 1
2log 1 + P

N = − 1
2log 1 − ρx, y2

where the correlation coefficient ρx, y = P /(P + N).

Lemma 9: If X, Y and Z are zero-mean Gaussian random vectors that form a Markov chain 

X − Y − Z, then

Cx, z = Cx, yCy, y−1Cy, z .

Note that for dimension one, X → Y → Z ρx,z = ρx,yρy,z implies.

Lemma 10: Let X, Y, U, and V be jointly Gaussian random variables such that U − X − Y 
and X − Y − V are Markov chains. Then the matrix of correlation coefficients Cxy,uv 

decomposes as

Cxy, uv =
1 ρxy
ρxy 1

ρxu 0
0 ρyv

.

This lemma follows immediately by using Lemma 9 to obtain the substitutions 

Cx, v = Cx, yCy, y
−1Cy, v = ρxyρyv and Cx, y = Cu, xCx, x

−1Cx, y = ρuxρxy.
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Fig. 1. 
Pattern recognition subject to data compression.

Westover and O’Sullivan Page 48

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The distributed source coding problem.
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Fig. 3. 
Contour plots of the binary inner bound surface (a); outer bound surface (b); differences 

between the outer bound and inner bounds (c); and plot of inner and outer bound surfaces 

along a diagonal cut, (rx(θ), ry(θ)) = θ(1, 1), θ ∈ [0, 1]. In these plots q = 0.2.
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Fig. 4. 
Hinton diagrams of the maximizing probability distributions p(uv | xy) for 25 values of (rx, 

ry). (a) Distributions for ℛin. (b) Distributions for ℛout.
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Fig. 5. 
Binary-symmetric channel models for the inner and outer bounds. (a) Model for rin(rx, ry) 

with U = V = 2. (b) Model for rout(rx, ry) with U = V = 3. See text for explanation.
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Fig. 6. 
Contour plots of (a) the binary inner bound surface; (b) outer bound surface; (c) difference 

between the outer bound and inner bounds; and (d) plot of surfaces for the inner bound, its 

convex hull, and the outer bound along a diagonal cut, (rx(θ), ry(θ)) = θ(1, 1), θ ∈ [0, 1]. In 

these plots ρxy = 0.8.
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Fig. 7. 

Mappings for sequences Xnq, Y nq , q ∈ Q and concatenations (Xn, Yn).

Westover and O’Sullivan Page 54

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Informal Problem Statement
	Pattern Rate
	Sensory Data Compression Rate
	Memory Data Compression Rate
	Image Formation and Testing
	Interpretations of the Problem Formulation
	Optimization views.
	Regarding “n.”


	Related Work
	Machine Learning Approaches
	Related Work in Combined Data Compression and Inference

	Problem Statement
	Notation
	Definitions and Assumptions
	Memorization phase:
	Testing phase


	Main results
	Discussion of the Main Results
	The Gap Between Bounds
	Relationship With Distributed Source Coding
	Degenerate Cases
	Sharp memory, sharp eyesight.
	Sharp memory, poor eyesight.
	Poor memory, sharp eyesight.


	Examples
	Binary Case
	Numerical Results:
	Conjectured Formulas:
	Rationale for the Inner Bound (14):
	Rationale for the Outer Bound (15):

	Gaussian Case

	Conclusion
	Proof of the Inner Bound
	Proof of the Outer Bound
	Convexity of the Outer Bound
	Mixing Lemmas
	Alternative Representations of Rin and Rout
	Simplification of Convex Hulls
	Properties of Gaussian Mutual Information
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.

