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Abstract

The innate immune response is crucial for defense against virus infections where the complement 

system, coagulation cascade and natural antibodies play key roles. These immune components are 

interconnected in an intricate network and are tightly regulated to maintain homeostasis and avoid 

uncontrolled immune responses. Many viruses in turn have evolved to modulate these interactions 

through various strategies to evade innate immune activation. This review summarizes the current 

understanding on viral strategies to inhibit the activation of complement and coagulation cascades, 

evade natural antibody-mediated clearance and utilize complement regulatory mechanisms to their 

advantage.
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Introduction

The first line of defense against foreign pathogens is the innate immune response, comprised 

of innate cells, physical barriers, and humoral components, consisting of the complement 

and coagulation cascades, and natural antibodies (NAb). Vital to maintaining a barrier and 

clearing pathogens that breach the barrier, the innate immune response also removes debris 

to maintain homeostasis. While there is a plethora of published data on innate immune cells 

and physical barriers against viral infection, there is still much to discover about the 

mechanisms of the innate humoral immune response. The individual proteins of the 

complement and coagulation systems, and NAb production are tightly regulated to mount an 

innate immune response for viral defense and homeostasis maintenance. In addition, the 

humoral components are intricately linked at multiple points in the cascade, providing an 

*Corresponding author Sherry D Fleming, 18 Ackert, 1717 Claflin Rd., Manhattan KS 66506, sdflemin@ksu.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Clin Immunol. Author manuscript; available in PMC 2021 March 01.

Published in final edited form as:
Clin Immunol. 2020 March ; 212: 108351. doi:10.1016/j.clim.2020.108351.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



amplified immune response and viral clearance. Viruses have evolved over millions of years 

to evade the immune system including modulating activation and regulation of the 

complement and coagulation cascades and NAb production. Several virus families have 

evolved conserved genes encoding for proteins that act as virulence factors and inhibit 

multiple components of the humoral innate immune response by mimicry, incorporation of 

host molecules in the virion, or detection escape mechanisms. These strategies are 

advantageous for the virus to increase pathogenicity through activation, suppression or 

preventing virus neutralization.

This review provides information detailing the individual components of complement 

regulation and activation, the coagulation system, and NAb production in response to viral 

infections. Additionally, the complex roles of the complement system, coagulation cascade, 

and Nab production are discussed, demonstrating the complexity and crosstalk observed 

during viral infection.

Viral Inhibition of Complement Activation and Complement Regulators

The complement cascade plays a vital role in initiating and regulating the innate and 

adaptive immune systems responses against invading pathogens such as viruses. The 

classical, lectin, and alternative pathways initiate clearance of foreign pathogens, reducing 

the infectious burden. Viruses can successfully evade host immune responses by modulating 

complement activation through inhibition of major proteins in the complement cascade such 

as C1q, mannose binding lectin (MBL), C3/C3b, C4/C4b, and C5b-9. These strategies 

increase viral pathogenicity by suppressing complement activation or effectively halting 

virus neutralization.

Inhibition of Complement Initiation

C1q and MBL initiate the classical and lectin pathways, respectively. After binding to a 

ligand, C1q undergoes a necessary conformational change to initiate the classical pathway. 

The direct binding of the human astrovirus type I capsid protein disrupts this conformational 

change and complement activation by dissociating the C1s2–C1r2 tetramer from C1q[1, 2]. 

Astrovirus capsid protein may also inhibit C1q globular heads from binding IgG [3]. 

Conversely, Hepatitis C virus (HCV) core protein acts as a C1q mimic on activated T cells 

by binding the C1q receptor with a similar affinity to C1q, thereby inhibiting T cell 

proliferation [4–6]. The capsid protein of astroviruses also interacts with MBL causing dual 

inhibition, although the exact mechanism of binding is still not fully understood [2, 3].

Both the classical and lectin pathways activate C4 and subsequently produce C4b, an 

essential protein in the C3 convertase, C4b2a. Both HCV and herpesvirus saimiri (HVS) 

inhibit C4 with distinct mechanisms. The HCV NS5A and core proteins inhibit C4 

transcription and subsequent translation, thus inhibiting C3 convertase formation [7, 8]. In 

contrast, HVS encodes a complement control protein homolog with structural homology to 

complement regulators which binds with high affinity to C4b, thereby accelerating the decay 

of C3 convertase [9]. Together, these viruses evolved mechanisms to shut down initiation of 

the complement cascade preventing formation of anaphylatoxins and the lytic pore.
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Viral Inhibition of C3, C3b and the Terminal Membrane Attack Complex

As central proteins in the complement cascade, C3 and C3b are the converging point for all 

three initiation pathways and are critical for the formation of the alternative C3 convertase, 

C3bBb, and both C5 convertases. In addition to inhibiting C4, the HCV NS5A protein 

modulates C3 [7]. Similarly, chronic HCV infection represses the C3 promoter, depleting 

serum C3, and thus C3 and C5 convertase production [8, 10].

Many viruses evolved to encode virulence proteins that bind to C3b, instead of C3. 

Poxviruses contain inhibitors of complement enzymes (PICES) which bind C3b [11, 12], 

with varying binding affinity between specific poxvirus [13–15]. Structurally and 

functionally similar to two regulators of decay accelerating activity against C3 convertase, 

Factor H and C4b binding protein (C4BP) [16, 17], PICES-like vaccinia virus complement 

control protein degrades C3b to iC3b1, preventing C3b binding to activated factor B (Bb) 

[18, 19]. However, smallpox inhibitor of complement enzymes degrades iC3b1 further into 

C3f and iC3b2 [11, 18]. Herpes simplex virus (HSV) encodes glycoprotein C (gC) which 

also binds to C3b [20–24]. The C3b binding domain of HSV-1 gC-1 is homologous to the 

C3b binding sites of factors H, B, complement receptor 1 (CR1), and CR2 [20]. HSV-1 gC-1 

inhibits C3b binding of factor H and properdin, an alternative pathway C3 convertase 

stabilizer [20, 22]. Competitive binding with properdin suggests gC-1 may decrease the 

stability of C3 convertase. In conjunction with HSV gC binding of C3b, an additional study 

showed binding of C3b by a CR1-like C3 receptor found on the HSV membrane [25]. 

Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes a soluble and cell-associated 

form of a complement control protein (KCP) which functions as a potent cofactor for 

classical pathway factor I cleavage of C3b [26, 27]. Other viruses that include KCP 

homologs that inhibit C3b in the same manner as KSHV are rhesus rhadinovirus (RRV) and 

murine gammaherpesvirus 68 (γHV68) [28, 29]. Overall, viruses binding to C3b evolved 

similar functions to various complement cofactors and binding receptors to inhibit formation 

of C3 and C5 convertases as well as inhibiting formation of the lytic pore in all three 

complement pathways.

The C5b-9 protein complex is the final step in the complement cascade and leads to 

formation of the membrane attack complex (MAC) and subsequent cell lysis. Flavivirus 

non-structural protein 1 (NS1) protein inhibits the complement cascade by binding 

numerous proteins in the C5b-9 complex [30, 31]. Although inhibition of MAC is a novel 

mechanism for NS1, the exact mechanism and purpose is not fully understood. NS1 binds 

tightly to C5, C6 and C9, and binds weakly to C7 to inhibit C9 polymerization and prevents 

the lytic pore. Although NS1 alone decreases MAC formation, vitronectin, a multifunctional 

glycoprotein with regulatory functions found in serum, the extracellular matrix, and bone, 

binds C9 and NS1 simultaneously to further decrease MAC formation [30, 32]. Several 

flavivirus NS1s inhibit MAC formation but Zika viral NS1 binds stronger and with greater 

efficiency to C9 than other viruses [30]. In addition to inhibiting C5b-9, soluble dengue 

virus NS1 activates complement in the fluid phase, releasing soluble C5b-9 into the plasma 

[33]. This triggers increased vascular leakage in patients with dengue hemorrhagic fever, 

possibly implicating NS1 in the progression of more deadly forms of the dengue infection 
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[33]. Flaviviruses prevent formation of the MAC at the plasma membrane to increase viral 

replication as well as increase vascular leakage, intensifying lethal infection.

Viruses incorporate host complement regulators

CD55, CD46 and CD59 are frequently found incorporated on the surface of many virions 

depending on their expression levels in the host cells. Incorporation of CD46 and CD55 

promote factor I-mediated cleavage of C4b and C3b and decay accelerating activity against 

C3 convertase while CD59 suppresses complement mediated cytolysis. Viral acquisition of 

these regulatory proteins enhances complement resistance and is also speculated to play a 

role in tropism [34].

Viruses may incorporate only one type of complement regulator, such as Nipah virus [35] 

with CD46 and influenza A [36] and Infectious bronchitis virus [37] with CD59 on virions. 

Several other viruses including HCV, human T cell leukemia type I and human 

cytomegalovirus (HCMV) incorporate both CD55 and CD59 on the virion surfaces [38–41] 

and upregulate cellular CD55 expression [38].

Viruses in the same family may integrate complement regulators differently. In 

Paramyxoviridae, Mumps virus (MuV) and Vesicular Stomatitis virus (VSV) incorporate 

both CD46 and CD55 [42]. However, New Castle disease virus [43, 44] and Parainfluenza 

virus-5 [45] incorporate CD46, CD55 and CD59 on the surface of the virion and upregulate 

cellular CD46, CD55 and CD59 expression [44–46]. HIV, Simian immunodeficiency virus 

[47–49] and extracellular enveloped virions of vaccinia virus [34] are other viruses that also 

integrate CD46, CD55 and CD59 into the virions.

The potency of virion associated complement regulators appears to be variable. Virion 

associated CD59 is very potent in HIV, HCV and HCMV [41, 50] while CD55 plays a 

prominent role in complement evasion in MuV and VSV [42, 44, 45]. Incorporation of other 

complement regulators has only been described in HIV virions that acquire factor H [49]. 

Together, multiple types of viruses integrate host derived complement inhibitors into the 

virions and may also increase complement regulators on the cell surface to protect 

intracellular viral processes.

Viruses modulate or mimic host complement regulators

Viruses may encode proteins that directly bind to complement regulatory molecules or 

modulate their expression. Hepatitis B virus X protein binds to the CD59 promoter to 

upregulates CD59 expression [51]. Flavivirus NS1 discussed above, also recruits C4BP, a 

co-factor for factor I, triggering C4b cleavage and inhibiting classical and lectin pathway 

activation [31, 52]. Furthermore, West Nile virus NS1 binds factor H to degrade C3b which 

decreases alternative pathway activation [30, 53].

Viral proteins that mimic host complement regulatory molecules may show homology to 

host complement regulators, but their function may differ [54]. Both HSV and KSHV 

encode proteins with functions homologous to CD55 and/or CD46 as discussed above [22, 

26, 27, 55]. Poxvirus PICES not only bind to C3b/C4b but also expresses CD46 cofactor 

activity and CD55-like activity to inhibit complement dependent cytolysis via both classical 
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and alternative pathways [11–13]. Other viruses, such as T-lymphotropic HVS encode a 

structural homolog of CD59 [56] while Nipah virus encodes a functional ‘factor I-like’ 

protease which functions along with factor H to cleave C3b into iC3b [35]. These instances 

clearly indicate that mimicking host complement regulators enable these viruses to replicate 

in the cells.

Viruses utilize host complement regulators for attachment

Multiple viruses use complement regulators for cellular adhesion and entry. CD46 serves as 

the receptor for measles virus [57], human herpes virus 6 [58], different serotypes of 

adenoviruses (reviewed in [59]) and bovine diarrhea virus [60]. Enterovirus 70 [61] and 

Cardiovirulent coxsackie virus [62] use CD55 as the cellular receptor. Poxviruses PICES 

(discussed above) appear to play important roles in virus attachment to the host cell [11, 12].

In summary, viruses encompass multiple strategies, including modulation or acquisition of 

host complement regulators and mimicry, to evade complement mediated virus 

neutralization. This may also lead to increased virulence and pathogenicity, and ultimately 

define the disease outcome. Virus-derived regulatory molecules are also appealing 

therapeutic agents in treating complement disorders as they may possess higher affinity and 

inhibitory potential than host regulatory molecules [63–65]. Despite the importance, only a 

minority of viruses or virus-derived complement regulators have been identified or 

characterized in this regard so far. Thus, further research is crucial to expand our 

understanding of their potential application as therapeutic agents against virus infections, 

inflammatory diseases and autoimmune diseases.

The role of Natural Antibodies in Viral Clearance

As a first line of defense, the immune system generates NAbs that are germline encoded and 

exist prior to encountering a cognate antigen. IgM isotypes typically respond to infected 

sites first [66] and provide the majority of NAb protection; however, natural IgG and IgA are 

also important NAbs that predominately exist in the serum and mucosal membranes, 

respectively. NAbs are produced by B-1 cells, marginal zone B-cells, and other B-cell types 

in the absence of external antigen stimulation [67–69], although the exact sources of NAbs 

are still debated. NAbs are non-specific [70] and have low affinity [71] due to fewer non-

templated nucleotide additions and the lack of or minimal somatic hypermutation [72, 73]. 

The non-specificity permits recognition of more than one viral infection. Natural IgM 

maintains homeostasis by binding to apoptotic cells for enhanced phagocytosis [74, 75], 

regulating B cells [76], and recognizing self, thus playing a role in autoimmunity [66, 77]. 

Nabs recognize oxidized lipids, phospholipids, glycolipids, and glycoproteins, and cross-

react with similar epitopes on microbes [78], such as phosphorylcholines, leading to 

pathogen clearance.

NAbs are critical in clearing virions during infection through 1) direct pathogen 

neutralization, 2) antigen recruitment to secondary lymphoid organs for subsequent 

neutralization, and 3) activation of the complement system. However, due to the vast 

differences of NAb characteristics as well as variability in viruses, the functional role of 

NAbs is debated. Recently, two new requirements were proposed for an antibody to be 
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considered a NAb including the ability to exert a protective and regulatory function and an 

immediate response to those functions [79]. The broader definition demonstrates the 

complexity of NAbs. To evade NAb detection and clearance, viruses employ a variety of 

escape mechanisms to survive.

Natural Antibodies Aid in Viral Clearance

NAbs neutralize pathogens partially by their high avidity (rather than affinity), allowing the 

adaptive immune system time to tailor the immune response [80]. Viral neutralization results 

from antibody interference with proteins on the virion surface, aggregation of virus particles, 

or blocking virion cell uptake. Initial influenza studies in SCID mice revealed IgM and IgA 

prophylactically protected the host but were ineffective therapeutically against influenza 

virus, possibly due to insufficient access to all tissues where the virus is produced [81]. 

Another study found influenza neutralization depended on natural IgM and complement 

working in concert to aggregate the virion and coat the viral hemagglutinin receptor [82]. 

Additionally, the location of infection plays a role in virus neutralization. This is observed 

with Poliovirus, where the primary infection site is in the gastrointestinal tract. Mucosal IgA 

is the main antibody to block infection, but it also elicits IgM and IgG to prevent spreading 

to the central nervous system [83]. While multiple studies reveal NAb production plays an 

important role in combating viral infections, most require other mechanisms of the immune 

system to fully neutralize the virus, such as complement activation.

To enhance the immune response, NAbs distribute viruses to secondary lymphoid organs, as 

seen in VSV, lymphocytic choriomeningitis virus (LCMV), and vaccinia virus (vacc-WR 

strain) infection [84]. Using antibody-deficient mice, infection with these viruses resulted in 

10 to 100 times lower viral titers in secondary lymphoid organs compared to antibody-

competent mice [84]. Corroborating these results, NAbs reduced viral organ titers in the 

kidney, liver, and brain, but increased virus titers in the spleen, thereby preventing vital 

organs from viral infection [85]. NAbs activate the complement system via the classical 

pathway. Binding of the antibody Fc portion to C1q activates the complement cascade. 

Antibody binding to multiple epitopes on the surface of an antigen aggregates the antibody, 

enabling several C1q heads to bind with improved affinity [86]. Generally, NAbs are more 

effective for cytopathogenic viruses rather than non-cytopathogenic viruses. Research 

demonstrated purified human C1, C2, C3, and C4 required the presence of IgM to fully 

neutralize cytopathic VSV to the same extent as normal human serum [87]. In contrast, other 

research failed to demonstrate that NAbs participate in VSV-induced antibody responses in 

wild-type mice [88], suggesting that mouse and human complement requirements differ. 

Other studies demonstrated a role of complement receptors in viral protection. IgM response 

to VSV as well as poliomyelitis virus and recombinant vaccinia virus in mice was dependent 

on CR3 and CR4-expressing macrophages [89]. Neutralizing IgM and IgG responses were 

independent of CR2-mediated B-cell stimulation with live VSV in mice; however, CR2 was 

important for B-cell IgG class switching in mice immunized with nonreplicating antigens 

[89]. On the contrary, NAbs are typically insufficient in responding against poor or non-

cytopathic viruses, such as LCMV, because somatic hypermutation is required to rid the host 

of these viruses [90]. These data demonstrate the complexity and variability of NAbs in 

response to viral infections.
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Natural Antibody Viral Recognition and Viral Escape

Despite not being as effective as humoral antibody responses, NAbs play an important role 

in clearing pathogens. Viral targets for NAb neutralization are less clear; however, 

researchers are making headway exploring this area. Antibodies potentially recognize 

virions that incorporate cell membrane components during the budding process. One study 

showed natural IgM potentially targets the respiratory syncytial virus (RSV) envelope 

proteins, including the glycosylated fusion and attachment proteins [91]. This was based on 

increased newborn RSV-IgM antigen presenting cells and plasma RSV-IgM titers, 

demonstrating the presence of NAbs since IgM does not cross the placental barrier [91]. 

These results were contradicted in another study that showed the antibodies that recognize 

an RSV epitope have little to no poly-reactivity, thus suggesting they are distinct from IgM 

NAbs [92]. However, it is difficult to test every possible reactivity. Other studies 

demonstrated LCMV glycoprotein pseudotyped VSV complement lysis was dependent on 

NAbs recognizing xenoantigens such as galactose-α-(1,3)-galactose or N-
glycolylneuraminic acid expressed on nonhuman cell lines [93]. These studies demonstrate 

the complexity and limited information available on the mechanisms of viral recognition by 

NAbs and exploring this further would greatly enhance vaccine development.

Viruses such as HIV have high mutation rates, resulting in increased adaptability and 

improved immune evasion. NAbs may induce long-lasting internalization of the main HIV 

co-receptor from cell membranes thereby possibly inhibiting HIV infection [94]. Viruses 

also avoid antibody detection by latent infection. The herpes virus remains hidden and 

expresses a small of number of genes to become non-immunogenic [95], possibly resulting 

in a decreased NAb response. Finally, viruses such as Hepatitis B virus (HBV) remain 

persistent in patients by up-regulating multiple inhibitory receptors and down-regulating 

antigen presentation genes in B-cells, causing a lack of antibody production towards HBV 

[96]. Perhaps this viral mechanism targets NAb producing B-1 cells and would be 

interesting to explore further.

As discussed, NAbs play a crucial role in viral clearance through neutralization, antigen 

recruitment to secondary lymphoid organs, and complement activation. Viral recognition by 

NAbs is less clear but research is making headway in this field. Even though NAbs have 

limited capabilities in clearing viral infections solely on their own, they play an important 

and intricate role in linking the innate and adaptive immune system as well as complement 

activation. It is not completely known how viruses inhibit NAbs and further research is 

needed to explore these multi-functional antibodies of the innate immune system.

The coagulation pathway

The proteolytic coagulation cascade maintains homeostasis in response to blood vessel 

injury. Rupture of blood vessels activates coagulation that together with platelet mediated 

hemostasis stops bleeding by forming a blood-obstructing platelet plug at the site of 

endothelial injury. The coagulation cascade is described as “waterfall sequence for intrinsic 

blood clotting” [97] because upon activation of the pathway, various proteins interact with 

their substrates and are converted to enzymatic active forms in a sequential manner. There 

are two accepted converging coagulation pathways; the extrinsic (tissue factor pathway) and 
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intrinsic (contact activation) pathways, which converge at activation of factor X. Many 

viruses downregulate the coagulation regulators and/or inhibit fibrinolysis. Viruses also 

activate coagulation directly by damaging endothelial cells during infection [98]. The 

cascade may also be indirectly activated through inflammation or viral protein mimics of 

coagulation proteins. Some of these mechanisms will be discussed in this section.

Some viruses have evolved to induce or mimic host responses. Influenza virus infection 

stimulates production of large amounts of platelets which increases disease severity and 

mortality [99]. In contrast, dengue viruses produce proteins mimicking platelets and 

endothelial proteins to induce cross-reactive autoantibodies capable of inducing coagulation 

[100, 101]. Coagulation factors such as Xa, IXa, and II are serine proteases just like some 

dengue virus proteins such as prM, E and NS1. This likely results in the induction of 

autoantibodies capable of cross-reacting with the above-mentioned coagulation factors 

[101].

During blood vessel injury, the extrinsic pathway is activated first, and this response is 

enhanced by activation of the intrinsic pathway. Viruses such as herpes virus [102], dengue 

virus [103, 104], HIV [105, 106] and Ebola virus [107, 108] activate coagulation via the 

extrinsic pathway. Other viruses such as HIV [105, 106, 109] and influenza virus [110–112] 

activate coagulation via both the intrinsic and coagulation pathways.

Viral subversion of the extrinsic and intrinsic pathways

In the extrinsic pathway, damaged endothelial cells release tissue factor (TF) [113], which 

binds to circulating factor VII (VII) to form a complex TF-VIIa. Herpes virus also causes 

endothelial cell damage [114, 115] that induces TF in a manner not requiring viral 

replication [116]. Likewise, HIV and Ebola virus infections induce TF in the bloodstream 

and within monocytes and macrophages [105, 106, 117–119]. Without directly activating 

TF, dengue virus upregulates TF receptors to induce vascular cell adhesion molecule 1 

expression, leading to endothelial cell activation [120]. Finally, TF increases morbidity and 

mortality during influenza virus infections, although the mechanism is not clearly 

understood [121, 122]. The TF-VIIa complex cleaves factor X to activate Xa, but viruses 

may alter this process as well [123]. For example, herpes viruses activate factor X even 

before they infect cells using the procoagulant phosphatidylserine with endogenous 

processes [124–126].

Subclinical levels of viral activation of coagulation increases coagulation factor expression 

and/or clinical activation resulting in disseminated intravascular coagulopathy (DIC). DIC 

occurs when numerous micro thrombi form within blood vessels, eventually depleting 

coagulation factors and resulting in the inability to form clots. This phenomenon is present 

in viral infections such as in influenza infection [127]. Blood clot formation in DIC is 

dependent on the extrinsic pathway with TF expressed as a membrane-bound protein on 

mononuclear cells [128].

The intrinsic pathway forms independently of plasma extraneous components by endothelial 

surface damage activating factor XII (Hageman factor) to XIIa. Herpes virus infection 

induces such surface damage and subsequent activation of coagulation [114, 129, 130]. In 
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addition, HIV and influenza infections increase Von Willebrand factor, a measure of 

endothelial cell damage [109, 110, 131, 132]. Factor XIIa effects the sequential activation of 

factors XI (PTA) and then IX (Christmas factor) to active forms XIa and IXa respectively 

[133]. Certain adenoviruses such as adenovirus strain 5 (Adv5) and Adv31 require factors 

IX or X to efficiently bind during infection [134].

The knob fiber domains of Adv5, Adv18 and Adv31, but not Adv12, interact with 

complement C4-binding protein as well as factor IX, enabling viral uptake via liver 

hepatocytes, an understanding that can be exploited when thinking about tissues to target 

with adenovirus vectors [135]. The Adv5 capsid protein hexon binds to coagulation factor X, 

thereby enhancing viral entry into hepatocytes [134, 136–139] and activating the innate 

response during Adv infection [140]. The Adv-factor X interaction is a target for therapeutic 

agents [135]. When Adv5 is being used as a vector, factor X is essential to ensure viral 

transduction to the liver as it shields the virus from attack by the classical pathway of the 

complement system [141]. Adv35 which is an Adv5 containing fibers from Adv B serotype 

35, bind with lower affinity to factor X and may thus be better candidates for selective 

transfer of genes compared to Adv5 alone [142].

Common Pathway

The two coagulation pathways converge into a common pathway upon factor X activation. 

Factor Xa, through its interaction with cofactor Va on membrane surfaces, cleaves 

prothrombin, generating thrombin. In a feedback mechanism, thrombin activates factor IX to 

produce large amounts of thrombin that is sufficient to convert fibrinogen to fibrin. Herpes 

viruses use fibrin to camouflage their surfaces, thereby reducing their recognition by the 

immune system [129]. Additionally, thrombin activates protein C and in the presence of 

protein S leads to the activation of factors V and XIII. Thrombin enhances herpes virus 

infectivity [143] and is important during Adv hepatic transduction [137]. Additionally, HIV 

positive individuals are deficient of certain proteins such as protein C, protein S and 

platelets, denoting a pro-coagulant state [144–146]. However, it is not known if the 

deficiency is a result of lack of protein production or accelerated consumption during HIV 

infection. Finally, thrombin cleaves fibrinogen to soluble fibrin which is crosslinked with 

factor XIIIa to form the fibrin clot. During Hepatitis infection, the liver produces fibrinogen 

and fibrin resulting in their deposition and leading to clot formation [147]. This is confirmed 

by an increase of thrombin receptors on hepatic stellate cells [148, 149].

In conclusion, activation of the coagulation system during viral infections can occur as a 

result of direct endothelial cell damage or blood vessel damage. This ultimately leads to 

formation of a blood clot at the site of injury or formation of multiple thrombi and eventual 

depletion of blood clotting factors. Additionally, some viruses activate either the extrinsic 

pathway, intrinsic pathway or the common pathway. The result of activation of the 

coagulation cascade may increase or decrease coagulation factors depending on the viral 

infection.
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Abbreviations:

Adv5 (used for strains 5, 18, 31, and 21)
Adenovirus strain 5

C4BP
C4b binding protein

CR1 (used for 1, 2, 3 and 4)
Complement receptor 1

DIC
Disseminated intravascular coagulopathy

EEV
Extracellular enveloped virons

gC
Glycoprotein C

HBV
Hepatitis B virus

HCV
Hepatitis C virus

HSV
Herpes simplex virus

HVS
Herpesvirus saimiri

HIV
Human immunodeficiency virus

HCMV
Human cytomegalovirus

(HTLV-1)
Human T cell leukemia Type I virus

IBV
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Infectious bronchitis virus

PICES
Poxviral inhibitors of complement enzymes

IMV
Intracellular mature virons

(KSHV)
Kaposi’s sarcoma-associated herpesvirus

KCP
KSHV complement control protein

LCMV
Lymphocytic choriomeningitis virus

MBL
Mannose binding lectin

MAC
Membrane attack complex

MuV
Mumps virus

γHV68
Murine gammaherpesvirus 68

NAb
Natural antibody

NS1
Non-structural protein 1

PIV5
Parainfluenza virus-5

RSV
Respiratory syncytial virus

RRV
Rhesus rhadinovirus

TF
Tissue factor

VSV
Vesicular stomatitis virus
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Highlights

• Viruses inhibit complement activation by protease degradation of initiators.

• Viruses produce complement mimics or incorporate regulators into the virion 

to inhibit complement.

• Natural antibodies aid in viral clearance but viruses also inhibit natural 

antibody recognition

• Viruses may evade the coagulation pathway or even utilize it in pathogenesis.
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Figure 1: Complement and virus interactions.
Complement proteins of the three initiation and terminal pathways are indicated in ovals. 

Virus inhibition of specific complement proteins is indicated by shaded rectangles. MBL 

indicates Mannose Binding lectin, MASPs indicates MBL associated serine proteases, and 

MAC indicates membrane attack complex.
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Figure 2: Viruses utilize complement regulation to their advantage.
(A)Viruses sequester host complement regulatory molecules to incorporate them on the 

virion surface. (B) Viruses also upregulate expression of host complement regulatory 

molecules to avoid complement mediated cell lysis. (C) Viruses encode proteins that bind 

and modulate complement regulatory molecules or mimic regulator function inhibiting 

complement dependent cytolysis. (D) Host complement regulatory molecules may serve as 

cellular receptors for virus attachment.
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Figure 3. Roles of NAbs (IgM) during homeostasis and virus infection.
During homeostasis, NAbs bind to apoptotic cells for phagocytosis, prevent autoimmunity 

through the binding and clearance of damaged proteins such as double stranded DNA, and 

aid in the regulation of B-cells. During virus infection, NAbs neutralize viruses, activate the 

complement system, or recruit the virus to secondary lymphoid organs.
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Figure 4: Coagulation virus interactions.
Extrinsic, intrinsic and common pathways are indicated by shaded areas. Specific viruses are 

located next to the affected coagulation factor. The gray and white circular shapes represent 

inactive and active coagulation factors respectively.
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