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Abstract

Characterizing functional brain connectivity using resting functional magnetic resonance imaging 

(fMRI) is challenging due to the relatively small Blood-Oxygen-Level Dependent contrast and low 

signal-to-noise ratio. Denoising using surface-based Laplace-Beltrami (LB) or volumetric 

Gaussian filtering tends to blur boundaries between different functional areas. To overcome this 

issue, a time-based Non-Local Means (tNLM) filtering method was previously developed to 

denoise fMRI data while preserving spatial structure. The kernel and parameters that define the 

tNLM filter need to be optimized for each application. Here we present a novel Global PDF-based 

tNLM filtering (GPDF) algorithm that uses a data-driven kernel function based on a Bayes factor 

to optimize filtering for spatial delineation of functional connectivity in resting fMRI data. We 

demonstrate its performance relative to Gaussian spatial filtering and the original tNLM filtering 

via simulations. We also compare the effects of GPDF filtering against LB filtering using 

individual in-vivo resting fMRI datasets. Our results show that LB filtering tends to blur signals 

across boundaries between adjacent functional regions. In contrast, GPDF filtering enables 

improved noise reduction without blurring adjacent functional regions. These results indicate that 

GPDF may be a useful preprocessing tool for analyses of brain connectivity and network topology 

in individual fMRI recordings.
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1. Introduction

Functional MRI (fMRI) is a powerful in-vivo neuroimaging modality that allows us to 

indirectly infer information about the neuronal activity of the brain by measuring Blood-

Oxygen-Level Dependent (BOLD) signal fluctuations (Ogawa et al., 1990). Temporal 

correlations in resting fMRI (rfMRI) BOLD signals across multiple spatially distinct brain 

areas are often used to define functional brain networks (Smith et al., 2009). However, 

BOLD signals inherently have low signal-to-noise ratio (SNR). Preprocessing of fMRI data 

often includes a spatial smoothing step to reduce noise. Isotropic 3D Gaussian filtering is the 

most commonly used approach to smooth volumetric rfMRI data (Smith et al., 2013), or 

equivalently, Laplace Beltrami (LB) smoothing is applied when the data is mapped onto a 

2D representation of the cortical surface (Angenent, 1999). Both methods suffer from a 

critical common problem: they spatially mix signals along the borders between adjacent 

functional regions (Bhushan et al., 2016), limiting our ability to accurately identify 

connectivity at the micro-to-meso scale in individual fMRI recordings.

Non-local means (NLM) filtering is an edge-preserving method originally designed for 

natural image denoising (Buades et al., 2005) and more recently adapted for anatomical MRI 

(Manjon et al., 2008; Coupe et al., 2008), fMRI (Bernier et al., 2014) and diffusion MRI 

(Wiest-Daessle et al., 2008) to preserve spatial structure in imaging data. We recently 

developed a variant for filtering rfMRI data called temporal NLM (tNLM) that assigns non-

local smoothing kernel weights based on temporal similarities between time series rather 

than spatial similarities (Bhushan et al., 2016). We demonstrated tNLM filtering’s ability to 

reduce noise by using (weighted) averages of only those times series that are similar, thus 

minimizing blurring across functional boundaries.

Here we identify two key challenges in using tNLM filtering as described in Bhushan et al. 

(2016). First, the exponential kernel function used in computing the weights is chosen 

heuristically. The exponent is an affine function of the sample correlation between the two 

time-series. As we show below, this function does not perform well in terms of optimizing 

the trade-off between the application of large weights when the correlations are high and 

smaller (or near zero) weights for low correlations. A second issue is that almost all NLM-
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based filtering methods, including tNLM, have been applied over a restricted neighborhood 

around the point to be filtered, partially because of the high computational cost if they are 

applied globally. However, since networks span the entire brain, global rather than local 

filtering has the potential for improved results when filtering using tNLM. It has been 

suggested previously that the brain has the structure of a small-world network (Bullmore and 

Sporns, 2009) and therefore most “nodes” (or voxels) in the brain are not strongly correlated 

with each other. As a result, when filtering a particular node using data from the entire brain, 

the fraction of uncorrelated nodes is much larger than the portion of correlated nodes. This 

can result in an undue influence of uncorrelated nodes if the filter weights applied to these 

nodes are not sufficiently suppressed. We address each of these issues in the methods 

described below.

Here we propose Global PDF-based tNLM filtering (GPDF): a new kernel function for 

tNLM filtering of fMRI data based on the probability density function (PDF) of the 

correlation of the time series between pairs of voxels. This method enables us to perform 

global filtering with improved noise reduction while minimizing blurring of adjacent 

functional regions.

An outline and some preliminary results of the approach described here have been 

previously reported (Li et al., 2018). The current paper provides a more detailed description 

of the method and novel experimental results to demonstrate its performance.

2. Method

2.1. NLM-based Filtering and tNLM

Let’s assume the fMRI data are represented on a 2D tessellation of the mid-cortical surface 

with V vertices and T time samples for each vertex. Let s(i, t) be the time series at vertex i ∈ 
V and time t ∈ T. Let Si be the set of vertices that are used to compute the filtered signal at 

vertex i. In the tNLM method, Si contains vertex i and all its k-hop neighboring vertices, for 

some k > 0. Then tNLM filtering is defined as

s′ i, t = 1
j S i w i j j S i

s j t w i j (1)

where the weight w(i, j) is chosen to be a temporal similarity measure and defined as a 

function of the sample correlation (Bhushan et al., 2016):

w i, j = f r i, j ; ℎ (2)

ftNLM r; ℎ = exp − 2 1 − r
ℎ2 (3)

where r(i, j) is the Pearson correlation coefficient between vertices i and j and h is the 

parameter that controls the degree of filtering.

Li et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Global PDF-based tNLM Filtering

GPDF filtering differs from tNLM in the following two ways: (i) the spatial range over 

which the filtered signal is computed: in GPDF the set S i = S , ∀i, where S contains all 

vertices on the tessellated brain surface instead of just a local neighborhood; (ii) we use a 

different kernel function f in Equation (2).

2.2.1. GPDF Kernel Formulation—Let the observed signal be xi = si + ni at vertex i, a 

superposition of the true signal si and noise ni. Assume that si and ni are independent with 

si ∼ N 0, σsi
2  and ni ∼ N 0, σni

2 . Also assume some non-zero correlation between si and sj if i 

and j are within the same functional network (H1) and zero correlation if they are in different 

networks (H0). Then the correlation between two observed signals is:

ρij = E xixj
σxiσxj

= E SiSj

σsi
2 + σni

2 σsj
2 + σnj

2

=

0 , H0: E SiSj
σsiσsj

= 0

σsiσsjc

σsi
2 + σni

2 σsj
2 + σnj

2
, H1: E SiSj

σsiσsj
= c

(4)

where c ∈ [−1, 0) ∪ (0, 1] represents some non-zero correlation between true signals and 

σxi = σsi
2 + σni

2  represents the standard deviation (SD) of xi. If we let 

K = σsiσsj/ σsi
2 + σni

2 σsj
2 + σnj

2 ∈ 0, 1  be the SNR-dependent scalar in Equation (4) under 

H1, then ρij = Kc. Therefore, ρij → 0 when K → 0 (low SNR case) and ρij → c when K → 
1 (high SNR case). To further help avoid numerical issues and improve the robustness of the 

algorithm described below, we formulate our hypothesis in a slightly relaxed form:

ρij = E xixj
σxiσxj

∈
−δ, δ , H0

−1, − δ) ∪ (δ, 1 , H1
(5)

where δ is a small positive constant. The sample correlation distribution is given by the 

following (Fisher, 1915):

P r ρ; T = T − 2 Γ T − 1 1 − ρ2
T − 1

2 1 − r2
T − 4

2

2πΓ T − 1
2 1 − ρr T − 3

2

× F12 (1
2 , 1

2 , 2T − 1
2 , ρr + 1

2 )

(6)

where T is the number of samples and 2F1(a, b; c; z) is the Gaussian hypergeometric 

function. The parameter T will be omitted in the following derivation as for a given fMRI 

dataset, T is a fixed constant.

An example is shown in Fig. 1 where ρ = 0.2 under H1 (blue curve) and ρ = 0 under H0 (red 

curve). The histograms of the sample correlations are distributed about their means 
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according to Equation (6) due to the finite number of samples. This causes a significant 

overlap between the red and blue curves. There is therefore a range of nonzero correlation 

values over which it is difficult to distinguish H1 from H0 given an observed sample 

correlation r. But to perform well, tNLM should attach large weights only to those time 

series for which H1 is true.

In Fig. 1, we show the shape of the original tNLM kernel defined in Equation (3) as a 

function of h (dotted color curves). The figure shows that the kernel performs a poor job in 

differentiating H1 from H0 in the sense that applying significant weights for H1 also results 

in weights significantly greater than zero for H0. The black curve shows an alternative kernel 

that, visually at least, does a better job of giving significantly larger weights to H1 while 

minimizing those for H0. We now describe how we select this kernel and then evaluate its 

performance.

Bayes theorem tells us the posterior probability of ρ given r is

P ρ r = P r ρ P ρ
P r ρ P ρ dρ (7)

To better differentiate H1 from H0, we take the ratio between the integrated posterior 

probability under H1 and the counterpart under H0 (using the estimated priors described 

below), forming the Bayes factor (Kass and Raftery, 1995)

R r = ρ H1P r ρ PH1 ρ dρ
ρ H0P r ρ PH0 ρ dρ (8)

where R(r) ∈ [0, ∞). The larger R(r), the more likely ρ belongs to H1 given that sample 

correlation r. The constant δ, which separates H1 from H0 in Equation (5), was chosen such 

that the center area under the theoretical null hypothesis distribution is approximately 0.5, 

i.e., δ
δ P r ρ 0 T dr ≈ 0.5, for both the simulation and the real data experiments below.

We then reformulate our kernel function f to be

fGPDF r; ℎ = 1 − exp − R r
ℎ2 (9)

where, similar to the tNLM kernel in Equation (3), h is a parameter that controls the degree 

of smoothing. Replacing the sample correlation in Equation (3) with the Bayes factor in 

Equation (8) introduces the strong nonlinearity visible in the black curve in Fig. 1. This 

nonlinearity accounts for the fact that the posterior probability of H1 vs H0 can change 

rapidly as a function of r, as reflected in the Bayes factors.

2.2.2. Automated Parameter Selection—In addition to using a different kernel, we 

also propose an automated method for selecting the parameter h. An optimized parameter h 
for tNLM filtering is crucial because (i) the filtering effect is very sensitive to the selection 

of h as shown in Li and Leahy (2017); (ii) GPDF filtering uses a data-dependent kernel so 

that the parameters can vary substantially as different scanning protocols may have different 
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time series duration and physiological noise sensitivity. Let PH1 r = ρ H1P r ρ PH1 ρ dρ

be the marginal probability of r under H1 (using the estimated prior described below) and 

PH0(r) similarly defined under H0. To select the best parameter, we maximize the expected 

value of the weighting function fGPDF(r; h) with respect to PH1(r) while controlling the mean 

value with respect to PH0(r). Specifically,

ℎ = argmax
ℎ

E PH1 r fGPDF r; ℎ
s.t. E PH0 r fGPDF r; ℎ ≤ α (10)

where E PHi r fGPDF r; ℎ = fGPDF r; ℎ P Hi r dr, i = 0, 1 and α is the expected weight 

under H0, analogous to the false positive rate in detection theory. Although α is another 

parameter we need to tune manually, it is more meaningful and robust than h, because 

choosing the same α will generally yield similar filtering results across different datasets 

while the internal parameter h can have a very different impact as a function of the noise 

level, range of correlation values and size of the image being filtered. We recommend that α 
be set conservatively, e.g. 10−3 or smaller, due to the dominant fraction of uncorrelated 

vertices (H0) in an fMRI dataset.

2.2.3. Estimation of the Population Correlation Distribution—In order to 

construct the kernel function in Equation (9) we need to know the Bayes factor R(r) in 

Equation (8), which requires the conditional distribution P(r|ρ) and the population 

correlation distribution PHi(ρ), i = 0, 1. The sample correlation density P(r|ρ) has the 

analytical solution given in Equation (6). Therefore, we need only estimate PHi(ρ), i = 0, 1. 

According to Equation (5), we assume no overlap between PH1(ρ) and PH0(ρ), i.e., PH1(ρ) = 

0 for ρ ∈ [−δ, δ] and PH0(ρ) = 0 for ρ ∈ [−1, −δ) ∪ (δ, 1]. Let P(ρ) = PH1(ρ) + PH0(ρ) and 

P(r) be the empirical sample correlation distribution obtained from the fMRI data. Let 

P ′ r ∈ ℝM, P ′ r ρ ∈ ℝM × N and P ′ ρ ∈ ℝN be the discretized version of the 

corresponding variables in the continuous space, respectively. Then PH1(ρ) and PH0(ρ) can 

be jointly estimated using a linear regression with non-negativity constraints:

P ′ ρ = argmin
P ′ ρ

P ′ r −
ρ

P r ρ P ′ ρ
l2

2 , s.t. P ′ ρ ⪰ 0 (11)

This optimization is a well-posed problem as long as M ≥ N, i.e., the discretization step for r 
is smaller than that for ρ, which can be achieved easily. Our choice of step size of 0.001 for r 
and 0.01 for ρ results in stable estimates in all simulation and real data experiments below. 

Also, this problem can be solved efficiently using the fast non-negative least squares method 

(Bro and De Jong, 1997). Finally, P ′H0 ρ  and P ′H1 ρ  can be obtained as follows:

P ′H0 ρ = P ′ ρ , ρ ∈ −δ, δ
0, ρ ∈ −1 − δ) ∪ (δ, 1

P ′H1 ρ = 0, ρ ∈ −δ, δ
P ′ ρ , ρ ∈ −1 − δ) ∪ (δ, 1

(12)
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2.2.4. GPDF Filtering Algorithm—We summarize GPDF filtering algorithm as 

follows:

Algorithm I

GPDF filtering

1: Given fMRI data X ∈ ℝV × T , calculate the correlation matrix A = XXT ∈ ℝV × V

2: Estimate P′(r) from the histogram of the elements of A

3: Estimate the priors by solving Equation (11)

4: Compute the Bayes factor in Equation (8)

5: Optimize the parameter h by solving Equation (10)

6: Construct the kernel using Equation (9)

7: Finally filter the signal using Equation (1)

Note that although the GPDF algorithm is presented and derived using data represented on a 

2D tessellated surface, it can be generalized to any time series data, such as 3D volumetric 

fMRI data or a mix of surface and volumetric data (e.g. the grayordinate representations 

used in the Human Connectome Project (HCP) (Van Essen et al., 2013) dataset).

3. Experiments and Results

3.1. Simulation

We simulated a “brain surface” tessellation as two 2D blocks of size V × V (V = 32) 

representing left and right hemispheres. Each point in each block represents a vertex on the 

brain surface and has a label indicating which network it belongs to. Figure 2 (a) shows the 

ground truth label blocks where each color represents a distinct network. The top and bottom 

rows have identical labels to simulate connections between the left and right hemispheres (in 

total K = 16 unique labels). For each label, we generated a random time series (white noise) 

of length T = 200 where points within the same labels were given identical time series 

(perfectly correlated) in the absence of additional noise. Points with different labels were 

given time series with zero correlation indicating that they belong to different networks. We 

then added Gaussian white noise with SNR = 0.4 to the entire dataset.

To investigate the effects of different filtering methods, we applied filtering to the simulated 

data then parcellated the data into K labels using the Normalized Cuts (NCuts) algorithm 

(Shi and Malik, 2000). A stable matching algorithm (Gale and Shapley, 2013) was applied to 

match labels between different results for easy comparison. Figure 2 (a) shows the 

parcellation results for: Gaussian filtering with full-width-half-maximum (FWHM) 

approximately 8 points (column 2); tNLM filtering with optimized h parameter (Li and 

Leahy, 2017) (column 3 and 4); local and global PDF filtering (column 5 and 6). To 

demonstrate the difference between local filtering and global filtering, we applied the tNLM 

filtering and PDF filtering both locally (column 3 and 5) and globally (column 4 and 6). 

Local filtering processed left and right hemispheres separately while global filtering 

processed them jointly.
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Gaussian spatial filtering generated labels along the boundaries between true labels not seen 

in the ground truth. This is most likely due to blurring of uncorrelated but neighboring 

vertices. In contrast, tNLM and both local and global PDF filtering methods preserved the 

blocky structures. However, both PDF methods yielded much cleaner results than tNLM 

because tNLM has a larger contribution from the uncorrelated vertices at each filtered point 

as discussed above. Note that for both PDF methods and tNLM the parameter h had been 

optimized, in the latter case using Li and Leahy (2017), to achieve the best trade-off. Finally, 

for both tNLM and PDF, local filtering resulted in labels that were mismatched between the 

left and right hemispheres. The myopic perspective of local filtering failed to detect the 

distal, especially inter-hemispheric, connections. In contrast, GPDF was able to correctly 

identify inter-hemispheric connections and label appropriately.

Quantitatively, we ran this simulation for 100 Monte Carlo trials and calculated the Adjusted 

Rand Index (ARI) (Rand, 1971) between each parcellation result and the ground truth as a 

filtering performance measure. The medians of the ARIs were 0.547, 0.701, 0.760, 0.750, 

and 0.969 respectively in correspondence to each filtering method in Fig. 2 (a) column 2 – 6, 

indicating that GPDF outperformed other filtering methods by a significant margin.

Furthermore, GPDF not only produced the best clustering results among all filtering 

methods, but also correctly estimated the population correlation from the data. Figure 2 (b) 

shows the estimated distribution of the prior population correlation P (ρ) using Equation (11) 

under this perfect within-block correlation setting. The results show that the estimated prior 

P (ρ), that contains the union of PH0(ρ) and PH1(ρ) as described above, has a bimodel 

distribution with two peaks, one at zero (corresponding to the zero between-block 

correlations) and another at 0.29 (corresponding to the non-zero within-block correlations), 

which matches very well with the simulated priors (c = 1 and ρ = 0.284 under H1 in 

Equation (4)).

Similar phenomena can be observed when nodes are partially correlated (c < 1 in Equation 

(4)) within each block without the presence of additional noise. The results for partial 

correlation c = 0.25, 0.5 and 0.75 with the same T = 200 and SNR = 0.4 are shown in the 

supplementary materials.

To investigate the robustness of GPDF over a variety of simulated settings, we evaluated the 

ARI between the parcellation result of filtered data (Gaussian, global tNLM and GPDF) and 

the ground truth as a function of the time-series length T as well as SNR. For each simulated 

dataset, we ran 100 Monte Carlo trials and boxplots were generated for each filtering 

method. Figure 3 shows the result of ARI as a function of T in (a) and SNR in (b).

The performance of Gaussian filtering does not improve when T increases as the Gaussian 

filter applies a pure spatial kernel to data without using the temporal information between 

time series. In contrast, both the tNLM and GPDF filter show improved performance as T 
increases, but GPDF outperforms tNLM over the entire range of T.

When SNR varies with fixed T = 100, the ARI for the Gaussian filtered case increases but 

the performance is limited by the inevitable blurring effects across boundaries of different 

functional areas. Whereas, similar to (a), both tNLM and GPDF yield better parcellation 
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results as SNR increases and higher ARI is obtained using GPDF-filtered data compared to 

tNLM.

3.2. Application to In-vivo Resting fMRI Dataset

3.2.1. Dataset and Filtering—40 subjects with minimally preprocessed rfMRI datasets 

(2 sessions, 2 phase encodings; 160 sessions total) were obtained from HCP (Van Essen et 

al., 2013). The data were acquired with TR = 720 ms with resolution 2 × 2 × 2 mm and had 

been preprocessed using the pipeline described in Glasser et al. (2013), where only minimal 

(2 mm FWHM) Gaussian smoothing was applied. Then the data were co-registered onto a 

common atlas and downsampled onto a 32K-vertex cortical surface. We further 

downsampled each data to 11K vertices for computational tractability.

We then filtered each dataset using Laplace-Beltrami (LB) smoothing with a range of values 

of smoothing parameter σ (the SD of the Gaussian kernel), tNLM with a range of values of 

the parameter h defined in Equation (3) and GPDF with a range of values of the parameter α 
defined in Equation (10). The effective δ in Equation (5) was chosen to be approximately 

0.02 as described in Section 2.2.1. We performed three experiments: (i) exploration of 

correlation, community structure and modularity; (ii) seeded correlation; and (iii) 

comparison with task fMRI. In each case we compared GPDF with LB and tNLM both 

qualitatively and quantitatively. In the first experiment, we demonstrate the effect of filtering 

parameters (σ ∈ {1, 2, 3, 4, 5} mm, h ∈ {0.2, 0.4, 0.6, 0.8, 1} and α ∈ {10−1, 10−2, 10−3, 

10−4, 10−5} in Section 3.2.2. For the other two experiments, we chose h = 0.4 for the tNLM 

method and α = 10−4 for the GPDF method, the optimal parameters from the first 

experiment. We chose σ = 3 mm for the LB method to avoid poor performance resulting 

from either under or over smoothing.

3.2.2. Unfiltered Correlation Matrix, Community Structure and Modularity—
Modularity is a measure of community structure that can be used to identify sub-networks 

from brain connectivity data (Sporns and Betzel, 2016). Community structure can be directly 

visualized using the re-ordered connectivity matrix (equivalently, the correlation or 

association matrix) based on module detection or parcellation results. (See for example Fig. 

2 (i) in Sporns and Betzel (2016)).

We use the same concept here to demonstrate the effect of filtering. For each dataset we took 

the unfiltered data and computed the full Pearson correlation matrix, A ∈ ℝV × V , as the 

underlying graph structure. We then applied the NCuts algorithm (Shi and Malik, 2000) to 

parcellate the brain into K networks using each of the following: the unfiltered data, the LB-

filtered data, the tNLM-filtered data and the GPDF-filtered data, generating parcellation 

labels for each of the four. We then used those labels to re-order the original connectivity 

matrix A so that vertices that have the same label are grouped together.

Figure 4 (a) – (d) show the re-ordered unfiltered connectivity matrix A based on the 

parcellation result (K = 7) using the unfiltered data, the LB-filtered data, the tNLM-filtered 

data and the GPDF-filtered data, respectively. Using the same (reordered) unfiltered 

connectivity matrix A establishes an unbiased comparison of the four partitions. The 

resulting re-ordered connectivity matrix indicates how well each filtering method grouped 
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the data into functionally homogeneous regions with respect to the original (unfiltered) data. 

In essence, we assume that a better filtering method will give us a better clustering of nodes 

under a given parcellation algorithm: nodes with the same label (within the same network) 

tend to have higher as well as consistent correlations with each other than with nodes in 

other networks (diagonal blocks) and tend to have consistent correlation (can be either 

positive, zero or negative) with nodes in other networks (off-diagonal blocks). The GPDF 

result in Fig. 4 (d) shows a neat grouping of nodes forming a clearer blocky community 

structure and higher correlation in the diagonal blocks than all other cases shown in (a) - (c).

To quantitatively verify this observation, for each of the off-diagonal blocks in each fMRI 

recording session, we computed the SD of the correlation values within that block, yielding 

a K × K compressed SD map. Then we calculated the median SD over the 160 fMRI 

sessions. Figure 4 (e) – (h) show the median SD map for the unfiltered, the LB-filtered, the 

tNLM-filtered and the GPDF-filtered case, respectively, for K = 7. The GPDF result shows 

substantial lower SD in the off-diagonal blocks, indicating higher consistency among the 

nodes in one network with respect to the relationship to other networks. We observed similar 

phenomena for other values of K.

To further evaluate filtering performance and its robustness for a range of number of parcels 

K, for each unfiltered correlation matrix A, we binarized it with a threshold T to form a 

binary adjacency matrix A′. We then calculated the modularity (Newman, 2006) for A′ 
using each of the four K-network partitions (unfiltered, LB, tNLM, GPDF) as a function of 

T. The analyses were performed on each dataset independently. Figure 5 (a) shows the 

median modularity with standard error across 160 sessions as a function of T. The GPDF 

filtering method outperformed LB, tNLM and the unfiltered case regardless of the threshold 

T and the number of parcels, indicating that GPDF is producing parcellations with stronger 

within network similarity with respect to the unfiltered data than either the unfiltered case or 

tNLM or LB filtering.

Additionally, we investigated how the filtering parameters σ for LB, h for tNLM and α for 

GPDF influenced the filtering result. We computed the modularity as described above while 

varying σ ∈ {1, 2, 3, 4, 5} mm, h ∈ {0.2, 0.4, 0.6, 0.8, 1} and α ∈ {10−1, 10−2, 10−3, 10−4, 

10−5} with fixed number of parcels K = 17. This number was selected for parcellation 

stability as suggested in Yeo et al. (2011). Figure 5 (b) shows the modularity as a function of 

T for each filtering parameter. Similar standard errors were observed as Fig. 5 (a) but were 

omitted here for clarity of the plot. For LB filtering, smaller σ yields similar results to the 

unfiltered case. Performance deteriorates as σ increases due to the increasing amount of 

blurring and mixing of signals across different functional regions. In general, LB filtering 

actually performs worse than the unfiltered case, regardless of the filtering parameter, when 

performing individual parcellations, suggesting that LB may not optimally preserve 

differences between individuals based on a single fMRI recording. For the tNLM method, 

slightly higher modularity than the unfiltered case was achieved for an optimal value of 

parameter h but performance then degrades significantly as h increases. In contrast, GPDF 

outperforms the unfiltered case, LB and tNLM, for most parameter settings except for large 

α with high T. This is because larger α allows a significant fraction of uncorrelated nodes to 

be involved in the filtered signal, resulting in worse performance as discussed in the 
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introduction. We found α = 10−4 gives the best result in this experiment, which is the basis 

of our recommendation for a conservative α in the GPDF filtering method as described in 

Section 2.2.2.

3.2.3. Seeded Correlation Maps—Seed-based methods have been widely used in 

fMRI data analysis and brain network inference (Biswal et al., 1995; Di Martino et al., 2008; 

Taylor et al., 2009; Uddin et al., 2009). To evaluate the effects of filtering, we placed a seed 

point in the caudal pre-cuneus which is part of the Default Mode Network (DMN) (Fig. 6 

(a)) and calculated the Pearson correlation of its time series with those of all other vertices of 

the brain, to form a correlation map.

Figure 6 shows seed-point correlation maps for a single subject for the (a) unfiltered data; 

(b) LB-filtered data; (c) tNLM-filtered data and (d) GPDF-filtered data in a common scale 

ranging from −0.2 to 1. DMN can be seen in the unfiltered correlation map (a) but in the 

very low correlation range due to the rfMRI’s inherent low SNR. Figure 6 (e) exaggerates 

the color scale of unfiltered data for easy visualization of the correlation structure. LB, 

tNLM and GPDF, in contrast, yield higher correlations due to their ability to reduce noise 

and amplify signal. However, GPDF exhibits a wider range of correlation values than LB 

and tNLM.

Additionally, GPDF appears better able to preserves spatial delineation of adjacent regions 

with opposite correlation polarity relative to the seed point, for example two adjacent regions 

are indicated by the arrows in Fig. 6. Boundaries are clearly visible in both the unfiltered 

data (exaggerated in (e)) and GPDF, barely visible in tNLM but not in LB. These 

observations are indicative of LB’s tendency to spatially blur the boundaries between 

distinct adjacent functional areas.

LB shows strong connections to the local points surrounding the seed point while 

connections to distal areas, especially inter-hemispherical connections, are attenuated due to 

the localness of the filtering. This attenuation does not occur in GPDF as strong correlations 

are preserved across distal and inter-hemispheric regions of the DMN. GPDF therefore 

appears to help reveal stronger intra-network connectivity than the LB filtering method.

We also selected points that are highly correlated with the seed point and explored how those 

correlations were altered by filtering. A point was defined as being highly correlated with 

the seed point if its value in Fig. 6 (a) lay in either of the two tails of the null distribution 

H0 : P(r|ρ = 0, T = 1200) (overlaid in Fig. 7 (b), (c) and (d) with 10−6 significance level (the 

corresponding cut-off is 0.133)).

Figure 7 (a) shows the spatial locations in yellow of those points highly correlated with the 

seed. Figure 7 (b), (c) and (d) show the scatter plot between the unfiltered correlation (values 

of those points in Fig. 6 (a)) and the filtered correlation (values of those points in Fig. 6 (b), 

(c) and (d)) for LB, tNLM and GPDF, respectively. Both tNLM and GPDF amplify the 

positive correlation values but retain the sign of the correlation, Fig. 7 (c) and (d). This is 

expected since the non-local means kernel was designed to average only similar signals. The 

amplification effect is larger in the GPDF case due to the design of the shape of the kernel 
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function. On the other hand, while LB also amplifies the correlation values, after filtering the 

signs of a substantial fraction of these correlation values have been flipped from negative to 

positive, Fig. 7 (b). This is caused by the blurring of signals across functional boundaries, 

indicating a potential confound when interpreting results from LB-filtered individual fMRI 

signals.

Similar results for other well known but less prominent networks, such as the motor 

network, the auditory network, the executive control network, the salience network, the 

frontoparietal attentional control network and the language network, are shown in the 

supplementary materials. Note that the seeded correlation maps may not show the desired 

networks exclusively due to overlap with other networks.

3.2.4. Parcellation Agreement with Task fMRI Activation Maps—Parcellation of 

rfMRI data is used to elucidate underlying spatial patterns in brain connectivity. However, 

the lack of an available ground truth makes it difficult to interpret parcellation results, 

especially when comparing different filtering methods. We tried to address this difficulty by 

comparing rfMRI parcellation results obtained from different filtering methods to the 

localized task-based fMRI (tfMRI) results for each individual rfMRI session.

Task fMRI datasets were also available and obtained from HCP for the same 40 subjects and 

they contained 7 major task domains: motor strip mapping (Motor), language processing 

(Language), emotion processing (Emotion), reward & decision-making (Gambling), 

relational processing (Relational), social cognition (Social) and working memory (WM). We 

used the preprocessed (4 mm Gaussian smoothed) and analyzed tfMRI z-score statistical 

maps from HCP, including a total of 15 task-pair as described in detail in Barch et al. (2013): 

tongue vs average (t_avg), left hand vs average (lh_avg), right hand vs average (rh_avg), left 

foot vs average (lf_avg) and right foot vs average (rf_avg) from the Motor task; math vs 

story (math_story) from the Language task; faces vs shapes (faces_shapes) from the 

Emotion task; punish vs reward (punish_reward) from the Gambling task; object matching 

vs geometrical relationship (match_rel) from the Relational task; random movement vs 

intentional movement (random_tom) from the Social task; 0-back vs 2-back (0bk_2bk), face 

vs average (face_avg), place vs average (place_avg), tool vs average (tool_avg), body vs 

average (body_avg) from the WM task.

To evaluate the performance of different filtering methods, for each individual fMRI session, 

we first parcellated the brain (rfMRI data) into K parcels using a spatially constrained 

hierarchical parcellation approach (Blumensath et al., 2013) for each of the filtering methods 

(unfiltered, LB, tNLM and GPDF). This “region growing”-based parcellation method is 

particularly appropriate for this tfMRI comparison purpose as it was designed to robustly 

parcellate the entire human cerebral cortex on a single subject basis. It also enforces spatial 

contiguity of the parcels, which allows us to obtain a reasonable parcellation result from 

unfiltered data (see Blumensath et al. (2013) for details).

Qualitatively, Fig. 8 shows the maps of the parcel boundaries for K = 100 parcels overlaid on 

the z-score maps of the Motor task t_avg contrast in (a) - (d) and Emotional task 

faces_shapes contrast in (e) - (h) for a single session of subject 100307. Figure 8 illustrates 
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improved consistency of the parcellation boundaries with different functional regions (e.g., 

the tongue area and the fusiform face area) using GPDF filtering relative to the unfiltered 

case. In contrast, in the LB-filtered case, either some boundaries cross task-active areas or 

some parcels contain both task-positive and task-negative regions.

To quantitatively measure performance for a certain task pair we first converted the z score 

map into a p-value map and thresholded the p-value map using Benjamini-Hochberg false 

discovery rate (Benjamini and Hochberg, 1995) correction with a q value of 0.05 to 

determine the activated vertices. Then in each parcel we counted the number of activated 

vertices and the counts from all parcels were sorted in a descending order and normalized to 

have unit sum, forming a positively skewed distribution. The larger the skewness, the higher 

concentration of the activated vertices into fewer parcels, hence the better alignment of the 

functional boundaries to the task-positive regions. We measured this skewness metric for all 

15 task contrasts and all 160 individual fMRI sessions with different number of parcels K. 

Since there is no ground truth of the correct K that should be used for the parcellation, we 

selected K = K′ as the value that yielded the largest skewness in the unfiltered case for each 

task and each session independently (K′ varies substantially across different tasks and 

different sessions) and compared the skewness using the same K′ in all four cases 

(unfiltered, LB, tNLM and GPDF).

Figure 9 shows boxplots of skewness across 160 fMRI sessions for each task pair. The 

skewness of GPDF are consistently higher than the unfiltered, the LB-filtered as well as the 

tNLM-filtered case for all 15 task pairs, despite the fact that they vary from task to task.

We also applied a Wilcoxon signed-rank test to determine if there was a significant 

improvement in skewness by filtering. The statistical results confirmed our visual 

observation and showed that GPDF filtering yields significantly higher skewness when 

compared with the unfiltered, the LB-filtered, and the tNLM-filtered case in all 15 task pairs. 

The median p-value across all 15 task pairs is 8.90 × 10−15, 2.69 × 10−28 and 1.12 × 10−13 

for the three comparison, respectively. The details of the test statistics and the associated p-

values are given in the supplementary materials.

3.2.5. Computational Tractability—The time computational complexity is O(V2T), 

where V is the number of vertices/voxels and T is the number of time points. At the first 

stage of the GPDF algorithm when the kernel function and parameter is estimated, the entire 

correlation matrix is required to compute the histogram. The high computational burden can 

be significantly reduced by downsampling the data to a lower spatial resolution. Based on 

our experiments, the estimated kernel function and the parameter using the 11K data is 

almost identical to that using full resolution data.

At the second stage when we filter the data, however, no downsampling is needed and the 

computation can be performed in a vertex-wise manner at the whole brain level. We have 

implemented a block-wise filtering procedure where the vertices were divided into blocks 

and the filtering was performed iteratively over all blocks. The number of blocks was 

dynamically determined based on the memory available in the computer. This block-wise 

filtering achieves an effective trade-off between available memory and computation time. 
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This implementation has been released for research purposes (see https://

silencer1127.github.io/software/GPDF/gpdf_main). Based on our experiments, filtering a 

full resolution 96K HCP resting fMRI dataset (32K for left hemisphere + 32K right 

hemisphere + 32K sub-cortical voxels) takes approximately 7 minutes on a Dell desktop 

computer with an Intel Xeon E5-1650 v2 @ 3.50 GHz CPU and 16 GB RAM.

Since the filtering can be performance in vertex-wise manner, one may benefit from a 

customized GPU implementation to further accelerate the filtering procedure.

4. Discussion

In this paper, we systematically developed a novel kernel function based on the Bayes factor 

for global tNLM filtering. We also provided a way to automatically tune the parameter in 

order to achieve an optimal filtering result. We demonstrated both qualitatively and 

quantitatively using simulations as well as three experiments on in-vivo fMRI data that this 

method can simultaneously perform denoising that better preserves boundaries between 

regions of different functional specializations than standard linear filtering method.

The superior performance of GPDF filtering over the traditional linear filtering comes from 

the non-linearity of the kernel function visible as the black curve in Fig. 1. This effect can 

perhaps be most clearly seen in Fig. 8, where we evaluate how well task-activated regions 

are confined to parcels identified from individual resting data, with and without filtering. We 

note that linear (LB) filtering shows poorer performance than with unfiltered data. We 

believe this is because linear filtering inevitably produces blurring which can lead to 

misplacement of functional boundaries, or even generation of spurious functional regions 

along boundaries, as illustrated in Fig. 2. We show results in Fig. 8 for only one value of the 

LB smoothing parameter (σ = 3 mm). Performance could be improved by reducing σ, but 

with the limiting case of no filtering (σ = 0 mm) producing the best performance. We also 

note that the surface-based LB filtering used in our comparison is generally preferred over 

volumetric Gaussian filtering (Jo et al., 2007; Coalson et al., 2018) as volumetric filtering 

has partial volume effects in addition to the problem of spatial mixing of signals across 

different functional regions as discussed above. The performance of tNLM is variable in Fig. 

8, outperforming the case for unfiltered data in some cases but not all. In contrast GPDF 

consistently shows significantly better performance compared to all methods. Note that the 

design of the kernel uses a data-driven approach, which can be different for different 

datasets. Therefore, it may be particularly useful when inferring brain connectivity patterns 

from individual fMRI recordings instead of a group analysis.

In some limiting cases, the kernel function may have a very sharp transition from zero 

weight to unit weight, forming a nearly binary kernel function, where vertices whose 

correlation exceed the threshold will be averaged together. However, even in this case it can 

be viewed as a valid filtering method rather than a parcellation method since each vertex has 

a distinct correlation pattern to all other vertices of the brain, thus the set of vertices over 

which the time series are averaged together can vary from vertex to vertex. Based on our 

experience, in most cases the kernel function exhibits a smoother non-linear transition rather 

than a binary thresholding.
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One limitation of our approach is that the parametric model in Equation (6) for the 

distribution of the sample correlation assumes samples are independent over time. In 

practice, resting fMRI exhibit strong correlations which can result in higher variance than 

that predicted with this model (James et al., 2019; Afyouni et al., 2019). This will result in 

higher weights being applied to nodes with low correlation than would be the case if time 

samples were independent. A more conservative (smaller) choice of the α parameter can be 

used to offset this effect using the method as described here. An alternative approach that we 

have not pursued, is to explore alternatives to Equation (6) that account for correlation in the 

samples.

Another limitation is that the kernel function is estimated based on the empirical correlation 

using the entire time-series, which implicitly assume the stationarity of the fMRI signals. 

Extensions of this method to performing temporally dynamic filtering is a promising future 

direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Temporal non-local means filtering improves SNR but preserves functional 

boundaries

• GPDF filtering with optimized kernel and parameter is crucial for optimal 

results

• Individual parcellation results are substantially improved after GPDF filtering
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Figure 1: 
Histograms of the correlations under H1 (blue) and H0 (red) generated from simulated data 

overlaid with tNLM kernel functions for different parameter h (dotted) and GPDF kernel 

function with optimized parameter h (black solid).
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Figure 2: 
(a) Parcellation result of simulated data represented as a V × V matrix for each method and 

each hemisphere. The columns represent different filtering methods indicated by their titles 

along upper row. The rows represent the two hemispheres; (b) The estimated prior 

distribution of the population correlation P (ρ) under perfect within-block correlation setting 

(c = 1 and ρ = 0.284 in Equation (4)).
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Figure 3: 
Robustness comparison of results using Gaussian filter, global tNLM filter with optimized 

parameter and GPDF. (a) ARI between parcellation result of filtered data and the ground 

truth as a function of time series length T with fixed SNR = 0.3; ARI between parcellation 

result of filtered data and the ground truth as a function of SNR with fixed T = 100
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Figure 4: 
Re-ordered unfiltered full correlation matrices based on the parcellation result using (a) the 

unfiltered data, (b) LB-filtered data, (c) tNLM-filtered data and (d) GPDF-filtered data for K 
= 7. (e) - (h) shows the corresponding block-wise median SD map over 160 sessions for (a) - 

(d).
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Figure 5: 
Network modularity plots. (a) The modularity as a function of the threshold T for different K 
and filtering methods with fixed filtering parameter σ = 3 mm, h = 0.4, and α = 10−4. The 

vertical bars represent the standard errors. The data points have been jittered slightly along 

the x-axis for a better visualization; (b) The modularity as a function of the threshold T for 

different filtering method and parameters with fixed K = 17.
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Figure 6: 
Seeded correlation map for a single subject for (a) Unfiltered data; (b) LB-filtered (σ = 3 

mm) data; (c) tNLM-filtered (h = 0.4) data; (d) GPDF-filtered (α = 10−4) data plotted in a 

common scale from −0.2 to 1 with the color bar shown on the top right. (e) Unfiltered data 

re-plotted in its own narrow scale with color bar shown on the bottom right. Seed point was 

selected in the caudal pre-cuneus area shown as a black dot in (a). Positively correlated 

regions are shown in red, uncorrelated regions in white and negatively correlated regions in 

blue.
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Figure 7: 
Changes of the seeded correlation values after filtering. (a) Spatial map of the highly 

correlated vertices to the seed point in the unfiltered data; (b) Scatter plot of the unfiltered 

correlation values of those vertices in (a) versus the LB-filtered correlation values overlaid 

with the null distribution P(r|ρ = 0) for T = 1200; (c) Similar to (b) but for the tNLM-filtered 

case; (d) Similar to (b) but for the GPDF-filtered case.
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Figure 8: 
Maps of parcel boundaries overlaid with motor task tongue vs average contrast (a) - (d) and 

emotional task faces vs shapes (e) - (h) for a single session of subject 100307 using the 

unfiltered data ((a) and (e)), the LB-filtered (σ = 3 mm) data ((b) and (f)), the tNLM-filtered 

(h = 0.4) data ((c) and (g)) and the GPDF-filtered (α = 10−4) data ((d) and (h)). (Number of 

parcels K = 100)
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Figure 9: 
Boxplots of the skewness over 160 fMRI sessions for all 15 task pairs. Each column shows 

the boxplot for one particular task using the unfiltered data (far left), the LB-filtered data 

(middle left), the tNLM-filtered data (middle right) and the GPDF-filtered data (far right).
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