Skip to main content
Springer logoLink to Springer
. 2020 Mar 4;30(1):23–49. doi: 10.1007/s00572-020-00938-y

The distribution and evolution of fungal symbioses in ancient lineages of land plants

William R Rimington 1,2,3, Jeffrey G Duckett 2, Katie J Field 4, Martin I Bidartondo 1,3, Silvia Pressel 2,
PMCID: PMC7062687  PMID: 32130512

Abstract

An accurate understanding of the diversity and distribution of fungal symbioses in land plants is essential for mycorrhizal research. Here we update the seminal work of Wang and Qiu (Mycorrhiza 16:299-363, 2006) with a long-overdue focus on early-diverging land plant lineages, which were considerably under-represented in their survey, by examining the published literature to compile data on the status of fungal symbioses in liverworts, hornworts and lycophytes. Our survey combines data from 84 publications, including recent, post-2006, reports of Mucoromycotina associations in these lineages, to produce a list of at least 591 species with known fungal symbiosis status, 180 of which were included in Wang and Qiu (Mycorrhiza 16:299-363, 2006). Using this up-to-date compilation, we estimate that fewer than 30% of liverwort species engage in symbiosis with fungi belonging to all three mycorrhizal phyla, Mucoromycota, Basidiomycota and Ascomycota, with the last being the most widespread (17%). Fungal symbioses in hornworts (78%) and lycophytes (up to 100%) appear to be more common but involve only members of the two Mucoromycota subphyla Mucoromycotina and Glomeromycotina, with Glomeromycotina prevailing in both plant groups. Our fungal symbiosis occurrence estimates are considerably more conservative than those published previously, but they too may represent overestimates due to currently unavoidable assumptions.

Electronic supplementary material

The online version of this article (10.1007/s00572-020-00938-y) contains supplementary material, which is available to authorized users.

Keywords: Arbuscular mycorrhizas, Ericoid mycorrhizas, Mucoromycota, Hornworts, Liverworts, Lycophytes

Introduction

Fungi colonize plants and interact with their living tissues in a variety of ways; these interactions can be detrimental (parasitic), neutral (symptomless) or beneficial (mutualistic) to the host plant. More than 85% of vascular plant species are considered to form mutually beneficial symbioses in their roots, termed mycorrhizas, with soil fungi (Brundrett and Tedersoo 2018). This percentage is only an estimate because investigating every plant species is neither practical nor currently possible given that not all species are known and ca. 2000 new vascular plants species are described each year (Pimm and Raven 2017). For the most part, fungal symbiosis occurrence rate estimates are lacking for early-diverging plant lineages as little effort has been directed towards compiling the data required to allow these estimations to be made. This also reflects an overall paucity of data available on these groups, including information on the type of interaction formed, i.e. whether the interaction is mycorrhizal or mycorrhizal-like in plants such as liverworts and hornworts that lack true roots. However, in the last decade, there has been an increased research focus on the diversity and distribution of fungal associations in liverworts, hornworts and lycophytes, largely driven by the discovery of Mucoromycotina fungi in association with these plants (Bidartondo et al. 2011; Desirò et al. 2013; Rimington et al. 2015) and the demonstration that at least some of these associations are mycorrhizal or mycorrhizal-like—i.e. those between lycophytes and Mucoromycotina (Hoysted et al. 2019); between liverworts and Glomeromycotina (Field et al. 2012), Mucoromycotina (Field et al. 2015) and Glomeromycotina and Mucoromycotina together (Field et al. 2016b); and between liverworts and Ascomycota (Kowal et al. 2018). We address this lacuna by compiling published fungal symbiosis status for these early-diverging plant lineages with the caveat that some of the reported symbioses, e.g. those in hornworts, are considered such on the basis of morphology and/or involvement of fungi known to be mycorrhizal with other plant lineages but are yet to be confirmed experimentally. A comprehensive list of which plant species enter into fungal symbioses and with which fungi not only serves as a useful resource for future studies but also provides insight into the origins and distribution of these relationships and how they evolved across plant lineages (Wang and Qiu 2006). This is particularly pertinent today as recent studies are finally providing much improved resolution on the phylogenetic relationships among the earliest-diverging bryophytes (liverworts, mosses and hornworts) and vascular plants, which have been contested for decades (e.g. Puttick et al. 2018; de Sousa et al. 2019). Within bryophytes, mosses are the only group not known to harbour symbiotic fungi in their living cells (Pressel et al. 2010). On the other hand, liverworts engage in remarkably diverse symbioses with Mucoromycotina, Glomeromycotina, Ascomycota or Basidiomycota fungi (Pressel et al. 2010; Bidartondo et al. 2011). Hornworts appear intermediate between liverworts and mosses by forming associations with Mucoromycotina and Glomeromycotina but not with members of the Dikarya (Desirò et al. 2013). Both liverworts and hornworts can also be fungus-free (non-symbiotic). Liverworts have undergone a number of gains and losses of symbiosis during their evolution; the early-diverging groups Haplomitriopsida, Marchantiopsida and Pelliidae are symbiotic with Mucoromycotina and/or Glomeromycotina (Rimington et al. 2019) while more derived lineages associate with Basidiomycota (Metzgeriidae, Jungermanniidae) and Ascomycota (Jungermanniidae) (Pressel et al. 2010). Ascomycota and Basidiomycota are both members of the subkingdom Dikarya, the latest diverging fungal lineage (Hibbett et al. 2007). Molecular analysis has indicated that the Basidiomycota symbionts of liverworts are members of the genera Serendipita (Sebacina) and Tulasnella (Bidartondo and Duckett 2010), while Ascomycota symbioses are formed by Hyaloscypha (Pezoloma or Rhizoscyphus) ericae (Upson et al. 2007; Fehrer et al. 2019).

Hornworts and some liverworts also form endosymbioses with cyanobacteria (Nostoc sp.) (Adams and Duggan 2008). In hornworts, these associations are ubiquitous (Renzaglia et al. 2007), while in liverworts, they occur only in two Marchantiopsida species that lack fungal symbionts, Blasia pusilla and Cavicularia densa (Rikkinen and Virtanen 2008). Associations with cyanobacteria have also been reported in some moss species; however, these are exclusively epiphytic or endophytic in the dead hyaline cells in Sphagnum leaves (Kostka et al. 2016; Warshan et al. 2017).

Recently, it has been shown that lycophytes also form associations with Mucoromycotina and Glomeromycotina fungi (Rimington et al. 2015), with emerging evidence of carbon-for-nutrient exchanges between these early-diverging vascular plants and their Mucoromycotina symbionts (Hoysted et al. 2019). A better understanding of fungal associations in lycophytes is important when considering the early evolution of land plant-fungus symbiosis. Lycophytes, which comprise ca. 1360 species (Hassler and Schmitt 2018), are the earliest branching lineage of vascular plants (tracheophytes) and represent the transition from non-vascular to seed plants (Kenrick and Crane 1997). They are of particular importance because putative transitional ‘pre-vascular’ plants, including Rhynie Chert fossils such as Aglaophyton, are all extinct (Remy et al. 1994). As such, extant lycophytes are considered the best modern analogues for the first vascular plants (Kenrick and Crane 1997).

Lists detailing the fungal symbiosis status of plants have been published for many years; for example, the first list of fungal symbiosis in liverworts was produced 70 years ago (Stahl 1949). Such lists require regular updating as the number of studies increases and so does our knowledge of the diversity of symbioses within and across plant clades. Earlier compilations usually focused on a local scale and only on certain, almost invariably vascular, plant groups (Harley and Harley 1987). It was not until 2006 that a worldwide literature survey of fungal symbioses across all land plant groups was performed (Wang and Qiu 2006). This landmark publication by Wang and Qiu (2006) captured the status of over 3000 species (143 of which were bryophytes) and, unsurprisingly, has been highly influential ever since. In the 13 years since its publication, this paper has been one of the most cited on mycorrhizas (over 1500 citations as of January 2020) and has provided important insights on the evolution of mycorrhizas; for example, evidence that arbuscular mycorrhizas (AM) are found throughout the land plant phylogeny has been used as a key argument for Glomeromycotina symbiosis being an ancestral trait of land plants (Rimington et al. 2018). However, Wang and Qiu’s survey (Wang and Qiu 2006) is now considerably outdated, especially with regard to early-diverging plant lineages. Since its publication there has been much interest in the diverse fungal symbioses of early-diverging plants (e.g. Ligrone et al. 2007; Duckett and Ligrone 2008; Bidartondo and Duckett 2010; Pressel et al. 2010; Desirò et al. 2013; Rimington et al. 2015; Rimington et al. 2018; Rimington et al. 2019) together with the discovery by Bidartondo et al. (2011) of symbioses involving Mucoromycotina fungi in liverworts, hornworts and a fern.

Fungal symbiosis occurrence rate estimates are commonly used to highlight the near-ubiquity of these relationships. For instance, few publications concerning AM fail to mention that at least 80% of plant species form these symbioses, most commonly citing the reference book ‘Mycorrhizal Symbiosis’ (Smith and Read 1997, 2008). These estimates are useful for emphasizing the importance of mycorrhizas to broad audiences and to highlight the diversity of these relationships between fungi and plants. These estimates are useful starting points for more refined estimates; recently, re-examination has shown that 80% may be an overestimation for AM symbioses, with the true value probably closer to 71% (Brundrett and Tedersoo 2018). Fungal symbiosis occurrence estimations for early-diverging plants have been more sporadic and highly variable including Glomeromycotina symbioses occurring in 60% and 100% of liverwort and hornwort species, respectively (Brundrett 2009) and 25% of bryophytes forming fungal associations, the majority of which involve Glomeromycotina (Brundrett and Tedersoo 2018). The last figure fails to take on board the fact that mosses, the most speciose group of bryophytes with ca. 12,000 species, lack fungal symbionts.

We present a new global compilation of the fungal symbiosis status of liverworts, hornworts and lycophytes. Our compilation more than triples the number of early-diverging plant species listed in Wang and Qiu (2006) and is the first to focus on early-diverging plant lineages on a global scale.

Methods

Literature survey

A survey of the published literature on fungal symbioses in liverworts, hornworts and lycophytes was performed. Re-examination of Wang and Qiu’s survey (Wang and Qiu 2006) revealed that some key references for these plants were missing and that fungal symbiosis status was often reported only as ‘fungal association’ without specifying the fungus involved; thus, a full search was performed, including studies prior to 2006. In trying to capture all available references, several keywords were used as search terms in Google Scholar. In each search, one of the following plant terms was used: ‘liverwort’, ‘hornwort’, ‘lycopod’ and ‘lycophyte’. Each plant term was combined with one of the following fungal terms: ‘fungi’, ‘fungus’, ‘Glomeromycotina’, ‘Mucoromycotina’, ‘Glomeromycota’, ‘Glomus tenue’ and ‘fine endophyte’. Additionally, for liverworts, which are known to form more diverse fungal symbioses than the other two lineages, the following terms were also used: ‘Ascomycota’, ‘Basidiomycota’, ‘Rhizoscyphus’, ‘Pezoloma’, ‘Sebacina’ and ‘Tulasnella’. Using these criteria, a total of 34 searches were performed. The titles and abstracts of all references returned by the searches were scrutinized to identify reports of the fungal status of any liverwort, hornwort or lycophyte species. Where the search terms returned more than 500 hits (e.g. ‘lycopod fungi’ returned 14,600 hits), only the first 500 results were investigated. Fungal symbiosis status was recorded as Glomeromycotina, Mucoromycotina, Ascomycota, Basidiomycota or non-symbiotic. Additionally, the presence of dark septate endophytes (DSE) was recorded for lycophytes. For some liverwort and hornwort species, only the presence of a ‘fungal association’ was recorded as the fungal lineage could not be assigned. As well as recording the fungal status, the identification method (microscopy and/or DNA sequencing) was noted for all species. The publications found through Google Scholar that were deemed relevant to the investigation were read and any literature found within those publications, but not returned directly by Google Scholar, was also included. This secondary search method returned exclusively microscopy studies published prior to 1990 (and dating back to 1891); thus, we are confident that all relevant molecular studies were found with our main search method. Additionally, information on the fungal symbiosis status of some liverwort species was obtained either from the liverwort flora of Paton (1999) or from our own unpublished microscopy observations (25 species; see Table S2).

Plant nomenclature

Nomenclature for liverworts and hornworts follows the most recent floras (Söderström et al. 2016; Stotler and Crandall-Stotler 2017) and the Tropicos database (www.tropicos.org); taxonomic rankings above genus level follow Söderström et al. (2016). For lycophytes, nomenclature follows the Checklist of Ferns and Lycophytes of the World by Hassler and Schmitt (2018). When currently accepted names differ from those in the original reports, both are given in Table 1, with the latter appearing in parentheses.

Table 1.

The fungal symbionts of early-diverging plants. Mucoro - Mucoromycotina, Glom - Glomeromycotina, Asco - Ascomycota, Basid - Basidiomycota, FA - Fungal association with unidentified fungi, NS - non-symbiotic, DSE - dark septate endophytes. Species labelled ‘Mucoro (FRE)’ were reported only as being colonized by fine root endophytes (i.e. Glomus tenue). A question mark after ‘Mucoro’ signifies it was not reported in the original publication but microscopy images are indicative of Mucoromycotina colonization. Checks indicate whether DNA sequencing and/or microscopy were used for fungal identification. An asterisk specifies our unpublished personal observations. In the column labelled Fungi, a hash indicates a report considered incorrect as a result of further studies. A cross signifies a likely incorrect report that is discussed in the main text. Species in bold had conflicting reports of symbiotic status. Where appropriate, the species names used in original reports are provided in parentheses. Reference numbers are listed below the table

Species Fungi DNA Microscopy Reference
Marchantiophyta
  Haplomitriopsida
  Haplomitriidae
    Calobryales
      Haplomitriaceae
        Haplomitrium
          Haplomitrium (Calobryum) blumei Mucoro 1–3
          Haplomitrium chilensis Glom 1
          Haplomitrium dentatum Mucoro ✓* 4, 5
          Haplomitrium gibbsiae Mucoro 1, 2, 4–7
          Haplomitrium hookeri Mucoro 1–5, 8
          Haplomitrium intermedium FA 1
          Haplomitrium mnioides Mucoro ✓* 4, 5
          Haplomitrium ovalifolium Mucoro 1, 2, 6
  Treubiidae
    Treubiales
      Treubiaceae
        Treubia
          Treubia insignis FA 3, 9, 10
          Treubia lacunosa Mucoro 1, 2, 4, 5, 7, 11, 12
          Treubia pygmaea Mucoro 1, 2, 4, 5, 11
          Treubia tasmanica Mucoro 2, 12
  Marchantiopsida
    Blasiidae
      Blasiales
        Blasiaceae
          Blasia
            Blasia pusilla NS (Nostoc) 1, 3, 13–16
          Cavicularia
            Cavicularia densa NS (Nostoc) 13
  Marchantiidae (complex thalloid)
    Lunulariales
      Lunulariaceae
        Lunularia
          Lunularia cruciata Glom, Mucoro 1, 3–5, 16–18
  Marchantiales
    Aytoniaceae
      Asterella
        Asterella australis Glom 1, 4, 5
        Asterella bachmannii Glom, Mucoro 1, 4, 5
        Asterella bolanderi Glom, Mucoro 4, 5
        Asterella (Fimbriaria) blumeana NS 3
        Asterella californica Mucoro 4, 5
        Asterella drummondii NS 4, 5
        Asterella grollei NS 4, 5
        Asterella khasyana Glom, Mucoro 4, 5
        Asterella (Fimbriaria) lindenbergiana NS 3–5
        Asterella muscicola Glom, Mucoro 1, 4, 5
        Asterella pringlei Mucoro 4, 5
        Asterella sp. Glom, Mucoro 4, 5
        Asterella (Fimbriaria) sp. FA 3
        Asterella tenera Glom, Mucoro 1, 2, 4, 5
        Asterella wilmsii Glom, Mucoro 1, 4, 5, 19
      Cryptomitrium
        Cryptomitrium himalayense NS 4, 5
        Cryptomitrium oreades NS 1, 4, 5
      Mannia
        Mannia angrogyna (Grimaldia dichotoma) NS 1, 3
        Mannia fragrans NS 1
        “ Mucoro (FRE) 20
        Mannia gracilis NS 4, 5
        Mannia sp Glom 4, 5
      Plagiochasma
        Plagiochasma eximium Glom 1
        “ NS 4, 5
        Plagiochasma rupestre Glom, Mucoro 1, 4, 5, 21
        “ NS 3
        Plagiochasma sp. Glom, Mucoro 4, 5
        Plagiochasma sp. FA 3
      Reboulia
        Reboulia hemisphaerica Glom 1, 3–5
    Cleveaceae
      Athalamia
        Athalamia pinguis Glom 1, 4, 5
      Clevea
        Clevea (Athalamia) hyalina Glom 1, 4, 5
        Clevea spathysii (rousseliana) NS 3
      Peltolepis
        Peltolepis quadrata (grandis) NS 1, 3
      Sauteria
        Sauteria alpina NS 1, 3–5
    Conocephalaceae
      Conocephalum
        Conocephalum conicum (Fegatella conica) Glom 1–5, 14, 16, 22, 23
        Conocephalum japonicum Glom 4, 5
        Conocephalum salebrosum Glom 1, 4, 5, 14
    Corsiniaceae
      Corsinia
        Corsinia coriandrina(marchantioides) Glom 1
        “ NS 3–5
      Cronisia
        Cronisia fimbriata NS 1
    Cyathodiaceae
      Cyathodium
        Cyathodium aureonitens NS 4, 5
        Cyathodium cavernarum NS 1, 4, 5
        Cyathodium foetidissimum NS 1
        “ FA# 3
        Cyathodium sp. NS 4, 5
        Cyathodium tuberosum NS 4, 5
    Dumortieraceae
      Dumortiera
        Dumortiera hirsuta (irrigua/velutina) Glom 1, 3–5
    Exormothecaceae
      Aitchisoniella
        Aitchisoniella himalayensis NS 1
      Exormotheca
        Exormotheca holstii NS 1, 3
        Exormotheca pustulosa NS 1
      Stephensoniella
        Stephensoniella brevipedunculata NS 1
    Marchantiaceae
      Marchantia
        Marchantia berteroana Glom 1, 4, 5
        Marchantia breviloba Glom 4, 5
        Marchantia chenopoda Glom 4, 5
        Marchantia debilis Glom 4, 5
        Marchantia foliacea Glom 1, 2, 4, 5, 24, 25
        Marchantia geminata FA 3
        Marchantia paleacea Glom 3–5, 26, 27
        Marchantia papillata Glom 4, 5
        Marchantia pappeana Glom 1, 4, 5
        Marchantia pileata Glom 4, 5
        Marchantia polymorpha subsp. montivagans Glom 1
        Marchantia polymorpha subsp. polymorpha NS 1, 3–5
        Marchantia polymorpha subsp. ruderalis NS 1, 4, 5, 14
        Marchantia (Bucegia) romanica NS 1
        Marchantia wallisii (grisea) FA 3
      Preissia
        Preissia (Marchantia) quadrata Glom 1, 3–5, 26
    Monocleaceae
      Monoclea
        Monoclea forsteri Glom, Mucoro 1, 3–5
        Monoclea gottschei NS 4, 5
        “ Glom 1
        Monoclea sp. FA 3
    Monosoleniaceae
      Monosolenium
        Monosolenium tenerum NS 1
    Oxymitraceae
      Oxymitra
        Oxymitra cristata NS 1
        Oxymitra incrassata NS 1, 4, 5
    Ricciaceae
      Riccia
        Riccia albolimbata NS 1
        Riccia beyrichiana NS 1
        Riccia canaliculata NS 1
        Riccia cavernosa NS 1
        Riccia ciliata NS 3
        Riccia crozalsii NS 1
        Riccia crystallina NS 1
        Riccia fluitans NS 1, 3, 14, 16
        Riccia glauca NS 1, 3, 14, 28
        Riccia huebeneriana NS 1
        Riccia montana NS 1
        Riccia nigrella NS 1
        Riccia okahandjana NS 1
        Riccia sorocarpa NS 1
        Riccia stricta NS 1
        Riccia subbifurca NS 1
      Ricciocarpus
        Ricciocarpos natans NS 1, 3
    Targioniaceae
      Targionia
        Targionia hypophylla Glom, Mucoro 1, 3–5
    Wiesnerellaceae
      Wiesnerella
        Wiesnerella denudata NS 1
        “ FA 3
  Neohodgsoniales
    Neohodgsoniaceae
      Neohodgsonia
        Neohodgsonia mirabilis Glom, Mucoro 1, 2, 4, 5, 29
  Sphaerocarpales
    Monocarpaceae
      Monocarpus
        Monocarpus sphaerocarpus NS 1
    Riellaceae
      Riella
        Riella americana NS 1
        Riella helicophylla NS 1
    Sphaerocarpaceae
      Geothallus
        Geothallus tuberosus NS 1
      Sphaerocarpos
        Sphaerocarpos michelii NS 1
        Sphaerocarpos texanus NS 1
        Sphaerocarpos sp. NS 3
  Jungermanniopsida
  Pelliidae (simple thalloid I)
    Fossombroniales
      Calyculariaceae
        Calycularia
          Calycularia crispula Glom, Mucoro ✓* 4, 5
      Allisoniaceae
        Allisonia
          Allisonia cockaynei Glom, Mucoro 1, 2, 4, 5, 29
      Fossombroniaceae
        Fossombronia
          Fossombronia angulifolia Glom, Mucoro ✓* 4, 5
          Fossombronia angulosa Glom 1, 3
          Fossombronia australis Glom, Mucoro 1, 2, 4, 5
          Fossombronia caespitiformis Glom, Mucoro 1, 4, 5
          Fossombronia echinata Glom, Mucoro 1, 4, 5
          Fossombronia foveolata Glom, Mucoro 4, 5, 14
          Fossombronia husnotii Glom 4, 5
          Fossombronia hyalorhiza Glom, Mucoro 4, 5
          Fossombronia incurva Glom, Mucoro 4, 5
          Fossombronia indica Glom 4, 5
          Fossombronia kashyapii Glom, Mucoro 4, 5
          Fossombronia maritima Glom 1, 4, 5
          Fossombronia porphyrorhiza NS 4, 5
          Fossombronia pusilla Glom, Mucoro 1, 3–5, 16
          Fossombronia reticulata NS 4, 5
          Fossombronia sp. Glom, Mucoro 4, 5
          Fossombronia wondraczekii Glom, Mucoro 1, 3–5
      Petalophyllaceae
        Petalophyllum
          Petalophyllum ralfsii Glom 1
        Sewardiella
          Sewardiella tuberifera Glom, Mucoro 4, 5
    Pallaviciniales
      Hymenophytaceae
        Hymenophyton
          Hymenophyton flabellatum Glom 1, 3–5
      Moerckiaceae
        Moerckia
          Moerckia blyttii Glom, Mucoro 1, 3–5
          Moerckia hibernica NS 1
          Moerckia flotoviana NS ✓*
      Pallaviciniaceae
        Greeneothallus
          Greeneothallus gemmiparus Glom 1
        Jensenia
          Jensenia connivens Glom 1, 2
          Jensenia crassifrons Glom 4, 5
          Jensenia wallisii Glom 1
        Pallavicinia
          Pallavicinia connivens Glom 1
          Pallavicinia indica NS 1
          Pallavicinia lyellii NS 1
          Pallavicinia sp. FA 3
          Pallavicinia xiphoides Glom, Mucoro 4, 5
          “ NS# 1
        Podomitrium
          Podomitrium phyllanthus Glom 1, 2, 4, 5
        Symphyogyna
          Symphyogyna brasiliensis Glom 1, 4, 5
          Symphyogyna brongniartii Glom 1, 4, 5
          Symphyogyna hochstetteri Glom, Mucoro 4, 5
          Symphyogyna hymenophyllum Glom, Mucoro 1, 2, 4, 5
          “ NS# 30
          Symphyogyna podophylla Glom 2
          Symphyogyna prolifera Glom 2
          Symphyogyna sp. NS 30
          Symphyogyna sp. FA 3
          Symphyogyna subsimplex Glom 1, 2
          Symphyogyna (Pallavicinia) tenuinervis NS 1
          Symphyogyna undulata Glom 1
        Xenothallus
          Xenothallus vulcanicola Glom 1, 25
      Phyllothalliaceae
        Phyllothallia
          Phyllothallia nivicola NS 1, 4, 5, 25
    Pelliales
      Noterocladaceae
        Noteroclada
          Noteroclada (Androcryphia) confluens Glom 1, 3–5
      Pelliaceae
        Pellia
          Pellia endiviifolia (fabbroniana) Glom 1, 4, 5, 14, 31
          “ Mucoro (FRE) 23
          Pellia epiphylla Glom, Mucoro 1, 3–5, 16
          Pellia neesiana NS 4, 5
          “ Glom 1, 3
  Metzgeriidae (simple thalloid II)
    Metzgeriales
      Aneuraceae
        Aneura
          Aneura lobata Basid 1
          Aneura maxima Basid 1, 3, 28
          Aneura mirabilis Basid 1, 28, 31–33
          Aneura novaguineensis Basid 1, 32, 34
          Aneura pellioides NS 28
          Aneura pinguis Basid 1, 3, 15, 16, 28, 31, 32, 34–37
          Aneura pseudopinguis Basid 1
          Aneura sp. Basid 28
        Lobatiriccardia
          Lobatiriccardia (Aneura) alterniloba FA 34
          Lobatiriccardia coronopus subsp. australis (Aneura lobata subsp. australis) Basid 32
          Lobatiriccardia (Aneura) lobata Basid 28, 34
          Lobatiriccardia sp. Basid 28
        Riccardia
          Riccardia aequicellularis NS 34
          Riccardia aequitexta FA 34
          Riccardia alba NS 34
          Riccardia alcicornis NS 34
          Riccardia asperulata NS 34
          Riccardia australis FA 34
          Riccardia bipinnatifda NS 34
          Riccardia breviala FA 34
          Riccardia chamedryfolia(Aneura sinuata) NS 1, 28
          “ FA 3
          Riccardia cochleata NS 1, 34
          “ Basid 38
          Riccardia colensoi NS 34
          Riccardia crassa NS 34
          Riccardia eriocaula NS 1, 34
          Riccardia furtiva FA 34
          Riccardia incurvata NS 1
          Riccardia intercellula Basid 1, 34
          Riccardia latifrons NS 1, 33
          “ Basid 37
          Riccardia lobulata NS 34
          Riccardia marginata NS 34
          Riccardia metzgeriiformis Basid 39
          Riccardia multicorpora FA 34
          Riccardia(Aneura)multifida NS 1, 30, 33
          “ Basid 3, 37
          Riccardia nitida NS 34
          Riccardia pallidevirens FA 34
          Riccardia(Aneura)palmata NS 1, 3, 33
          “ Basid 37
          Riccardia papulosa FA 34
          Riccardia pennata Basid 1, 34, 38
          Riccardia perspicua FA 34
          Riccardia pseudodendroceros NS 34
          Riccardia pusilla FA 34
          Riccardia smaragdina Basid 35
          Riccardia sp. Basid 35
          Riccardia umida NS 34
          Riccardia wattsiana FA 34
      Verdoornia
          Verdoornia succulenta Basid 1, 25, 32
      Metzgeriaceae
        Metzgeria
          Metzgeria conjugata NS 1, 33
          Metzgeria decipiens NS 1
          Metzgeria furcata NS 1, 3, 30, 33
          Metzgeria leptoneura NS 33
          Metzgeria pubescens NS 1, 3, 33
          Metzgeria temperata NS 1, 30, 33
          Metzgeria violacea (fruticulosa) NS 1, 33
    Pleuroziales
      Pleuroziaceae
        Pleurozia
          Pleurozia gigantea NS 1
          Pleurozia purpurea NS 1, 28
  Jungermanniidae (leafy)
    Jungermanniales
      Acrobolbaceae
        Acrobolbus
          Acrobolbus cinerascens NS 30
          Acrobolbus ochrophyllus NS 25
          Acrobolbus wilsonii Basid# 40
        Goebelobryum
          Goebelobryum unguiculatum NS 25
        Lethocolea
          Lethocolea pansa FA 25
        Saccogynidium
          Saccogynidium australe NS 25
      Adelanthaceae
        Adelanthus
          Adelanthus bisetulus NS 30
          Adelanthus falcatus FA 25
          Adelanthus lindenbergianus NS ✓*
        Biantheridion
          Biantheridion undulifolium NS 33, 40
        Pseudomarsupidium
          Pseudomarsupidium (Adelanthus) decipiens NS ✓*
        Syzygiella
          Syzygiella autumnalis NS 40
          “ FA# 33
          Syzygiella (Jamesoniella) colorata NS 30
          Syzygiella jacquinotii Asco 28
          Syzygiella sonderi (Cryptochila grandiflora) NS 25
          Syzygiella (Herzogobryum) teres NS 25
        Wettsteinia
          Wettsteinia schusteriana NS 30
      Anastrophyllaceae
        Anastrepta
          Anastrepta orcadensis NS 40
        Anastrophyllum
          Anastrophyllum alpinum NS ✓*
          Anastrophyllum donnianum NS 40
          Anastrophyllum joergensenii NS ✓*
          Anastrophyllum sp. NS 30
        Barbilophozia
          Barbilophozia barbata Basid 28, 40
          “ Asco# 15
          Barbilophozia hatcheri Basid 28, 40–42
          “ NS# 30, 33
          Barbilophozia (Lophozia) kunzeana Basid 40
          “ FA 43, 44
          Barbilophozia lycopodioides Basid 28, 40
          Barbilophozia (Lophozia) sudetica Basid 15, 28, 40
        Crossocalyx
          Crossocalyx(Sphenolobus)hellerianus(Anastrophyllum hellerianum) NS# 33
          “ Asco 28
          “ Basid# 40
        Gymnocolea
          Gymnocolea inflata NS 40
          Gymnocolea inflata subsp. acutiloba NS 40
        Isopaches
          Isopaches (Lophozia) alboviridis FA 44
          Isopaches bicrenatus (Lophozia bicrenata) Basid 28, 40, 43, 44
        Neoorthocaulis
          Neoorthocaulis (Barbilophozia) attenuatus Basid 28, 40
          Neoothocaulis (Barbilophozia) floerkei Basid 28, 40
        Orthocaulis
          Orthocaulis (Barbilophozia) atlanticus Basid ✓*
        Schljakovia
          Schljakovia (Barbilophozia) kunzeana Basid ✓*
        Schljakovianthus
          Schljakovianthus (Barbilophozia) quadrilobus (Lophozia quadriloba) Basid 28, 40, 44
        Sphenolobopsis
          Sphenolobopsis pearsonii NS 40
        Sphenolobus
          Sphenolobus minutus(Anastrophyllum minutum) NS 33, 40
          “ Asco# 15
          Sphenolobus (Anastrophyllum) saxicola NS 40
        Tetralophozia
          Tetralophozia setiformis NS 25, 30, 40
      Antheliaceae
        Anthelia
          Anthelia julacea NS 30
          Anthelia juratzkana NS 25, 30
      Balantiopsidaceae
        Balantiopsis
          Balantiopsis diplophylla NS 30
          Balantiopsis rosea FA 25
        Isotachis
          Isotachis montana NS 30
          “ FA 25
          Isotachis (Eoisotachis) stephanii FA 25
      Blepharostomataceae
        Blepharostoma
          Blepharostoma trichophyllum NS 33
      Brevianthaceae
        Brevianthus
          Brevianthus flavus NS 30
      Calypogeiaceae
        Calypogeia
          Calypogeia arguta FA 33
          Calypogeia azurea Asco 15, 40
          Calypogeia fissa Asco 16, 28, 33, 40, 45
          Calypogeia integristipula Asco 15, 40
          Calypogeia muelleriana Asco 15, 16, 28, 33, 40
          “ NS# 30
          Calypogeia neesiana (trichomanis) Asco 33, 40
          Calypogeia sphagnicola Asco 25, 33
        Mizutania
          Mizutania riccardioides Asco 46
      Cephaloziaceae
        Cephalozia
          Cephalozia ambigua Asco ✓*
          Cephalozia bicuspidata Asco 16, 33, 45, 47, 48
          Cephalozia sp. NS 30
          Cephalozia sp. Asco 25
        Fuscocephaloziopsis
          Fuscocephaloziopsis (Pleurocladula) albescens FA 49
          Fuscocephaloziopsis(Cephalozia)catenulata NS# 33
          “ Asco ✓*
          Fuscocephaloziopsis (Cephalozia) connivens Asco 16, 28, 31, 33, 45, 48
          Fuscocephaloziopsis (Cephalozia) leucantha FA 33
          Fuscocephaloziopsis (Cephalozia) loitlesbergeri Asco 16, 33
          Fuscocephaloziopsis (Cephalozia) lunulifolia FA 33
          Fuscocephaloziopsis (Cephalozia) macrostachya FA 33
          Fuscocephaloziopsis (Schofieldia) monticola NS# 30
          Fuscocephaloziopsis (Cephalozia) pleniceps FA 33
        Nowellia
          Nowellia curvifolia Asco 16, 33
        Odontoschisma
          Odontoschisma denudatum Asco 16, 45
          “ NS# 33
          Odontoschisma elongatum NS 33
          Odontoschisma fluitans NS# 33
          Odontoschisma francisci FA 33
          Odontoschisma macounii FA ✓*
          Odontoschisma prostratum NS# 30
          Odontoschisma sp. NS# 30
          Odontoschisma sphagni FA 16, 33
      Cephaloziellaceae
        Anastrophyllopsis
          Anastrophyllopsis subcomplicata (Anastrophyllum schismoides) NS 25
        Cephaloziella
          Cephaloziella baumgartneri NS# 33
          Cephaloziella divaricata Asco 16, 33
          Cephaloziella exiliflora Asco 50
          Cephaloziella hampeana FA 33
          Cephaloziella massalongi NS# 33
          Cephaloziella rubella FA 33
          “ NS# 30
          Cephaloziella sp. Asco 25
          Cephaloziella turneri Asco ✓*
          Cephaloziella (Cephalozia) varians Asco 51, 52
        Nothogymnomitrion
          Nothogymnomitrion (Marsupella) erosum NS 25
        Obtusifolium
          Obtusifolium (Lophozia) obtusum NS 40
        Oleolophozia
          Oleolophozia (Lophozia) perssonii Basid 40
        Protolophozia
          Protolophozia (Lophozia) crispata Basid 28
          Protolophozia herzogiana FA 43
      Geocalycaceae
        Geocalyx
          Geocalyx graveolens Asco 28
          “ Basid# 40
          “ FA 33
      Gymnomitriaceae
        Gymnomitrion
          Gymnomitrion (Marsupella) adustum NS 33, 40
          Gymnomitrion (Marsupella) alpinum NS 33
          Gymnomitrion concinnatum NS 30, 33, 40
          Gymnomitrion corallioides NS ✓*
          Gymnomitrion crenulatum NS 33
          Gymnomitrion incompletum (cuspidatum) NS 25
          Gymnomitrion obtusum NS 33, 40
          Gymnomitrion sp. NS 30
        Marsupella
          Marsupella emarginata NS 30, 33, 40
          Marsupella stableri NS 33, 40
        Nardia
          Nardia breidleri Basid 33, 40
          Nardia compressa NS 40
          Nardia geoscyphus Basid 28, 40
          Nardia scalaris Basid 16, 28, 40, 45
          “ NS# 30
      Harpanthaceae
        Harpanthus
          Harpanthus flotovianus NS 33, 40
          Harpanthus scutatus Basid 33, 40
      Herbertaceae
        Herbertus
          Herbertus aduncus NS 30
          Herbertus alpinus NS 25, 30
          Herbertus borealis NS 33
        Triandrophyllum
          Triandrophyllum subtrifidum NS 25
      Hygrobiellaceae
        Hygrobiella
          Hygrobiella laxifolia NS ✓*
      Jungermanniaceae
        Eremonotus
          Eremonotus myriocarpus Asco ✓* 28
          “ Basid# 40
        Jungermannia
          Jungermannia atrovirens NS 33, 40
          Jungermannia borealis NS 33
          Jungermannia exsertifolia NS 33
          Jungermannia exsertifolia subsp. cordifolia NS 30
          Jungermannia gracillima NS 16, 33, 40, 45
          Jungermannia hyalina NS 40
          Jungermannia obovata NS 33, 40
          Jungermannia polaris NS 40
          Jungermannia pumila NS 33, 40
        Mesoptychia
          Mesoptychia (Leiocolea) badensis NS ✓*
          Mesoptychia (Leiocolea) bantriensis NS 40
          Mesoptychia (Leiocolea) heterocolpos NS 40
          Mesoptychia (Leiocolea) rutheana NS 40
          Mesoptychia (Leiocolea) turbinata NS 33, 40
      Lepicoleaceae
        Lepicolea
          Lepicolea attenuata NS 25
          Lepicolea scolopendra NS 25, 30
      Lepidoziaceae
        Acromastigum
          Acromastigum colensoanum FA 25
        Bazzania
          Bazzania adnexa NS 30
          “ FA# 25
          Bazzania denudata NS 30
          Bazzania flaccida NS 15
          Bazzania sp. NS 30
          Bazzania tayloriana NS 30
          Bazzania tricrenata NS 33
          Bazzania trilobata Asco# 45
          “ NS 15, 30, 33
        Hygrolembidium
          Hygrolembidium australe Asco 25
        Isolembidium
          Isolembidium anomalum Asco 25
        Kurzia
          Kurzia pauciflora Asco 16, 33, 45
          Kurzia sp. Asco 25
          Kurzia sylvatica FA 33
          Kurzia trichoclados FA 33
        Lembidium
          Lembidium (Chloranthelia) berggrenii Asco 25
          Lembidium nutans Asco 25
        Lepidozia
          Lepidozia reptans Asco 16, 28, 33, 45
          “ NS 30
          Lepidozia sp. NS 30
          Lepidozia sp. Asco 25
        Megalembidium
          Megalembidium insulanum Asco 25
        Neogrollea
          Neogrollea notabilis Asco 25
        Pseudocephalozia
          Pseudocephalozia lepidozioides Asco 25
        Psiloclada
          Psiloclada clandestina Asco 25
        Telaranea
          Telaranea europaea Asco ✓*
          Telaranea nematodes Asco ✓*
          “ FA 33
          Telaranea sp. Asco 25
        Tricholepidozia
          Tricholepidozia (Telaranea) murphyae Asco ✓*
          “ FA 33
          Tricholepidozia (Telaranea) tetradactyla Asco ✓*
        Zoopsidella
          Zoopsidella caledonica Asco 25
        Zoopsis
          Zoopsis sp. Asco 25
      Lophocoleaceae
        Chiloscyphus
          Chiloscyphus pallescens NS 33, 40
          Chiloscyphus polyanthos NS 33, 40
          Chiloscyphus sp. NS 25
        Clasmatocolea
          Clasmatocolea sp. NS 25
        Heteroscyphus
          Heteroscyphus billardierei NS 30
          Heteroscyphus sp. NS 25
        Leptoscyphus
          Leptoscyphus cuneifolius NS 33, 40
          Leptoscyphus sp. NS 25
        Lophocolea
          Lophocolea bidentata NS 30, 33, 40
          Lophocolea bispinosa NS ✓*
          Lophocolea brookwoodiana NS ✓*
          Lophocolea cuspidata NS 33
          Lophocolea fragrans NS ✓*
          Lophocolea (Lophozia) heteromorpha FA# 44
          Lophocolea heterophylla Asco# 15
          “ NS 16, 33, 40
          Lophocolea semiteres NS ✓*
          Lophocolea sp. NS 30
      Lophoziaceae
        Lophozia
          Lophozia ascendens FA 44
          Lophozia sp. NS# 30
          Lophozia sp. Basid 25
          Lophozia ventricosa Basid 16, 28, 40, 43–45
          “ NS# 30
          Lophozia wenzelii Basid 28, 44
        Lophoziopsis
          Lophoziopsis (Lophozia) excisa Basid 28, 40, 43, 44, 53
          Lophoziopsis (Lophozia) latifolia FA 44
          Lophoziopsis (Lophozia) longidens Basid 28, 40
          Lophoziopsis (Lophozia) pellucida FA 44
        Trilophozia
          Trilophozia (Tritomaria) quinquedentata Basid ✓*
        Tritomaria
          Tritomaria(Lophozia)capitata Basid ✓*
          “ NS 40
          Tritomaria exsecta Basid 40
          Tritomaria exsectiformis Basid 28, 40
          Tritomaria quinquidentata Basid 28, 40, 43, 44
      Mastigophoraceae
        Dendromastigophora
          Dendromastigophora flagellifera NS 25, 30
      Myliaceae
        Mylia
          Mylia anomala Asco 33, 40
          Mylia taylorii NS 40
      Plagiochilaceae
        Pedinophyllum
          Pedinophyllum interruptum Basid 40
          “ NS# 33
          “ FA 43
        Plagiochila
          Plagiochila asplenioides NS 30, 33, 40
          Plagiochila bifaria NS ✓*
          Plagiochila britannica NS ✓*
          Plagiochila caduciloba NS 30
          Plagiochila carringtonii NS 40
          Plagiochila incurvicolla NS 30
          Plagiochila porelloides NS 30, 33, 40
          Plagiochila punctata FA# 33
          “ NS ✓*
          Plagiochila ramosissima NS 30
          Plagiochila sp. NS 30
          Plagiochila sp. NS 25
          Plagiochila spinulosa NS 33
          Plagiochila virginica NS 30
        Plagiochilion
          Plagiochilion conjugatum NS 25
      Pseudolepicoleaceae
        Archeophylla
          Archeophylla schusteri NS 25
        Temnoma
          Temnoma quadrifidum NS 25
      Saccogynaceae
        Saccogyna
          Saccogyna viticulosa Basid 28, 33, 40
      Scapaniaceae
        Diplophyllum
          Diplophyllum albicans Basid 15, 28, 40, 43
          “ NS# 16, 30, 33
          Diplophyllum apiculatum Basid 28
          “ NS# 30
          Diplophyllum dioicum Basid 25, 28
          “ NS# 30
          Diplophyllum obtusifolium Basid 28, 40, 43
          “ Asco# 15
          Diplophyllum obtusatum Basid ✓*
          Diplophyllum taxifolium NS 28, 40
        Douinia
          Douinia ovata NS 28, 33, 40
        Saccobasis
          Saccobasis (Tritomaria) polita Basid 28, 44
        Scapania
          Scapania aequiloba NS 40
          Scapania aspera NS 40
          Scapania bolanderi Basid 54
          Scapania brevicaulis(degenii) FA 49
          “ NS# 40
          Scapania calcicola Basid 28, 40
          “ NS# 33
          Scapania compacta NS 40
          Scapania curta (personnii) FA 49
          Scapania cuspiduligera Basid 28, 40
          “ NS# 33
          Scapania glaucocephala FA 49
          Scapania glaucocephala var. saxicola FA 49
          Scapania gracilis NS 33, 40
          Scapania gymnostomophila Basid ✓✓ 40
          “ FA 49
          Scapania irrigua Basid 28, 40
          Scapania lingulata var. microphylla FA 49
          Scapania nemorea NS 30, 40
          Scapania nimbosa NS 40
          Scapania obcordata FA 49
          Scapania obcordata var. paradoxa FA 49
          Scapania ornithopodioides NS 40
          Scapania paludicola NS ✓*
          Scapania scandica NS 33
          Scapania sp. NS 30
          Scapania subaplina NS ✓*
          Scapania uliginosa NS 40
          Scapania umbrosa Basid 28, 40
          “ NS# 33
          Scapania undulata NS 28, 30, 40
          Scapania zemliae (invisa) FA 49
        Schistochilopsis
          Schistochilopsis (Lophozia) incisa Basid 15, 28, 40
          Schistochilopsis incisa var. opacifolia (Lophozia opacifolia) Basid 28, 40
          Schistochilopsis (Lophozia) hyperarctica FA 44
      Schistochilaceae
        Schistochila
          Schistochila alata Asco 55
          Schistochila appendiculata Asco 55
          “ NS 30
          Schistochila balfouriana Asco 55
          “ NS 30
          Schistochila childii Asco 55
          Schistochila glaucescens Asco 55
          Schistochila kirkiana Asco 55
          Schistochila lamellata Asco 55
          Schistochila laminigera Asco 55
          Schistochila muricata Asco 55
          Schistochila nobilis Asco 25, 55
          Schistochila pinnatifolia Asco 55
          Schistochila repleta Asco 55
          Schistochila splachnophylla Asco 45, 55
          Schistochila subimmersa Asco 45, 55
          Schistochila succulenta Asco 45, 55
      Solenostomataceae
        Solenostoma
          Solenostoma (Jungermannia) orbiculata NS 25
      Southbyaceae
        Gongylanthus
          Gongylanthus ericetorum Basid 40
          “ FA 43
        Southbya
          Southbya nigrella Basid 16, 28, 40, 43
          Southbya tophacea Basid 28, 31, 40, 43
      Trichocoleaceae
        Leiomitria
          Leiomitra lanata NS 30
        Trichocolea
          Trichocolea mollissima NS 25
          Trichocolea rigida NS 30
          Trichocolea tomentella NS 30
      Trichotemnomataceae
        Trichotemnoma
          Trichotemnoma corrugatum NS 25
    Porellales
      Frullaniaceae
        Frullania
          Frullania dilatata NS 33
          Frullania eboracensis NS 30
          Frullania fragilifolia NS 33
          Frullania microphylla NS 33
          Frullania nisquallensis NS 30
          Frullania sp. NS 25
          Frullania tamarisci NS 33
          Frullania teneriffae NS 33
      Goebeliellaceae
      Goebeliella
          Goebeliella cornigera NS 30
      Jubulaceae
        Jubula
          Jubula hutchinsiae NS 33
          Jubula hutchinsiae subsp. pennsylvanica NS 30
      Lejeuneaceae
        Cheilolejeunea
          Cheilolejeunea (Leucolejeunea) clypeata NS 30
          Cheilolejeunea (Leucolejeunea) sp. NS 30
        Cololejeunea
          Cololejeunea calcarea NS 33
          Cololejeunea microscopica NS 33
        Colura
          Colura calyptrifolia NS 33
        Drepanolejeunea
          Drepanolejeunea hamatifolia NS 33
        Harpalejeunea
          Harpalejeunea ovata NS 33
        Lejeunea
          Lejeunea cavifolia NS 33
          Lejeunea lamacerina NS 33
          Lejeunea patens NS 33
          Lejeunea ulicina NS 30, 33
        Marchesinia
          Marchesinia mackaii NS 33
        Mastigolejeunea
          Mastigolejeunea anguiformis NS 30
        Myriocoleopsis
          Myriocoleopsis (Cololejeunea) minutissima NS 33
      Lepidolaenaceae
        Gackstroemia
          Gackstroemia alpina NS 25, 30
        Lepidolaena
          Lepidolaena sp. NS 25
          Lepidolaena taylorii NS 30
      Porellaceae
        Lepidogyna
          Lepidogyna sp. NS 25
        Porella
          Porella arboris-vitae NS 33
          Porella cordaeana NS 33
          Porella elegantula NS 30
          Porella navicularis NS 30
          Porella obtusata NS 33
          Porella pinnata NS 30, 33
          Porella platyphylla NS 30, 33
          Porella sp. NS 25
      Radulaceae
        Radula
          Radula aquilegia NS 33
          Radula complanata NS 33
          Radula lindenbergiana NS 33
          Radula sp. NS 25
    Ptilidiales
      Ptilidiaceae
        Ptilidium
          Ptilidium ciliare NS 25, 30
          Ptilidium sp. NS 30
Anthocerotophyta
  Anthocerotopsida
    Anthocerotales
      Anthocerotaceae
        Anthoceros
          Anthoceros agrestis Glom, Mucoro 14, 56
          Anthoceros cristatus Mucoro 57
          Anthoceros fusiformis Mucoro 56
          Anthoceros lamellatus Glom, Mucoro 56
          Anthoceros laminiferus Glom, Mucoro 2, 25, 56
          Anthoceros punctatus Glom, Mucoro 2, 56, 58
          Anthoceros sp. Glom, Mucoro 56
        Folioceros
          Folioceros fuciformis Glom 56
        Folioceros sp. Glom, Mucoro 56
    Dendrocerotales
      Dendrocerotaceae
        Dendroceros
          Dendroceros crispus NS 56
          Dendroceros granulatus NS 25
          Dendroceros validus NS 25, 56
        Megaceros
          Megaceros flagellaris NS 56
          Megaceros denticulatus NS 25
          Megaceros leptohymenius Glom, Mucoro 56
          Megaceros pellucidus Glom, Mucoro 56
          “ NS 25
          Megaceros sp. Glom, Mucoro 56
        Nothoceros
          Nothoceros giganteus NS 25, 56
          Nothoceros vincentianus Glom, Mucoro 56
        Phaeomegaceros
          Phaeomegaceros coriaceus Glom, Mucoro 25, 56
          Phaeomegaceros hirticalyx Mucoro 56
          Phaeomegaceros sp. Glom, Mucoro 56
    Phymatocerotales
      Phymatocerotaceae
        Phymatoceros
          Phymatoceros bulbiculosus (Anthoceros dichotomus) FA 3
    Notothyladales
      Notothyladaceae
        Notothylas
          Notothylas javanica Glom 56
          Notothylas orbicularis Glom 56
        Paraphymatoceros
          Paraphymatoceros coriaceus Mucoro 2
          Paraphymatoceros pearsonii NS 56
          Paraphymatoceros sp. Mucoro 2
        Phaeoceros
          Phaeoceros carolinianus Glom, Mucoro 2, 25, 56
          Phaeoceros dendroceroides Glom, Mucoro 56
          Phaeoceros laevis Glom, Mucoro 2, 3, 56, 59
          Phaeoceros sp. Glom, Mucoro 56
  Leiosporocerotopsida
    Leiosporocerotales
      Leiosporocerotaceae
        Leiosporoceros
          Leiosporoceros dussii NS 56
Lycopodiophyta
  Lycopodiopsida
    Lycopodiales
      Lycopodiaceae
        Austrolycopodium
          Austrolycopodium (Lycopodium) fastigiatum Mucoro 60
          Austrolycopodium (Lycopodium) magellanicum NS 60
          Austrolycopodium (Lycopodium) paniculatum DSE, Glom 61
        Dendrolycopodium
          Dendrolycopodium dendroideum NS 60
          Dendrolycopodium obscurum NS 60
        Diphasiastrum
          Diphasiastrum(Lycopodium)alpinum Basid 62
          “ Glom 62, 63
          “ NS 60, 64
          Diphasiastrum complanatum NS 65
          Diphasiastrum digitatum (Lycopodium digitatum/L. flabelliforme) Glom 66, 67
          Diphasiastrum issleri Glom 63
          Diphasiastrum (Lycopodium) thyoides DSE 68
          Diphasiastrum (Lycopodium) tristachyum Glom 67
        Huperzia
          Huperzia appressa NS 60
          Huperzia australiana NS 60
          “ Glom 69
          Huperzia lucidula NS 60
          Huperzia(Lycopodium)selago NS 60
          “ DSE 64
          “ Glom 63, 70
          Huperzia serrata NS 71
          “ Glom 70
          Huperzia serrata var. longipetiolata NS 65
          Huperzia sp. NS 71
        Lateristachys
          Lateristachys (Lycopodiella) lateralis Mucoro 60
        Lycopodiastrum
          Lycopodiastrum casuarinoides NS 65
        Lycopodiella
          Lycopodiella inundata Mucoro 60, 72
          “ Glom 63, 73
        Lycopodium
          Lycopodium clavatum NS 60, 70
          “ DSE 64, 74
          “ Glom 63, 75–77
          “ Mucoro? 76
          Lycopodium clavatum subsp. contiguum Glom 77
          Lycopodium japonicum Glom 65
        Palhinhaea
          Palhinhaea cernua(Lycopodiella cernua/Lycopodium cernuum) Glom 60, 71, 78–80
          “ NS 65, 74
          “ Mucoro 78
        Phlegmariurus
          Phlegmariurus (Huperzia) affinis Glom 77
          Phlegmariurus (Huperzia) crassus Glom 77
          Phlegmariurus (Huperzia) hamiltonii Glom 75
          Phlegmariurus henryi NS 65
          Phlegmariurus hypogaeus (Huperzia hypogaea) Glom 77
          Phlegmariurus phlegmaria (Huperzia phlegmaria/Lycopodium phlegmaria) NS 60
          Phlegmariurus phyllanthus (Huperzia phyllantha) Glom 79
          Phlegmariurus squarrosus (Huperzia squarrosa) Glom 74
          Phlegmariurus tetragonus (Huperzia tetragona) Glom 77
          Phlegmariurus urbani (Huperzia urbanii) Glom 77
        Pseudodiphasium
          Pseudodiphasium (Lycopodium) volubile NS 60
        Spinulum
          Spinulum(Lycopodium)annotinum Mucoro 60
          “ Glom 63
    Isoëtales
      Isoëtaceae
        Isoëtes
        Isoëtes coromandelina Glom 81
        Isoëtes echinospora DSE, Glom 82
        “ NS 63
        Isoëtes histrix NS 63
        Isoëtes lacustris DSE, Glom 82
        “ NS 63
    Selaginellales
      Selaginallaceae
        Selaginella
          Selaginella arbuscula Glom 79
          Selaginella biformis Glom 65
          Selaginella bryopteris Glom 75
          Selaginella cataphracta NS 74
          Selaginella chrysocaulos NS 65
          Selaginella davidii Glom 65, 83
          Selaginella delicatula Glom 65
          Selaginella doederleinii DSE, Glom 75
          Selaginella finitima DSE, Glom 84
          Selaginella fissidentoides DSE, Glom 74
          Selaginella frondosa Glom 65
          Selaginella furcillifolia Glom 71
          Selaginella helferi NS 65
          Selaginella intermedia Glom 71
          Selaginella involvens Glom 65
          Selaginella kraussiana Glom 60, 63
          Selaginella mairei Glom 85
          Selaginella martensii Glom 84
          Selaginella minutifolia Glom 71
          Selaginella moellendorffii Glom 83
          Selaginella monospora NS 65
          Selaginella obtusa Glom 74
          Selaginella pallescens DSE, Glom 68
          Selaginella pennata NS 60
          Selaginella picta Glom 65
          Selaginella plana Glom 71
          Selaginella pulvinata Glom 65, 85
          Selaginella remotifolia Glom 65
          Selaginella roxburghii var. strigosa Glom 71
          Selaginella sanguinolenta Glom 65
          Selaginella selaginoides Glom 60, 63
          Selaginella sp. DSE, Glom 75
          Selaginella sp. Glom 80
          Selaginella stipulata Glom 71
          Selaginella wightii Glom 80
          Selaginella willdenowii NS 71

1. Ligrone R et al. (2007) Am J Bot 94:1756–1777

2. Bidartondo MI et al. (2011) Biol Lett 7:574–577

3. Stahl M (1949) Planta 37:103–148

4. Rimington WR et al. (2018) Proc Biol Sci 285: 20181600

5. Rimington WR et al. (2019) Mycorrhiza (in the press)

6. Carafa A, Duckett JG, & Ligrone R (2003) New Phytol 160:185–197

7. Field KJ et al. (2015) New Phytol 205:743–756

8. Lilienfield F (1911) Bulletin de l’Académie des Sciences de Cracovie Sér B:315–339

9. Goebel K (1891) Ann Jard Bot Buitenzorg 9:1–11

10. Grün C (1914) Flora 106:331–392

11. Duckett JG, Carafa A, & Ligrone R (2006a) Am J Bot 93:797–813

12. Schuster RM & Scott GAM (1969) J Hattori Bot Lab 32:219–268

13. Rikkinen J & Virtanen V (2008) J Exp Bot 59:1013–1021

14. Liepina L (2012) EEB 10:35–40

15. Kottke I et al. (2003) Mycol Res 107:957–968

16. Duckett JG & Read DJ (1995) New Phytol 129:439–477

17. Fonseca HMAC, Berbara RLL, & Pereira ML (2006) Mycorrhiza 16:503–508

18. Fonseca HMAC, Azevedo A, & Pereira ML (2013) Microsc Microanal 19:63–64

19. Ligrone R & Duckett JG (1994) Ann Bot 73:577–586

20. De AB (2017) IJARBS 4:51–58

21. Silvani VA et al. (2012) World J Microbiol Biotechnol 28:3393–3397

22. Ligrone R & Lopes C (1989) New Phytolo 111:423–433

23. Turnau K, Ronikier M, & Unrug J (1999) Acta Soc Bot Pol 68:63–68

24. Russell J & Bulman S (2005) New Phytol 165:567–579

25. Duckett JG & Ligrone R (2008) Flora of the Liverworts and Hornworts of New Zealand, vol. I, eds Engel J & Glenny D (Missouri Botanical Garden Press, USA), pp. 48–56

26. Field KJ et al. (2012) Nature Commun 3:835

27. Humphreys CP et al. (2010) Nature Commun 1:103

28. Bidartondo MI & Duckett JG (2010) Proc Biol Sci 277:485–492

29. Field KJ et al. (2016) ISME J 10:1514–1526

30. Davis EC & Shaw AJ (2008) Am J Bot 95:914–924

31. Read DJ et al. (2000) Philos Trans R Soc Lond B Biol Sci 355:815–830

32. Duckett JG & Ligrone R (2008) Can J Bot 86:346–358

33. Pocock K & Duckett JG (1985) New Phytol 99:281–304

34. Brown EA & Braggins JE (1989) J Hattori Bot Lab 66:1–132

35. Kottke I et al. (2008) BAAE 9:13–23

36. Preußing M et al. (2010) Mycorrhiza 20:147–159

37. Krause C et al. (2011) Fungal Biol 115:839–851

38. Pressel S et al. (2010) Phytotaxa 9:238–253

39. Weiß M et al. (2011) PLOS ONE 6:e16793

40. Duckett JG, Russell J, & Ligrone R (2006b) Can J Bot 84:1075–1093

41. Zhang T et al. (2013) Extremophiles 17:757–765

42. Newsham KK et al. (2014) Fungal Ecol 11:91–99

43. Paton JA (1999) The Liverwort Flora of the British Isles (Brill, Leiden)

44. Schuster RM (1969) The Hepaticae and Anthocerotae of North America, Volume 2 (Columbia University Press, Columbia)

45. Pressel S, Ligrone R, & Duckett JG (2008) Fieldiana Botany 47:59–72

46. Pressel S, P’ng KMY, & Duckett JG (2011) The Bryologist 114:38–51

47. Kowal J et al. (2018) Ann Bot 121:221–227

48. Kowal J et al. (2016) Funct Ecol 30:1014–1023

49. Schuster RM (1974) The Hepaticae and Anthocerotae of North America, Volume 3 (Columbia University Press, Columbia)

50. Chambers SM et al. (1999) Mycol Res 103:286–288

51. Newsham KK (2011) Mycorrhiza 21:231–236

52. Upson R, Read DJ, & Newsham KK (2007) New Phytol 176:460–471

53. Newsham KK & Bridge PD (2010) Mycorrhiza 20:307–313

54. Fukasawa Y, Ando Y, & Song Z (2017) Fungal Ecol 30:122–131

55. Pressel S et al. (2008) Am J Bot 95:531–541

56. Desirò A et al. (2013) Proc Biol Sci 280:20130207

57. Villarreal JC, Duckett JG, & Pressel S (2017) J Bryol 39:226–234

58. Schüßler A (2000) Mycorrhiza 10:15–21

59. Ligrone R (1988) Bot Gaz 149:92–100

60. Rimington WR et al. (2015) New Phytol 205:1394–1398

61. Fernández N, Messuti MI, & Fontenla S (2008) Am Fern J 98:117–127

62. Horn K et al. (2013) Am J Bot 100:2158–2174

63. Harley JL & Harley EL (1987) New Phytol 105:1–102

64. Treu R et al. (1995) Mycorrhiza 6:21–29

65. Zhi-wei Z (2000) Mycorrhiza 10:145–149

66. Bruce JG (1979) Am J Bot 66:1138–1150

67. Berch SM & Kendrick B (1982) Mycologia 74:769–776

68. Zubek S et al. (2010) Am Fern J 100:126–136

69. Laursen GA et al. (1997) Arct Alp Res 29:483–491

70. Takashima Y et al. (2014) J Sustain Agr 9:81–88

71. Kessler M et al. (2010) Plant Biol 12:788–793

72. Hoystead GA et al. (2019) Plant Physiol, 10.1104/pp.19.00729

73. Fuchs B & Haselwandter K (2004) Mycorrhiza 14:277–281

74. Kessler M et al. (2010) BAAE 11:329–336

75. Muthukumar T & Prabha K (2013) Symbiosis 59:15–33

76. Schmid E & Oberwinkler F (1993) New Phytol 124:69–81

77. Winther JL & Friedman WE (2008) New Phytol 177:790–801

78. Duckett JG & Ligrone R (1992) Can J Bot 70:58–72

79. Gemma JN, Koske RE, & Flynn T (1992) Am J Bot 79:843–852

80. Muthuraja R et al. (2014) Am Fern J 104:67–102

81. Radhika KP & Rodrigues BF (2007) Aquat Bot 86:291–294

82. Sudová R et al. (2011) Aquat Bot 94:183–187

83. Zhang Y, Guo L, & Liu R (2004) Mycorrhiza 14:25–30

84. Lara-Pérez LA et al. (2015) Symbiosis 65:85–92

85. Tao L, Jianping L, & Zhiwei Z (2004) Mycorrhiza 14:323–327

Estimating symbiosis occurrence rates

Fungal symbiosis occurrence rates were estimated for each of the three early diverging plant lineages: liverworts, hornworts and lycophytes. The number of species per genus or family and the total number of species per lineage were based on Söderström et al. (2016) for liverworts and hornworts and on Hassler and Schmitt (2018) for lycophytes. When making estimates for hornworts and lycophytes, if a species within a genus was colonized by a fungal lineage, then it was assumed that all members of the genus have the potential to be colonized by that fungal lineage. Underlining this assumption was the finding of fungi by our own observations on fresh specimens of the same genera. The total number of species potentially colonized in a plant lineage was divided by the total number of species in that lineage and multiplied by 100 to produce an estimate for the fungal symbiosis occurrence rate. In instances where the fungal status of a genus was unknown or reported only as ‘fungal association’, the genus was not included in the calculations and the total number of species was reduced accordingly. The same method was applied to liverworts but using the family level rather than the genus, with a few exceptions where additional considerations were included in our calculations to improve the quality of our estimates:

  1. Aneuraceae—This Metzgeriidae family is the most species-rich of the simple thalloid liverworts. Colonization by Basidiomycota is common in the species-poor, early-diverging genera Aneura, Lobatiriccardia and Verdoornia (Rabeau et al. 2017) but less so in the largest, more derived genus Riccardia (Pressel et al. 2010). To avoid a considerable overestimation of symbiosis by Basidiomycota in Metzgeriidae, our calculations of fungal symbiosis occurrence rates in Aneuraceae were based on the assumption that 50% of Riccardia species can be colonized by Basidiomycota, i.e. the ratio of symbiotic vs. non-symbiotic Riccardia species found by our survey (Table 1) plus our own observations on freshly collected specimens of a range of Riccardia species.

  2. Plagiochilaceae—This is the most speciose family in the Jungermanniales with 767 species in ten genera; however, fungal symbiosis has only been reported in the four-species genus Pedinophyllum. For calculations, we considered Pedinophyllum to be the only Plagiochilaceae genus (Feldberg et al. 2010) that can be colonized by symbiotic Basidiomycota and the rest were considered non-symbiotic. Re-enforcing this assumption is that fact that neither Schuster (1980) nor Paton (1999) mention fungi other than in Pedinophyllum, and we have never seen them in fresh specimens of over 50 species in the family.

  3. Gymnomitriaceae—This relatively speciose family (97 species) of nine genera contains only one genus (Nardia) for which fungal symbiosis has been reported, and the rest are non-symbiotic; thus, for calculations, we considered Nardia to be the only symbiotic genus in Gymnomitriaceae. As for the Plagiochilaceae, we have never seen fungi in freshly collected specimens other than in Nardia. The Gymnomitriaceae predominantly grow on bare rock, a substrate ill-suited to fungal symbioses.

  4. Jungermanniaceae—Fungal symbiosis has only been reported in Eremonotus, a single species genus (Bidartondo and Duckett 2010). All the other members of this family (37 species) that have been investigated (Paton 1999; Pocock and Duckett 1985; Schuster 1969) do not enter into fungal symbiosis, so only Eremonotus was considered to be symbiotic in our calculations.

Numbers of species per genus/family are given in Table S1.

Inferring fungal symbiosis status

Fungal symbiosis status was mapped onto a representative phylogenetic diagram that contained all the plant families included in this survey with the relative positions of the plant families based on previously published phylogenies for the following plant groups: Haplomitriopsida and Marchantiopsida (Flores et al. 2017), Pelliidae and Metzgeriidae (Masuzaki et al. 2010), Jungermanniidae (Forrest et al. 2006; Shaw et al. 2015; Patzak et al. 2016), hornworts (Villarreal and Renner 2013) and lycophytes (PPG1 2016).

Results and discussion

Plant species numbers

The fungal symbiosis status of up to 648 liverwort, hornwort and lycophyte species, belonging to 194 genera, 82 families and 23 orders, was compiled (Table 1) by combining data from 84 publications. The number of species for each of these early-diverging plant groups and the fungal lineages that colonize them are listed in Table 2. The total value, 648 species, includes seven subspecies and 53 samples identified only to the genus level (sp.) that may represent duplicates (except when they are the only entry for that genus, e.g. Lepidogyna sp.). Thus, at least 591 species are included in our survey (Table 2). This represents a considerable increase on the number of early-diverging plant species, 180, included in Wang and Qiu’s survey (Wang and Qiu 2006). The hornworts and lycophytes are well represented; our survey includes members of every hornwort and lycophyte family and of most genera except for one hornwort and four lycophyte genera (Table 1). The liverworts are less well represented; this is because of their higher diversity, comprising over twenty times the number of genera found in hornworts or lycophytes. While coverage for liverworts is robust at the family level and includes 72 of the 87 families (Söderström et al. 2016), this is less so at the genus level where the fungal status of 217 of the 386 genera is currently unknown. However, early-diverging lineages are well represented at the genus level with only one Haplomitriopsida, one Marchantiopsida and five Pelliidae genera not included in Table 1. The remaining 210 genera with unknown fungal symbiosis status are members of the Metzgeriidae and Jungermanniidae. This reflects a research bias, as most studies have focused on species from known symbiotic clades (e.g. 24% of Pelliidae species and 17% of Marchantiopsida species have been investigated) while neglecting those from clades considered to be largely asymbiotic. Indeed, only 5% of Jungermanniidae species have been investigated to date, reflecting that the Lejeuneaceae, the most speciose Jungermanniidae family with ca. 2000 species, is asymbiotic (Kowal et al. 2018).

Table 2.

The numbers of early-diverging plant species for which fungal symbiosis status has been reported. M - Mucoromycotina, G - Glomeromycotina, B - Basidiomycota, A - Ascomycota, FA - Fungal association. Where reports were contradictory (symbiotic and non-symbiotic), the symbiotic report is included. The number between parentheses represents the maximum number of different species, reflecting that some species were identified as ‘sp.’ so could represent duplicates of fully identified species

Total M G B A FA
Liverworts 491 (538)
  Haplomitriopsida 12 9 1 0 0 2
    Haplomitriidae 8 6 1 0 0 1
    Treubiidae 4 3 0 0 0 1
  Marchantiopsida 88 (98) 14 (16) 33 (36) 0 0 4 (7)
    Blasiidae 2 0 0 0 0 0
    Marchantiidae 86 (96) 14 (16) 33 (36) 0 0 4 (7)
  Jungermanniopsida 391 (428) 19 (20) 40 (41) 65 (70) 59 (64) 56 (58)
    Pelliidae 48 (52) 19 (20) 40 (41) 0 0 0 (2)
    Metzgeriidae 52 (56) 0 0 16 (20) 0 12
    Jungermanniidae 291 (320) 0 0 49 (50) 59 (64) 44
Hornworts 27 (33)
  Anthocerotopsida 26 (32) 15 (21) 14 (19) 0 0 0
    Anthocerotidae 7 (9) 6 (8) 5 (7) 0 0 0
    Dendrocerotidae 12 (14) 5 (7) 4 (6) 0 0 1
    Notothylatidae 7 (9) 4 (6) 5 (6) 0 0 0
  Leiosporocerotopsida 1 0 0 0 0 0
Lycophytes 73 (77)
  Lycopodiopsida 73 (77) 6 53 (55) 1 0 0
    Lycopodiales 35 (37) 6 22 1 0 0
    Isoëtales 4 0 3 0 0 0
    Selaginellales 34 (36) 0 28 (30) 0 0 0

Since the survey by Wang and Qiu was published in 2006, the use of DNA sequencing to identify plant fungal symbionts has increased dramatically. To date, the fungal status of 259 fully named early-diverging plant species has been analysed by molecular methods versus only six reported in Wang and Qiu (2006).

Our survey unveiled contradictory reports on the fungal symbiotic status (symbiotic vs. non-symbiotic) of 51 species (42 liverworts, one hornwort and eight lycophytes) probably reflecting low fungal colonization levels (Rimington et al. 2015), habitat type and/or seasonal variation in colonization (personal observations) in these species. Colonization by two fungal lineages has been reported in 51 species (35 liverworts, 11 hornworts and 5 lycophytes). We found no report of more than two fungal lineages colonizing the same plant species. All dual colonisations involve either members of Mucoromycotina and Glomeromycotina (Mucoromycota) or Ascomycota and Basidiomycota (Dikarya), with the former (45 species) being more common than the latter (5 species).

Estimating symbiosis occurrence rates

Our estimates of fungal symbiosis occurrence rates for the different fungal lineages in liverworts, hornworts and lycophytes show that fungal symbiosis appears to be the norm in hornworts and lycophytes, but not in liverworts (Table 3). Occurrence rates were easier to estimate for hornworts and lycophytes than for liverworts, as these two groups contain less species and engage in less diverse symbioses than liverworts. We estimated that 69% of hornwort species can be colonized by Mucoromycotina fungi and 78% by Glomeromycotina (Table 3). In lycophytes, colonization by Glomeromycotina is higher than by Mucoromycotina; 99% of lycophyte species can potentially form AM while only 4% are estimated to be symbiotic with Mucoromycotina (Table 3). The fungal status of each hornwort and lycophyte genus is found in Table S1.

Table 3.

Fungal symbiosis occurrence rate estimates

Mucoromycotina Glomeromycotina Basidiomycota Ascomycota
Liverworts 4% 5% 7% 17%
  Haplomitriopsida 100% 0 0 0
  Marchantiopsida 22% 38% 0 0
  Jungermanniopsida
    Pelliidae 97% 99% 0 0
    Metzgeriidae 0 0 44% 0
    Jungermanniidae 0 0 5% 20%
Hornworts 69% 78% 0 0
Lycophytes 4% 99% 0 0

Our estimates of fungal symbiosis occurrence rates in liverworts had to be calculated at the family, rather than genus, level (except for four families, as explained previously) because this group contains many more genera (ca. 386) than hornworts and lycophytes (12 and 18 genera, respectively) and the fungal symbiosis status of less than half (169) of these genera is currently known. However, the fungal symbiotic status of most liverwort families has been reported, with that of only 15 out of 87 families remaining unassigned. These 15 families all have low species numbers: less than ten species except for one family. Thus, the fungal symbiosis status of liverworts is well represented at the family level (Table S1).

We estimated that only 4% and 5% of liverwort species are colonized by Mucoromycotina and Glomeromycotina, respectively (Table 3). Symbioses involving Basidiomycota (7%) and Ascomycota (17%) appear to be more common in liverworts but an absence of fungal symbiosis is by far the prevalent state (71%). The sum of these estimates is greater than 100% due to several liverwort species forming dual colonization with both Mucoromycotina and Glomeromycotina. Below we consider the major liverwort groups individually:

Haplomitriopsida—Up to 100% of these earliest-diverging liverworts can be colonized by Mucoromycotina fungi. There has been a single molecular report of Glomeromycotina symbiosis in Haplomitrium chilensis (Ligrone et al. 2007); however this report was published prior to the discovery of Mucoromycotina colonization in liverworts and has since been questioned by several molecular investigations (Bidartondo et al. 2011; Field et al. 2015; Rimington et al. 2018). Presence of Mucoromycotina and not Glomeromycotina in Haplomitriopsida liverworts also agrees with the cytology of the fungus colonizing H. chilensis (Ligrone et al. 2007), which we now know to be typical of Mucoromycotina and not Glomeromycotina symbioses (e.g. Field et al. 2015). We have not included in our analyses a recent study by Yamamoto et al. (2019) reporting rare Glomeromycotina associations in Haplomitrium mnioides from Japan, with Mucoromycotina being dominant, because the lack of anatomical details (i.e. sections of colonized axes and electron microscopy) and the limited molecular analyses presented indicate that further, more rigorous studies of this species may be required.

Marchantiopsida—These are the earliest-diverging liverworts to form Glomeromycotina symbioses; however, fungal colonization is relatively low and 22% and 38% of Marchantiopsida liverworts are estimated to be colonized by Mucoromycotina and Glomeromycotina, respectively. These results are skewed by the absence of symbionts from the most speciose Marchantiopsida family, Ricciaceae (Table S1), where both terrestrial and aquatic taxa lack symbionts. When Ricciaceae is excluded from calculations, the colonization estimates increase to 43% for Mucoromycotina and 74% for Glomeromycotina.

Pelliidae—This is the latest-diverging liverwort group to form Mucoromycotina and Glomeromycotina symbioses, and colonization is common at 97% and 99%, respectively.

Metzgeriidae—Basidiomycota colonization is estimated to occur in 44% of Metzgeriidae liverworts. If no assumption of 50% colonization in Riccardia species was applied to our calculations (see exception 1 in ‘Methods’), then this estimate would increase to 75%.

Jungermanniidae—Ascomycota and Basidiomycota have only been reported in the Jungermanniales and are not present in the Porellales or Ptilidiales. Our calculations suggest that 5% of Jungermanniidae species can be colonized by Basidiomycota while 20% can be colonized by Ascomycota.

Our occurrence rate estimations for Glomeromycotina colonization in early-diverging land plants disagree with those published previously by Brundrett (2009), except for lycophytes. For the latter, our results agree with 100% colonization (Brundrett 2009) (Table 3). For hornworts, our estimate of 78% is lower than the previous one of 100% (Brundrett 2009), although it confirms that colonization by Glomeromycotina in hornworts in common. The most striking discrepancy is between our finding that only 5% of liverworts likely form arbuscular mycorrhizal-like associations and the 60% estimate by Brundrett (2009). Furthermore, our results indicate that previous estimates for the formation of any type of fungal symbiosis in bryophytes have also been excessive. Wang and Qiu (2006) estimated that 46% of bryophytes enter into symbiosis with fungi, whereas Brundrett and Tedersoo (2018) put this value at 25%, while also stating that in bryophytes the majority of these relationships involve Glomeromycotina fungi. In our study, after accounting for the ca. 13,000 non-symbiotic moss species, we estimate that only 11% of bryophytes enter into a symbiosis with fungi and that the most widespread symbiosis is with Ascomycota (53%) rather than Glomeromycotina (33%). The large number of species in Lepidoziaceae, within Jungermanniidae (751 species), is principally responsible for the Ascomycota occurrence rate estimate being higher than that of the other fungal lineages combined. Even though our fungal symbiosis occurrence rates are considerably lower than previously published ones, they too may represent overestimates since our calculations are based on the assumption that all members of a plant genus (or family for liverworts) can be colonized by a fungal lineage if at least one member of the genus (or family) is colonized by that lineage. While efforts were made to prevent overestimation in four liverwort families where an absence of symbiosis is common (Aneuraceae, Gymnomitriaceae, Jungermanniaceae and Plagiochilaceae), more data are needed to determine which families are fully symbiotic and for which symbiosis is more variable.

Another important consideration in these estimations is the symbiotic status of the fungi colonizing plants. All lineages of Mucoromycotina related to the Endogonales and Glomeromycotina are considered to be mycorrhizal-like when in association with early-diverging plants (Rimington et al. 2015; Field et al. 2016a, b). This is however not the case for Ascomycota and Basidiomycota, which are far more diverse than Mucoromycotina and Glomeromycotina and regularly colonize these plants as commensals or parasites (Davis and Shaw 2008). The structures formed by Ascomycota and Basidiomycota while colonizing early-diverging plants are not necessarily diagnostic of mutualisms, and thus, it is difficult to infer mutualistic, commensal or parasitic relationships based on morphology alone (Pressel et al. 2010). Therefore, morphological observations of Basidiomycota in Metzgeriidae and Ascomycota and Basidiomycota in Jungermanniidae may not necessarily reflect mycorrhizal-like relationships. An additional complication is that, at present, Hyaloscypha (Pezoloma, Rhizoscyphus) ericae is the only Ascomycota species for which mutualistic nutrient exchange with liverworts has been confirmed (Kowal et al. 2018); thus, reports of colonization by Ascomycota that have not been identified as H. ericae using DNA sequencing may not represent mutualisms. For Basidiomycota, so far only Tulasnella and Serendipita (Sebacina) have been reported as genera symbiotic with liverworts (Bidartondo and Duckett 2010); however, both associations await physiological tests for exchange between partners. It follows that colonization of liverworts by mycorrhizal-like Ascomycota and Basidiomycota may have been overestimated and efforts are now required to identify molecularly the fungal symbionts of these plants as well as testing for nutrient exchange.

In contrast, Mucoromycotina occurrence rates are likely underestimates, especially for lycophytes. Traditionally, the unique structures of Glomeromycotina, in particular the arbuscules, made them easily and accurately identifiable through microscopy (Smith and Read 2008). However, the recent discovery of endosymbiotic Mucoromycotina, which cannot be distinguished from Glomeromycotina cytologically (Desirò et al. 2013; Field et al. 2016a, b) together with a report that arbuscule-forming fine root endophytes may be members of the Mucoromycotina (Orchard et al. 2017), indicates that Mucoromycotina symbionts have likely been misidentified as Glomeromycotina on a number of occasions (Field et al. 2019). It is possible, therefore, that some of the reports of Glomeromycotina symbioses in Table 1 are actually incorrect, although, at present, it is not possible to determine if and how these potential misidentifications might have influenced our occurrence rate estimations.

These caveats aside, our estimates can still be considered the best fungal symbiosis occurrence rates to date for early-diverging plants. While those for early-diverging liverworts are based on fairly comprehensive information and are unlikely to change with additional data, those for later-diverging groups are likely to improve as more data become available for these plants.

Inferring gains and losses of symbiosis

The gains and losses of fungal symbiosis during the evolutionary history of the early-diverging plant families included in Table 1 have been inferred (Fig. 1). These are discussed below:

Fig. 1.

Fig. 1

The phylogenetic position and fungal symbiosis status of early-diverging plant families. Branch lengths have no value and only show how the families are currently considered to be related. Initials in the table denote: M Mucoromycotina, G Glomeromycotina, A Ascomycota, B Basidiomycota. A check indicates presence, a cross absence, and a question mark indicates an unknown identity reported only as ‘fungal association’. Checks highlighted in grey are likely accurate reports and were used for occurrence rate estimations, whereas the mutualistic status of un-highlighted checks remains unknown (only relevant for Ascomycota and Basidiomycota symbioses in liverworts). An asterisk indicates a likely incorrect report of symbiosis

Liverworts—The liverworts have had a more diverse history of losses and gains of symbiosis than the hornworts and lycophytes. Mucoromycotina likely formed the ancestral symbiosis with liverworts and appear to have been maintained as the sole symbionts in the Haplomitriopsida (Rimington et al. 2019). There have been losses of Mucoromycotina symbiosis in Marchantiopsida liverworts during the divergence of the Blasiales, Sphaerocarpales and Marchantiales. In the Marchantiales, symbiosis has been regained in three families, Monocleaceae, Aytoniaceae and Targioniaceae. In Pelliidae, Mucoromycotina symbiosis has been maintained in all families except four (Hymenophytaceae, Phyllothalliaceae, Petallophyllaceaeand Noterocladaceae). Conversely, Glomeromycotina symbiosis likely had a single origin in liverworts after the divergence of the Haplomitriopsida, followed by several losses in the Marchantiopsida, from Sphaerocarpales and six families of the Marchantiales, but only one loss in the Pelliidae, from the Phyllothalliaceae. After the divergence of the Pelliidae, there was a complete loss of both Mucoromycotina and Glomeromycotina symbioses in liverworts. Basidiomycota and Ascomycota symbioses appear to have been gained and lost multiple times during the evolution of the Metzgeriidae and Jungermanniidae. In the Metzgeriidae, there was a single gain of Basidiomycota symbiosis within the Aneuraceae and a subsequent loss from a large number of the later-diverging Riccardia species (Rabeau et al. 2017). Because the fungal symbiosis status of many Jungermanniidae families remains unresolved, it is not yet possible to accurately estimate gains and losses of Ascomycota and Basidiomycota symbioses in this subclass. Based on the better-studied families (highlighted in grey in Fig. 1), Ascomycota symbiosis appears to have evolved at least six times, with two major losses, while Basidiomycota symbiosis appears to have been gained on at least four occasions, with at least one loss. Alternatively, it is possible that Ascomycota and Basidiomycota symbioses had a single origin in the Jungermanniales followed by a large number of losses. Although this seems less likely, multiple losses of AM and rhizobia have been inferred in angiosperms, so until the fungal symbiosis status of these liverworts is fully resolved for all families, ancestral reconstruction will be of limited value to further our understanding of fungal associations in these plants.

Hornworts—Apart from some individual losses and apparent regains in certain hornwort species (Desirò et al. 2013), both Mucoromycotina and Glomeromycotina symbioses have been maintained throughout the Anthocerotopsida. Fungal symbiosis has never been recorded in the single species class Leiosporocerotopsida that contains the earliest-diverging extant hornwort Leiosporoceros dussii. Leiosporoceros dussii is notable not only for its lack of fungal symbiosis but also for its unique cyanobacterial symbiosis (Villarreal and Renzaglia 2006). With the order of divergence of the bryophytes under debate (Puttick et al. 2018), it is unknown whether Mucoromycotina and Glomeromycotina are both ancestral symbionts of all hornworts and were lost from Leiosporocerotopsida or whether these symbioses were gained in the hornworts only after Leiosporocerotopsida branched off. It also remains to be determined whether members of the Phymatocerotaceae are colonized by Mucoromycotina, Glomeromycotina or both fungi since the only record for this family is a report of ‘a fungal association’ (Stahl 1949); however, the regular colonization of the other Anthocerotopsida families by Mucoromycotina and Glomeromycotina suggests this family is also colonized by both fungal lineages.

Lycophytes—Phylogenetic inference (Fig. 1) and fossil evidence (Strullu-Derrien et al. 2014) both support that the ancestor of all vascular plants entered into symbiosis with Mucoromycotina and Glomeromycotina. Within the lycophytes, there have only been losses of symbiosis and no subsequent gains. The loss of Mucoromycotina symbiosis appears to have occurred on a larger scale than that of Glomeromycotina symbiosis, with a major loss after the divergence of the Lycopodiaceae which resulted in Isoëtaceae and Selaginellaceae apparently being colonized only by Glomeromycotina. It should be noted however that no fungal molecular data have been generated from Isoëtaceae and all microscopy reports predate the discovery of Mucoromycotina in lycophytes; therefore a symbiosis with Mucoromycotina cannot be ruled out. Additionally, only three of the 688 Selaginellaceae species have been analysed molecularly (Rimington et al. 2015); therefore, this family may also enter into symbiosis with Mucoromycotina as well as Glomeromycotina. There have also been losses of Mucoromycotina symbiosis within the Lycopodiaceae and the subfamily Huperzoideae is only colonized by Glomeromycotina. Within the subfamily Lycopodioideae there appears to have been a complete loss of symbiosis in the Lycopodiastrum-Pseudolycopodium-Austrolycopodium-Dendrolycopodium-Diphasium clade (Field et al. 2016a). The low levels of colonization of lycophytes by symbiotic fungi and the evolution of non-symbiotic species suggest that these plants may have a low dependence on their mycorrhizal partners when mature (Rimington et al. 2015). On the other hand, the gametophytes of lycophytes are often subterranean and achlorophyllous and therefore fully dependent on their symbiotic fungi for nutrition (Schmid and Oberwinkler 1993).

Identifying lycophyte fungal symbionts

The identity of the fungi that enter into symbiosis with lycophytes and the extent of these symbioses remain poorly resolved. While the available evidence indicates that only Mucoromycotina and Glomeromycotina colonize members of this lineage (Pressel et al. 2016), more work is needed to confirm this and to determine which symbionts dominate in nature (Lehnert et al. 2017). Symbiosis with Glomeromycotina has been reported more frequently than with Mucoromycotina (53 species vs. 6); however, most of these reports precede the discovery of Mucoromycotina-plant symbiosis and also lack molecular identification. Indeed, a recent molecular survey found a smaller difference in incidence of colonization between the two fungal lineages, albeit with Glomeromycotina also being the dominant type (Rimington et al. 2015). There has only been one report of colonization by Basidiomycota in lycophytes (Horn et al. 2013). However, because of a lack of electron microscopy evidence and of molecular methods suitable for detecting Mucoromycotina in this report, and as it contradicts all previous and subsequent reports (Table 1), its conclusion has been called into doubt. Reassessing the published images in Horn et al. (2013), Strullu-Derrien et al. (2014) proposed that the colonizing fungus more likely belongs to Mucoromycotina than Basidiomycota. Dark-septate endophytes (DSE) are Ascomycota fungi (Pressel et al. 2016) and so far have been recorded in ten lycophyte species from all three lycophyte families. However, there is no evidence that DSE may form mutualistic associations with lycophytes (Pressel et al. 2016). Thus, at present, only Glomeromycotina and Mucoromycotina can be considered mycorrhizal partners of this early-divergent vascular plant lineage.

Conclusions

In concluding their seminal work, Wang and Qiu (2006) highlighted that ‘more basal land plants should be investigated, as they occupy an especially important position in our understanding of the origin of mycorrhizal symbiosis’. In the subsequent 13 years considerable effort has gone into addressing some of these gaps in knowledge so that the fungal symbiosis status of more than three times the number of early-diverging species reported in Wang and Qiu is now known. Nevertheless, further research is still required as to date only 6% of liverwort, 13% of hornwort and 5% of lycophyte species have been examined. Within liverworts, our survey highlights Jungermanniidae as the group in most need of further investigation. Lycophytes also require further investigation; it is likely that estimates of the occurrence of Mucoromycotina symbiosis in this lineage will increase with additional use of molecular methods.

Compiling this survey of fungal symbioses in early-diverging plants has highlighted the importance of both DNA sequencing and microscopy for determining the identity of plant fungal symbionts. Microscopy alone is not enough to identify fungi unless they display truly diagnostic characteristics; DNA sequencing allows us to determine fungal presence, but not whether this represents a symbiosis. Combining these two complementary methods is essential to fully understand the distribution and diversity of fungal symbiosis in plants, while physiological studies of resource exchange between partners are needed to assess whether the plant-fungus association is functionally mycorrhizal or mycorrhizal-like.

Electronic supplementary material

ESM 1 (20.7KB, docx)

(DOCX 20 kb)

ESM 2 (15KB, xlsx)

(XLSX 14 kb)

Acknowledgments

WRR was supported by the NERC Doctoral Training Programme (Science and Solutions for a Changing Planet).

Author contributions

WRR, JGD, MIB and SP conceived the study; WRR, JGD and SP compiled and examined data; WRR carried out analysis and wrote the first draft, and all authors contributed to the manuscript. We thank the editor and two reviewers for their comments.

Funding information

We received support from NERC to KJF, SP (NE/N00941X/1) and MIB (NE/N009665/1). KJF is funded by a BBSRC Translational Fellowship (BB/M026825/1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Footnotes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Adams DG, Duggan PS. Cyanobacteria-bryophyte symbioses. J Exp Bot. 2008;59:1047–1058. doi: 10.1093/jxb/ern005. [DOI] [PubMed] [Google Scholar]
  2. Bidartondo MI, Duckett JG. Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc Royal Soc B Biol Sci. 2010;277:485–492. doi: 10.1098/rspb.2009.1458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG. The dawn of symbiosis between plants and fungi. Biol Lett. 2011;7:574–577. doi: 10.1098/rsbl.2010.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. [Google Scholar]
  5. Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–1115. doi: 10.1111/nph.14976. [DOI] [PubMed] [Google Scholar]
  6. Davis EC, Shaw AJ. Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot. 2008;95:914–924. doi: 10.3732/ajb.2006463. [DOI] [PubMed] [Google Scholar]
  7. de Sousa F, Foster PG, Donoghue PCJ, Schneider H, Cox CJ. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.) New Phytol. 2019;222:565–575. doi: 10.1111/nph.15587. [DOI] [PubMed] [Google Scholar]
  8. Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI. Fungal symbioses in hornworts: a chequered history. Proc R Soc Lond B Biol Sci. 2013;280:20130207. doi: 10.1098/rspb.2013.0207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duckett JG, Ligrone R. A cytological analysis of basidiomycetous endophytes in New Zealand Aneuraceae (simple thalloid liverworts, Metzgeriidae); confirmation of the derived status of Verdoornia. Can J Bot. 2008;86:346–358. [Google Scholar]
  10. Fehrer J, Réblová M, Bambasová V, Vohník M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Stud Mycol. 2019;92:195–225. doi: 10.1016/j.simyco.2018.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feldberg K, Vana J, Zhu RL, Heinrichs J. The systematic position of Pedinophyllum (Marchantiophyta: Jungermanniales) Cryptogamie Bryol. 2010;31:125–133. [Google Scholar]
  12. Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012) Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat Commun 3:835 [DOI] [PubMed]
  13. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol. 2015;205:743–756. doi: 10.1111/nph.13024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Field AR, Testo W, Bostock PD, Holtum JAM, Waycott M (2016a) Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Mol Phylogenetics Evol 94:635–657 [DOI] [PubMed]
  15. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J. 2016;10:1514–1526. doi: 10.1038/ismej.2015.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Field KJ, Bidartondo MI, Rimington WR, Hoysted GA, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S. Functional complementarity of ancient plant–fungal mutualisms: contrasting nitrogen, phosphorus and carbon exchanges between Mucoromycotina and Glomeromycotina fungal symbionts of liverworts. New Phytol. 2019;223:908–921. doi: 10.1111/nph.15819. [DOI] [PubMed] [Google Scholar]
  17. Flores JR, Catalano SA, Muñoz J, Suárez GM. Combined phylogenetic analysis of the subclass Marchantiidae (Marchantiophyta): towards a robustly diagnosed classification. Cladistics. 2017;34:517–541. doi: 10.1111/cla.12225. [DOI] [PubMed] [Google Scholar]
  18. Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, Hollingsworth ML. Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist. 2006;109:303–334. [Google Scholar]
  19. Harley JL, Harley EL. A check-list of mycorrhiza in the British flora. New Phytol. 1987;105:1–102. [Google Scholar]
  20. Hassler M, Schmitt B (2018) Checklist of ferns and lycophytes of the world version 7.4. Available at: http://worldplants.webarchiv.kit.edu/ferns/index.php
  21. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, et al. A higher-level phylogenetic classification of the fungi. Mycol Res. 2007;111:509–547. doi: 10.1016/j.mycres.2007.03.004. [DOI] [PubMed] [Google Scholar]
  22. Horn K, Franke T, Unterseher M, Schnittler M, Beenken L. Morphological and molecular analyses of fungal endophytes of achlorophyllous gametophytes of Diphasiastrum alpinum (Lycopodiaceae) Am J Bot. 2013;100:2158–2174. doi: 10.3732/ajb.1300011. [DOI] [PubMed] [Google Scholar]
  23. Hoysted GA, Jacob AS, Kowal J, Giesemann P, Bidartondo MI, Duckett JG, Gebauer G, Rimington WR, Schornack S, Pressel S, Field KJ. Mucoromycotina fine root endophyte fungi form nutritional mutualisms with vascular plants. Plant Physiol. 2019;181:565–677. doi: 10.1104/pp.19.00729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389:33–39. [Google Scholar]
  25. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw J, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol. 2016;211:57–64. doi: 10.1111/nph.13993. [DOI] [PubMed] [Google Scholar]
  26. Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ. From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi. Ann Bot. 2018;121:221–227. doi: 10.1093/aob/mcx126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lehnert M, Krug M, Kessler M. A review of symbiotic fungal endophytes in lycophytes and ferns – a global phylogenetic and ecological perspective. Symbiosis. 2017;71:77–89. [Google Scholar]
  28. Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG. Glomeromycotean associations in liverworts: a molecular cellular and taxonomic analysis. Am J Bot. 2007;94:1756–1777. doi: 10.3732/ajb.94.11.1756. [DOI] [PubMed] [Google Scholar]
  29. Masuzaki H, Shimamura M, Furuki T, Tsubota H, Yamaguchi T, Majid HMA, Deguchi H. Systematic position of the enigmatic liverwort Mizutania (Mizutaniaceae, Marchantiophyta) inferred from molecular phylogenetic analyses. Taxon. 2010;59:448–458. [Google Scholar]
  30. Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D, et al. Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol. 2017;213:481–486. doi: 10.1111/nph.14268. [DOI] [PubMed] [Google Scholar]
  31. Paton JA. The liverwort flora of the British Isles. Leiden: Brill; 1999. [Google Scholar]
  32. Patzak SDF, Renner MAM, Schäfer-Verwimp A, Feldberg K, Heslewood MM, Peralta DF, de Souza AM, Schneider H, Heinrichs J. A phylogeny of Lophocoleaceae-Plagiochilaceae-Brevianthaceae and a revised classification of Plagiochilaceae. Org Divers Evol. 2016;16:481–495. [Google Scholar]
  33. Pimm SL, Raven PH. The fate of the world’s plants. Trends Ecol Evol. 2017;32:317–320. doi: 10.1016/j.tree.2017.02.014. [DOI] [PubMed] [Google Scholar]
  34. Pocock K, Duckett JG. On the occurrence of branched and swollen rhizoids in British hepatics: their relationships with the substratum and associations with fungi. New Phytol. 1985;99:281–304. [Google Scholar]
  35. PPG1 A community derived classification for extant lycophytes and ferns. J Sys Evol. 2016;54:563–603. [Google Scholar]
  36. Pressel S, Bidartondo MI, Ligrone R, Duckett JG. Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa. 2010;9:238–253. [Google Scholar]
  37. Pressel S, Bidartondo MI, Field KJ, Rimington WR, Duckett JG. Pteridophyte fungal associations: current knowledge and future perspectives. J Sys Evol. 2016;54:666–678. [Google Scholar]
  38. Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol. 2018;28:733–745. doi: 10.1016/j.cub.2018.01.063. [DOI] [PubMed] [Google Scholar]
  39. Rabeau L, Gradstein SR, Dubuisson J, Nebel M, Quandt D, Reeb C. New insights into the phylogeny and relationships within the worldwide genus Riccardia (Aneuraceae, Marchantiophytina) Eur J Taxon. 2017;273:1–26. [Google Scholar]
  40. Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular-arbuscular mycorrhizae. PNAS. 1994;91:11841–11843. doi: 10.1073/pnas.91.25.11841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG. Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist. 2007;110:179–213. [Google Scholar]
  42. Rikkinen J, Virtanen V. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes. J Exp Bot. 2008;59:1013–1021. doi: 10.1093/jxb/ern003. [DOI] [PubMed] [Google Scholar]
  43. Rimington WR, Pressel S, Duckett JG, Bidartondo MI. Fungal associations of basal vascular plants: reopening a closed book? New Phytol. 2015;205:1394–1398. doi: 10.1111/nph.13221. [DOI] [PubMed] [Google Scholar]
  44. Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ, Bidartondo MI. Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proc R Soc Lond B Biol Sci. 2018;285:1888. doi: 10.1098/rspb.2018.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rimington WR, Pressel S, Duckett JG, Field KJ, Bidartondo MI. Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza. 2019;29:551–565. doi: 10.1007/s00572-019-00918-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schmid E, Oberwinkler F. Mycorrhiza-like interaction between the achlorophyllous gametophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron-microscopy. New Phytol. 1993;124:69–81. [Google Scholar]
  47. Schuster RM. The Hepaticae and Anthocerotae of North America, Volume 2. Columbia: Columbia University Press; 1969. [Google Scholar]
  48. Schuster RM. The Hepaticae and Anthocerotae of North America, Volume 4. Columbia: Columbia University Press; 1980. [Google Scholar]
  49. Shaw B, Crandall-Stotler B, Váňa J, Stotler RE, von Konrat M, Engel JJ, Davis EC, Long DG, Sova P, Shaw AJ. Phylogenetic relationships and morphological evolution in a major clade of leafy liverworts (phylum Marchantiophyta, order Jungermanniales): suborder Jungermanniineae. Syst Bot. 2015;40:27–45. [Google Scholar]
  50. Smith SE, Read DJ. Mycorrhizal symbiosis. Second. Cambridge: Academic Press; 1997. [Google Scholar]
  51. Smith SE, Read DJ. Mycorrhizal symbiosis. Third. Cambridge: Academic Press; 2008. [Google Scholar]
  52. Söderström L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ et al (2016) World checklist of hornworts and liverworts. Phytokeys 59:1–828 [DOI] [PMC free article] [PubMed]
  53. Stahl M. Die Mycorrhiza der Lebermoose mit besonderer Berucksichtigung der thallosen formen. Planta. 1949;37:103–148. [Google Scholar]
  54. Stotler RE, Crandall-Stotler B. A synopsis of the liverwort flora of North America north of Mexico. Ann Mo Bot Gard. 2017;102:574–709. [Google Scholar]
  55. Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult J-P, Strullu D-G. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses. New Phytol. 2014;203:964–979. doi: 10.1111/nph.12805. [DOI] [PubMed] [Google Scholar]
  56. Upson R, Read DJ, Newsham KK. Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. New Phytol. 2007;176:460–471. doi: 10.1111/j.1469-8137.2007.02178.x. [DOI] [PubMed] [Google Scholar]
  57. Villarreal JC, Renner SS. Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol Biol. 2013;13:239. doi: 10.1186/1471-2148-13-239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Villarreal JC, Renzaglia KS. Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. Am J Bot. 2006;93:693–705. doi: 10.3732/ajb.93.5.693. [DOI] [PubMed] [Google Scholar]
  59. Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363. doi: 10.1007/s00572-005-0033-6. [DOI] [PubMed] [Google Scholar]
  60. Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim SY, Shapiro N, Woyke T, Kyrpides NC, Barry K, Singan V, et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. The ISME J. 2017;11:2821–2833. doi: 10.1038/ismej.2017.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yamamoto K, Shimamura M, Degawa Y, Yamada A. Dual colonization of Mucoromycotina and Glomeromycotina fungi in the basal liverwort, Haplomirium mnioides (Haplomitriopsida) J Plant Res. 2019;132:777–788. doi: 10.1007/s10265-019-01145-3. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ESM 1 (20.7KB, docx)

(DOCX 20 kb)

ESM 2 (15KB, xlsx)

(XLSX 14 kb)


Articles from Mycorrhiza are provided here courtesy of Springer

RESOURCES