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Abstract
The quality of inverse problem solutions obtained through deep learning is limited by the nature of the priors
learned from examples presented during the training phase. Particularly in the case of quantitative phase retrieval,
spatial frequencies that are underrepresented in the training database, most often at the high band, tend to be
suppressed in the reconstruction. Ad hoc solutions have been proposed, such as pre-amplifying the high spatial
frequencies in the examples; however, while that strategy improves the resolution, it also leads to high-frequency
artefacts, as well as low-frequency distortions in the reconstructions. Here, we present a new approach that learns
separately how to handle the two frequency bands, low and high, and learns how to synthesize these two bands
into full-band reconstructions. We show that this “learning to synthesize” (LS) method yields phase
reconstructions of high spatial resolution and without artefacts and that it is resilient to high-noise conditions, e.g.,
in the case of very low photon flux. In addition to the problem of quantitative phase retrieval, the LS method is
applicable, in principle, to any inverse problem where the forward operator treats different frequency bands
unevenly, i.e., is ill-posed.

Introduction
Phase retrieval: significance and approach overview
The retrieval of the phase of electromagnetic fields is

one of the most important and most challenging problems
in classical optics. The utility of the phase is that it allows
the shape of transparent objects, biological cells in parti-
cular, to be quantified in two and three spatial dimensions
using visible light1,2. In the X-ray band, quantitative phase
imaging is also useful because the phase contrast in tissue
is orders of magnitude higher than the attenuation con-
trast3,4. The same argument can be made for the identi-
fication of liquids5 and semiconductor materials for
integrated circuit characterization and inspection6.
Since only the intensity of a light beam is observable at

THz frequencies and above, the phase may be inferred

only indirectly from intensity measurements. Computa-
tional approaches to this operation may be classified as
interferometric/holographic7,8, where a reference beam is
provided, and noninterferometric, or reference-less, such
as direct/iterative9,10 and ptychographic11,12, which are
both nonlinear, and transport-based13,14, where the pro-
blem is linearized through a hydrodynamic approxima-
tion. Direct methods attempt to retrieve the phase from a
single raw intensity image, whereas the transport and
ptychographic methods implement axial and lateral
scanning, respectively. What reference-less methods have
in common is the need to obtain intensity measurements
at some distance away from the conjugate plane of the
object, i.e., with a small defocus. Direct measurement with
a defocus is the approach we take here.
All computational phase retrieval approaches, both inter-

ferometric and non-interferometric, involve solving a non-
linear and highly ill-posed inverse problem. For direct phase
imaging, which is a nonlinear problem—see Section “For-
mulation of Phase Retrieval as an Inverse Problem”—the
classical Gerchberg-Saxton-Fienup (GSF) algorithm9,10,15

© The Author(s) 2020
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Mo Deng (modeng@mit.edu)
1Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
2Sensebrain Technology Limited LLC, 2550 N 1st Street, Suite 300, San Jose, CA
95131, USA
Full list of author information is available at the end of the article.

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/lsa
http://creativecommons.org/licenses/by/4.0/
mailto:modeng@mit.edu


and its variants16 are widely used. They start with a random
estimate for the unknown phase distribution and then
iteratively update it until the modulus-squared of its Fourier
(or Fresnel) transform matches the observed intensity. For
well-behaved phase fields, the iteration usually converges to
the correct phase17,18. Alternatively, the Wiener–Tikhonov
functional minimization approach, described in Section
“Solution of the Inverse Problem”, exploits prior knowledge
about the class of phase objects being imaged to combat
noise artefacts.
In 2010, ref. 19 proposed a deep neural network in a

recurrent scheme to learn the prior from examples as an
alternative to using dictionaries20,21 as priors. Subse-
quently, the recursion was unfolded into a cascade for
better numerical stability22. The physical model of the
measurement is taken explicitly into account as a pro-
jection operator applied to the reconstruction estimate
repeatedly at each recursion or cascade stage. This gen-
eralization of dictionaries to deep learning has been suc-
cessful in a number of linear inverse problems, most
notably superresolution23,24 and tomography25,26.
Recently, deep learning regression has been investigated

for application to nonlinear inverse problems, particularly
phase retrieval: direct27–29, holographic30,31, and ptycho-
graphic32,33. As described briefly in Section “Solution of
the Inverse Problem”, a deep neural network (DNN) can
be trained in supervised mode from examples of phase
objects and their intensity images so that, after training,
given an intensity image as input, the DNN outputs an
estimate of the phase object. In this case, the physical
model is learned implicitly together with the prior from
the examples;27,28 alternatively, the physical model can be
incorporated as a pre-processor29–31,34,35, which produces
an initial estimate of the phase (the “approximant”) to be
used as input to the DNN instead. Extensive reviews of
deep learning use for inverse problems can be found in
refs. 26,36,37.
Here, we propose a new DNN-based computational

architecture for phase retrieval with the unique feature of
processing low-spatial-frequency and high-spatial-
frequency bands as separate channels with two corre-
sponding DNNs trained from an original object database
and a high-pass filtered version of the database, respec-
tively. Subsequently, the outputs of the two channels are
recombined using a third DNN also specifically trained
for this task. The motivation for this new approach is an
earlier observation28 that nonlinearities in DNN training
and execution algorithms tend to amplify imbalances in
the spatial frequency content of the training database and
in the way different spatial frequencies are treated as they
propagate through the physical optical system; this
amplified imbalance typically results in lower spatial fre-
quencies becoming dominant and ultimately limiting the
resolution of fine spatial features in the reconstructions. A

more detailed overview of this phenomenon can be found
in Section “Spectral Properties of Training”. Because the
essential feature of our newly proposed technique is the
synthesis of the two spatial bands through a trained DNN,
we refer to it as “learning to synthesize” (LS).
Splitting the spatial frequency content into several

bands and processing the bands separately has a long
history in signal processing38–45. For image reconstruc-
tion, dual-band processing has been conducted in fluor-
escence microscopy46–48 and phase retrieval49. However,
these cases, unlike ours, required structured illumination.
In the context of learning-based inversion, the distinction
of low and high frequency has been applied to sparse-view
CT50, based on the theoretical framework of deep con-
volutional framelets51. Moreover, a dual-channel method
has been tried for superresolution52 (to be understood as
upsampling), albeit the two processed channels were
combined as a simple convex sum to form the final image.
By contrast, the LS method presented here uses a learned
nonlinear filter, implemented as a third DNN trained to
optimally recombine the two channels according to the
spectral properties of the class of objects that the training
database represents.
In addition to requiring a single raw image to retrieve

the phase through a learned recombination of the spectral
channels, the LS method presented here has the desirable
property of resilience to noise, especially in the case of
weak photon flux down to a single photon per pixel. We
achieved this by using an approximant filter29 to pre-
process the raw image before submitting it to the two
spectral channels. The approximant produces an inverse
estimate that expressly uses the physical model (a single
iteration of the GSF algorithm in ref. 29 and here). For very
noisy inputs, the approximant is of very poor quality;
however, if the subsequent learning architecture is trained
with this low-quality estimate as the input, the final
reconstruction results are significantly improved. The LS
method with the approximant, as presented here, repre-
sents a drastic improvement over ref. 29, especially in the
reconstruction of fine detail, as the latter did not use
separate spectral channels to rebalance the frequency
content.

Formulation of phase retrieval as an inverse problem
Let

ψobj x; yð Þ ¼ t x; yð Þeif x;yð Þ

denote the complex transmittance of an optically thin
object of modulus response t(x, y) and phase response
f(x, y), and let ψinc(x, y) denote the coherent incident field
of wavelength λ on the object plane. The noiseless
intensity measurement g0(x, y) (also referred to as a
noiseless raw image) is carried out on the detector plane
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located at a distance z away from the object plane and can
be written as

g0ðx; yÞ ¼ Fz ψinc x; yð Þψobjðx; yÞ
h i��� ���2 �H0fðx; yÞ ð1Þ

where Fz[·] denotes the Fresnel (paraxial) propagation
operator for distance z, i.e., the convolution

Fz ψ½ � ¼ ψ x; yð Þ ? e
i2πz=λ

iλz
exp iπ

x2 þ y2

λz

� �
ð2Þ

and H0 is the (nonlinear) noiseless forward operator.
Alternatively, Fz may be expressed in the spatial frequency
domain (vx, vy) as

Fz ψ½ � ¼ F�1 Ffψgexp �iπλz ν2x þ ν2y

� �n on o
ð3Þ

where F denotes the 2D (spatial) Fourier transform
operator and F�1 its inverse.
We are interested in weakly absorbing objects, i.e., we

assume t(x, y) ≈1. In all the experiments described here,
the illumination is also a normally incident plane wave
ψinc(x, y)= 1. Therefore, to a good approximation, we
may write

g0 x; yð Þ ¼ H0f x; yð Þ ¼ Fz eif x; yð Þ
h i��� ���2 ð4Þ

This is what we refer to as the direct phase retrieval
problem, which Gerchberg–Saxton and related algo-
rithms solve iteratively9,15.
In practice, the measurement is subject to Poisson sta-

tistics due to the quantum nature of light and to Gaussian
thermal noise added by the photoelectric conversion
process. We express the noisy measurement as

g x; yð Þ ¼ P p
H0f x; yð Þ
hH0f i

� �
þN ð5Þ

where Pfθg denotes a Poisson random variable with mean
θ and N a Gaussian random variable with zero mean and
variance σ2. The photon flux in photons per pixel per frame
is denoted as p, and the spatial average hH0f i ¼ hg0i of the
noiseless raw image in the denominator is necessary as a
normalization factor. The noisy forward operator is H, and
the purpose of phase retrieval is to invert H to recover f as
accurately as possible, despite the nonlinearity and random-
ness present in the measurements.

Solution of the inverse problem
The Wiener–Tikhonov approach to solving inverse

problems of the form g=Hf is to obtain the estimate f̂ of

the inverse as

bf ¼ argminf D H0f; gð Þ þΦ fð Þf g ð6Þ

Here, D(H0f, g) is the fitness term (or data-fidelity term),
whereD(·,·), is a distance operator that should be determined
based on the statistics o the noise involved. When machine
learning is used to approximate (Eq. (6)), the dilemma of
choosing the proper distance operaor shifts to choosing the
loss function for training a deep neural network53. We
address this latter problem in some detail in Section “Design
and Training of the DNNs in the LS-DNN”.
The second term Φ(f) in Eq. (6) is the regularizer, or

prior knowledge term. Its purpose is to compete with the
fitness term in the minimization to mitigate ill-posedness
in the solution. That is, the regularizer penalizes solutions
that are promoted by the noise in the forward problem, as
in Eq. (5) for example, but does not meet general criteria
known a priori for valid objects.
The prior may be defined explicitly, e.g., as a minimum

energy54 or sparsity55–59 criterion, or learned from exam-
ples as a dictionary20,21,60,61 or through a deep learning
scheme19,22,24–33.
Here, as in earlier works on direct phase retrieval27–33,

and due to the nonlinearity of the forward model, we
adopt the end-to-end and approximant methods. These
we denote as

End� to� End : f̂ ¼ DNN gð Þ and ð7Þ

Approximant : f̂ ¼ DNN f̂ �
� �

ð8Þ

where DNN(.) is the output of a deep neural network and f̂
�

is the approximant, which we will describe shortly. In the
end-to-end approach, the burden is on the DNN to learn
from examples both the forward operator H0 and the prior
Φ to execute, in one shot, an approximation to the ideal
solution (Eq. (6)). Training takes place in supervised mode,
with known pairs of phase objects f and their raw intensity
images g generated on a phase spatial light modulator (SLM)
and measured on a digital camera, respectively. Note that
training is generally slow, taking several hours if a few
thousand examples are used. However, after training is
complete, the execution of Eq. (7) or Eq. (8) is very fast, as it
requires only forward (non-iterative) computations. This is
one significant advantage over the standard way of
minimizing the Wiener–Tikhonov functional (Eq. (6))
iteratively for each image.
When the inverse problem becomes severely ill-posed or

the noise is extremely strong, the learning burden on the
DNN becomes too high; then, generally, better results are
obtained by training the DNN to receive as input the
approximant f̂

�
instead of the raw measurement g directly.

The approximant is obtained through an approximate
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inversion of the forward operator; for example, in ref. 30, it
was implemented as a digital holographic backpropagation
algorithm, whereas in ref. 29, it was the outcome of a single
iteration of the Gerchberg–Saxton algorithm9. While these
approximants f̂

�
generally do not look very good, especially

in highly noisy situations29, through training, the DNN is
able to learn a better association of f̂

�
with its corresponding

true object f than what it can learn with the noisy raw
measurement g.

Spectral properties of training
The design of deep neural networks is an active field of

research, and a comprehensive review of methods and
caveats is well beyond the scope of this paper. We refer
the reader to refs. 26,36,37 for more extensive background
and references. Here, we discuss the influence on the
quality of training of the spatial power spectral density of
the database from which examples are drawn.
In both the end-to-end and approximant methods

(Eqs. 7–8), the training examples determine the object class
prior to be learned by the DNN. In ref. 28, we addressed
the influence of the spatial power spectral density (PSD) S
(vx, vy) of the example database on the quality of training. It
is well known62–66 that two-dimensional (2D) images of
natural objects, such as those contained in ImageNet67,
follow the inverse quadratic PSD law

S νx; νy
� � ¼ 1

ν2x þ ν2y
ð9Þ

Other types of object classes of practical interest exhibit
similar power-law decay, perhaps with slightly different
exponents. This observation means that if a neural net-
work is trained on such an object class, higher spatial
frequencies are presented less frequently to the DNN
during the training stage. At face value, this scenario is as
it should be, since the relative popularity of different
spatial frequencies in the database is precisely one of the
priors that the DNN ideally should learn.
This understanding needs to be modified in the context

of inverse problems because the representation of high
spatial frequencies in the raw images is also uneven—
typically to the disadvantage of the high spatial fre-
quencies. In the specific case of phase retrieval, higher
spatial frequencies within the spatial bandwidth (as
determined by the numerical aperture NA) have a uni-
form transmission modulus but are more severely
scrambled by the chirped oscillations of the transfer
function (Eq. (3)). Thus, higher spatial frequencies suffer a
double penalty:28 their recovery becomes more sensitive
to noise due to scrambling, and they are less popular due
to the inverse-square (or similar) PSD law; thus, they are
presented less frequently than their fair share to the DNN
training process. Moreover, since the DNN itself and its

training routine are both highly nonlinear, there is an
acute risk that any unevenness in the treatment of dif-
ferent spatial frequency bands may be amplified in the
final result, eventually causing the lower frequencies to
dominate.
In ref. 28, the authors attributed the inability of the phase

extraction neural network (PhENN)27 to resolve spatial
features well within its admitted spatial bandwidth to this
unequal treatment of spatial frequencies. They showed
that the resolution of PhENN is approximately doubled by
pre-filtering the training examples to flatten their PSD.
That is, during the training, each example f(x, y) from the
database was replaced with its filtered version

fp x; yð Þ :¼ F�1 F f x; yð Þf g ´C νx; νy
� �	 
 ð10Þ

The transfer function was defined as the high-pass filter

C νx; νy
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2x þ ν2y

q
ð11Þ

exactly compensating for the inverse-quadratic depen-
dence (Eq. (9)) and flattening the spectrum. The raw
images for training were correspondingly filtered as

gp x; yð Þ ¼ Hfp x; yð Þ

whereas, during the test, the un-filtered measurements
(i.e., as received from the camera) were used to obtain the
reconstructions. Unfortunately, with this implementation,
amplification of high-spatial-frequency features, especially
of artefacts caused even by weak noise, was also evident in
the reconstructions. This outcome is not surprising since,
technically, (Eq. (10)) trades off violating the prior for a
finer spatial resolution. The LS approach that we describe
next is meant to fix this problem.

The LS scheme: spectral band-specific training and
operation
Motivated by the spectral-domain observations descri-

bed earlier, we construct the LS block diagram in Fig. 1 to
process low and high spatial frequencies separately and
then synthesize them. In the final estimate, the high-
frequency components are restored without significant
artefacts, even in the presence of strong noise. Here, ξ is
the input to the LS system, i.e., the intensity in the end-to-
end scheme or an initial estimate of the unknown
phase produced by the pre-processor in the approximant
scheme.
The LS system itself consists of three deep neural net-

works, which we denote as DNN-L, H, and S. DNN-L is
trained with unfiltered examples, and its output f̂

LF
gen-

erally behaves well at low spatial frequencies but misses
fine details in the reconstructions. DNN-H is trained to
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produce high-pass filtered outputs f̂
HF

of unfiltered
inputs; thus, it performs the crucial function of preserving
the upper end of the spectrum. The filter function is
chosen according to (Eq. (11)), but more generally as

C νx; νy
� � ¼ ν2x þ ν2y

� �q ð12Þ

The power law q and its influence on reconstruction
quality are investigated in detail below.
We train DNN-S so that from the outputs f̂

LF
, f̂

HF
of

DNN-L and H, respectively, DNN-S can synthesize a final
image f̂ with good behavior at all spatial frequencies. The
details of how the three networks are structured, trained and
operated according to the LS scheme are in presented Sec-
tion “LS scheme Implementation, Training, and Operation”.

Results
Figure 2 shows the reconstructions obtained by the LS-

DNN method (q= 0.5) and its components at fluxes p= 1
photon and 10 photons per pixel, as defined immediately
above. As expected, the reconstructions f̂

LF
by DNN-L

have good fidelity at low spatial frequencies but lose fine
details, as in ref. 29, whereas the reconstructions f̂

HF
by

DNN-H appear to be high-pass filtered versions of the
true objects with some additional high-frequency artefacts

due to the noise. The reconstructions f̂ by DNN-S pre-
serve detail at both low and high frequencies while sig-
nificantly attenuating the artefacts. The improvement in
f̂ over f̂

HF
is more pronounced under severe noise, i.e., in

the p= 1 photon/pixel case. More examples of recon-
structions (obtained with q= 0.5) for the noisier case
(p= 1) are given in the Supplementary Material.
In Figs. 3 and 4, we compare reconstructions by LS-

DNN with different values of the pre-filtering parameter q
for p= 1 photon and p= 10 photons per pixel, respec-
tively. The most detail at high frequencies in the DNN-S
output is preserved in the range 0:3t qt 0:7. At lower
values of q, the quality of the reconstructions by DNN-S
does not noticeably exceed that of DNN-L. This result is
expected, since in the limit q= 0, training DNN-H
becomes identical to training DNN-L. On the other
hand, for values q\0:7, the DNN-H output is dominated
by high-frequency artefacts, and again, the quality of
DNN-S reconstructions regresses to that of DNN-L, since
the high-frequency channel is no longer contributing.
These observations are valid for both values of p and even
stronger for the most severely noise-limited case p= 1.
Similar trends are evident according to various quanti-

tative metrics averaged over the entire set of test examples
compared to the true phase signals f, summarized in
Table 1. For comparison, we used the peak signal-to-noise
ratio (PSNR)68, the structural similarity index metric
(SSIM)69,70, and the Pearson correlation coefficient (PCC),
defined as71,72:

PCC a; bð Þ �

P
x;y

a x; yð Þ � haið Þ b x; yð Þ � hbið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y

a x; yð Þ � haið Þ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;y
b x; yð Þ � hbið Þ2

r

ð13Þ

where hai and hbi are the spatial averages of the generic
functions a(x, y), b(x, y). If a and b are uncorrelated,
PCC(a, b) is zero, whereas if they are identical, then
PCC(a, b)= 1. More quantitative comparisons, including
the comparison of DNN-S and DNN-L reconstructions
for all 500 test images and comparisons with alternative
quantitative metrics, i.e., the root mean square error and
peak-to-valley error, are available in Sections 4 and 10 of
the Supplementary Material, respectively. (Since DNN-H
is trained with a spectrally pre-filtered version of the true
object f, quantitative comparison of its output with the
ground truth does not make sense.)
It is noteworthy that in both visualization and quanti-

tative comparisons of Figs. 3, 4 and Table 1, respectively,
the performance of DNN-S remains approximately the
same within the range 0:3t qt 0:7. This is desirable, as
it suggests that one need not pre-filter exactly with the
inverse of the PSD power law. This further suggests that

Updating weights

Residual
U-Net

Updating weights

a

DNN-S

DNN-H

DNN-L

�

+

Compare
(NPCC loss)
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(NPCC loss)

b

DNN-H

DNN-L

DNN-S

f

f

fp

f LF

f HF

f LF f

f

f HF

�

Fig. 1 LS-DNN schematic. a Training stage. b Test stage
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for datasets that do not represent natural images and may
obey power laws different from (Eq. (9)), not knowing the
exact value of q may not be catastrophic. We have not
tested this hypothesis exhaustively, as it is beyond the
scope of this paper.
In Table 2 and in the Supplementary Material, we also

analyze the case of a larger DNN (denoted as DNN-L-3)
with computational capacity equal to the sum of DNN-L,
H and S, though trained with un-filtered examples, and
show that DNN-L-3 cannot achieve reconstructions of
even quality. Therefore, the improvements over ref. 29

resulted from the training procedure followed in the LS-
DNN method and did not simply occur by brute force due
to the use of a larger computational capacity.
To further study the behavior of the LS components

in the low-spatial-frequency and high-spatial-frequency
bands, we studied the reconstructions in the Fourier
domain. Figure 5 shows the spectra (2D Fourier

transforms) of two randomly selected test examples. Fig-
ure 6 and Fig. S5 in the Supplementary Material show
normalized diagonal cross-sections of the PSD averaged
over all test images for p= 1 and 10 photons per pixel,
respectively. These plots illustrate that the outputs of
DNN-L and DNN-H are depleted at high and low fre-
quencies, respectively, with the losses being more severe
in the noisy case p= 1, whereas the output of DNN-S
mostly recovers the frequency content at both bands,
albeit still with some minor loss at high frequencies.
Often, access to a large number of annotated training

examples that are in the exact same class as that of the
test examples is not possible. Therefore, it would be
desirable if a deep learning algorithm trained on a stan-
dard dataset could generalize reasonably well even if
tested directly on a different dataset. To evaluate the
cross-domain generalization ability of LS, we take two
representative datasets: ImageNet and MNIST. ImageNet
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is a dataset that offers broad prior information and thus
weaker regularization to the training when used as the
training set, whereas MNIST is a dataset that offers
constrained prior information and thus stronger reg-
ularization to the training when used as the training set.
In Fig. 7a, we see that if the LS model is trained with
ImageNet, as we have done in this paper, predicting
examples from a completely different MNIST dataset
offers a similar performance to that when the training is
done on MNIST; however, if the model is trained on a

more constrained MNIST dataset, the performance when
predicting ImageNet examples is poor, and the recon-
structions display sparse features resembling the MNIST
examples, most obviously in Fig. 7 row (iv), column (2).
This is an indication of the unduly strong regularization
effect that the MNIST examples impose on the training
process and verifies our choice of training the LS with the
more general dataset, i.e., ImageNet, which is beneficial
for the model’s generalization ability. The quantitative
comparison, available in Section 12 and Table S6 of the
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in the ground-truth image) of (i) DNN-L output (green), (ii) DNN-S output under different q values (blue dashed) and (iii) ground truth (red)
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Supplementary Material, also supports our claim above.
In general, DNNs trained on more general datasets, e.g.,
ImageNet, typically generalize well to more constrained
datasets, e.g., MNIST, whereas the opposite is not gen-
erally true27,37,73.
Last, we experimentally characterized the spatial resolu-

tion of the LS-DNN reconstructions, i.e., the ability of
DNN-S to resolve two pixels at nearby locations having a
phase delay higher than the rest of the signal. Similar ana-
lyses were carried out in refs. 28,73, where the methodology

was also described in detail. In the work presented here, we
carried out the analysis under ample illumination, i.e., not
under strong Poisson statistics. We made that choice
because spatial resolution under highly noisy conditions
becomes non-trivially coupled to the noise statistics, and a
complete investigation would have been outside the scope
of the present investigation. The results, demonstrating an
improved spatial resolution of LS-DNN reconstructions
over ref. 27, are shown in Section 6 of the Supplementary
Material.
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Fig. 4 Comparisons of LS-DNN reconstructions under different q values for p= 10 photons/pixel. Columns from left to right: ground truth and
DNN-L output; DNN-H output under different q values; DNN-S output under different q values; and 1D cross-section (along the dashed line indicated
in the ground-truth image) of (i) DNN-L output (green), (ii) DNN-S output under different q values (blue dashed) and (iii) ground truth (red)
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Discussion
The LS-DNN reconstruction scheme for quantitative

phase retrieval has been shown to be resilient to highly
noisy raw intensity inputs while preserving high-spatial-
frequency details better than those of ref. 29. Moreover,
the robustness of the reconstructions to variations in the
pre-filtering power law q of ≈1/2 following from natural
image statistics and the good generalization ability of LS
to other classes of objects make the approach efficient and
practical.
Beyond the scope of the work reported here, further

improvements may be obtained through modifying the
architecture of the DNNs used to process and recombine
the two spatial frequency bands. Another obvious alter-
native strategy is to split the signals into more than two
bands and then process and recombine these multiple
bands with a synthesizer DNN according to the LS

scheme. While we did not investigate this approach in
detail here, we expect it to present a trade-off between the
improvements and the complexity of having to train
multiple neural networks, implying the need for more
examples and the danger of poor generalization.

Materials and methods
LS scheme implementation, training, and operation
Here, we describe in full detail the LS scheme of Fig. 1.

Attempts at solving noiseless inverse problems by a
similar method can be found in our earlier work74. For
unity in notation, we denote the input to the entire LS
system as ξ(x, y), to be understood as the intensity pattern
in the end-to-end scheme and the approximant in the
approximant scheme.
We discuss the approximant implementation in more

detail in Section “Computation of the Approximant”.

Table 1 Quantitative comparison of reconstructions by approximant, DNN-L and DNN-S based on a test set of 500
images. Each entry takes the form ’average ± standard deviation’.

Average PCC ± std.dev Average PSNR ± std.dev (dB) Average SSIM ± std.dev

p= 1 p= 10 p= 1 p= 10 p= 1 p= 10

Approximant fˆ∗ 0.148 ± 0.070 0.182 ± 0.086 8.448 ± 4.182 8.465 ± 4.190 0.231 ± 0.111 0.233 ± 0.112

DNN-L output fˆLF 0.812 ± 0.126 0.878 ± 0.083 16.520 ± 2.693 18.439 ± 2.811 0.878 ± 0.088 0.923 ± 0.063

DNN-S output fˆ (q= 0.1) 0.847 ± 0.111 0.891 ± 0.078 17.596 ± 2.612 18.653 ± 2.289 0.903 ± 0.078 0.928 ± 0.065

DNN-S output fˆ (q= 0.2) 0.857 ± 0.088 0.895 ± 0.079 17.816 ± 2.821 18.716 ± 2.286 0.906 ± 0.063 0.928 ± 0.058

DNN-S output fˆ (q= 0.3) 0.859 ± 0.105 0.896 ± 0.074 18.017 ± 2.583 18.749 ± 2.228 0.910 ± 0.075 0.932 ± 0.065

DNN-S output fˆ (q= 0.4) 0.865 ± 0.104 0.895 ± 0.073 18.234 ± 2.484 19.040 ± 2.284 0.926 ± 0.069 0.934 ± 0.057

DNN-S output fˆ (q= 0.5) 0.869 ± 0.112 0.897 ± 0.073 18.600 ± 2.297 19.072 ± 2.271 0.929 ± 0.081 0.935 ± 0.056

DNN-S output fˆ (q= 0.6) 0.869 ± 0.108 0.898 ± 0.077 18.566 ± 2.540 19.041 ± 2.264 0.926 ± 0.080 0.935 ± 0.060

DNN-S output fˆ (q= 0.7) 0.864 ± 0.125 0.895 ± 0.079 17.827 ± 2.377 19.032 ± 2.267 0.927 ± 0.086 0.932 ± 0.069

DNN-S output fˆ (q= 0.8) 0.845 ± 0.115 0.893 ± 0.076 17.577 ± 2.546 19.031 ± 2.755 0.902 ± 0.081 0.931 ± 0.063

DNN-S output fˆ (q= 1) 0.821 ± 0.147 0.890 ± 0.078 17.051 ± 2.306 18.841 ± 2.717 0.902 ± 0.092 0.931 ± 0.063

DNN-S output fˆ (q= 2) 0.819 ± 0.113 0.882 ± 0.078 16.822 ± 2.586 18.645 ± 2.860 0.889 ± 0.081 0.928 ± 0.059

Table 2 Quantitative comparison of reconstructions by approximant, DNN-L-3 and DNN-S (for q= 0.5) based on a test
set of 500 images. Each entry takes the form’average ± standard deviation’.

Average PCC ± std.dev Average PSNR ± std.dev (dB) Average SSIM ± std.dev

p= 1 p= 10 p= 1 p= 10 p= 1 p= 10

Approximant fˆ∗ 0.148 ± 0.070 0.182 ± 0.086 8.448 ± 4.182 8.465 ± 4.190 0.231 ± 0.111 0.233 ± 0.112

DNN-L output fˆLF 0.812 ± 0.126 0.878 ± 0.083 16.520 ± 2.693 18.439 ± 2.811 0.878 ± 0.088 0.923 ± 0.063

DNN-L-3 output fˆL-3 0.811 ± 0.154 0.879 ± 0.107 16.529 ± 2.549 18.368 ± 2.322 0.875 ± 0.086 0.926 ± 0.094

DNN-S output fˆ (q= 0.5) 0.869 ± 0.112 0.897 ± 0.073 18.600 ± 2.297 19.072 ± 2.271 0.929 ± 0.081 0.935 ± 0.056
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The two training steps are shown in block-diagram
form in Fig. 1. The first step consists of training two
separate DNNs in parallel, as follows:

● DNN-L is trained to match unfiltered patterns ξ(n)

(x, y) at its input with the corresponding unfiltered
example phase patterns f(n)(x, y) as the ground truth
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at its output (the superscript n enumerates the
examples).

● DNN-H is trained to match unfiltered patterns ξ(n)

(x, y) at its input to the corresponding spectrally
filtered (according to (12)) versions f nð Þ

P x; yð Þ of the
ground-truth examples f(n)(x, y) at its output.

The output of DNN-L for a general test input ξ(x, y) is
denoted as f̂

LF
x; yð Þ. Assuming similar training condi-

tions, f̂
LF

matches the output of the PhENN as presented
in ref. 27 in the end-to-end scheme or ref. 29 in the
approximant scheme; that is, f̂

LF
is expected to be fairly

accurate at low spatial frequencies but without fine
details.

The output of DNN-H is denoted as f̂
HF

x; yð Þ. Note that
ref. 28 required spatial pre-filtering of the raw inputs g;
here, we do not spatially pre-filter the input ξ (i.e., g or
f̂
�
according to whether the end-to-end or approximant

scheme is used). We instead train DNN-H to produce the
filtered output based on an unfiltered input. This leads to
better generalization because DNN-H is trained on the
broadest set of possible images (whereas the training in
ref. 28 was on high-frequency images only). Moreover,
using unfiltered inputs for DNN-H allows the training
process to be parallelized for better efficiency.
Depending on the value of the power law q in Eq. (12),

the PSD of the patterns used to train DNN-H will be flat
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or almost flat. The output of DNN-H f̂
HF

x; yð Þ is expected
to have better fidelity at fine spatial features of the phase
objects. However, spectral flattening may also generate
artefacts due to overlearning high spatial frequencies.
Therefore, f̂

HF
looks rather like a high-pass-filtered ver-

sion of the true object f, which we found to be more
beneficial for subsequent use in the LS scheme.
The second training step consists of combining the two

partially accurate reconstructions f̂
LF

and f̂
HF

into a final
estimate f̂ x; yð Þ with uniform quality at all spatial fre-
quencies, low and high, up to the passband. To this end,
we train the synthesizer DNN-S to receive f̂

LF
and f̂

HF
as

inputs and use the unfiltered examples f as the output. To
avoid any further damage to the high-spatial frequency
content in f̂

HF
, we bypass f̂

HF
and present it intact to the

last layer of DNN-S. By operating on f̂
HF

alone, DNN-S
learns how to treat the low-frequency reconstruction to
compensate for artefacts at all bands. The use of the
synthesizer DNN-S also makes our results less sensitive to
the choice of power q in the transfer function (Eq. (12)).
We found that q 2 0:3; 0:7½ � can produce reconstructions
of approximately even quality, as presented in Section
“Results”.
After DNN-L, DNN-H, and DNN-S have been trained,

they are combined in the LS system and operated as
shown in Fig. 1b. The input ξ(x, y) is passed to DNN-L
and DNN-H in parallel fashion, and the respective out-
puts f̂

LF
x; yð Þ and f̂

HF
x; yð Þare passed to DNN-S, which

produces the final estimate f̂ x; yð Þ. It is worth noting that
it is not valid to lump the three networks in Fig. 1b into a
single network, due to their separate training schemes
described above.

Experimental apparatus and data acquisition
In each experiment carried out to train and test differ-

ent LS-DNN schemes, 10,450 image objects from Ima-
geNet67 were successively projected on a phase SLM as
phase objects (i.e., with a phase value at each pixel pro-
portional to the intensity of the corresponding pixel in the
original from the database), and their raw images were

recorded by an EM-CCD camera at an out-of-focus plane.
More information on the SLM used is available in Section
8 of the Supplementary Material. These 10,450 ground-
truth phase images and their corresponding raw intensity
images were split into a training set of 9,500 images, a
validation set of 450 images and a test set of 500 images.
The choice of ImageNet67 is reasonable, since the low-
frequency dominance in its spatial PSD is representative
of the broader classes of objects of interest, and therefore,
we anticipate that our results will generalize well in
practical applications.
The experiments were carried out using the apparatus

described in Fig. 8. The light source was a continuous
wave helium-neon gas laser at 632.8 nm. The laser beam
first passed through a variable neutral density filter (VND)
that served the purpose of adjusting the photon flux. The
beam was then spatially filtered and expanded into an 18
mm diameter collimated pencil and sent onto a trans-
mission SLM of 256 × 256, each of size 36 × 36 μm. Phase
objects were projected onto the SLM and imaged by a
telescope (4F system) consisting of lenses L1 (focal length
230mm) and L2 (100 mm). The 2.3× reduction factor in
the 4F system was designed to reduce the spatial extent
of the defocused raw image to approximately fit the size of
the camera. An aperture was placed in the Fourier plane
to suppress higher diffraction orders due to the periodi-
city of the SLM pixels. The raw intensity images were
captured by a Q-Imaging EM-CCD camera with 1004 ×
1002 square-shaped pixels of size 8 × 8 μm placed at a
distance z= 400mm from the image plane of the 4F
system. Additional details about the implementation of
the optical apparatus and its numerical simulation with
digital Fresnel transforms are provided in the Supple-
mentary Material.
The photon flux is quantified as the number of photons p

received by each pixel on average for an unmodulated
beam, i.e., with no phase modulation driving the SLM.
During an initial calibration procedure, for different posi-
tions of the VND filter, the photon level is measured using a
calibrated silicon photodetector placed at the position of the

He-Ne laserSF
CLVND

POL1 POL2SLM L1
L2

Image plane
EMCCD

Δz

M1

M2

F1

Fig. 8 Optical apparatus for experiments. SF: spatial filter, CL: collimating lens, VND: variable neutral density filter
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camera. The quoted photon count p is also corrected for
the quantum efficiency of the CCD (60% at λ= 632.8 nm),
meaning that we refer to the number of photons actually
detected and not the incident number of photons.
Here, we report results for two levels of photon flux p=

9.8 ± 5% and 1.1 ± 5%, quoted in the text as “10” and “1”
photons, respectively. The data acquisition, training and
testing procedures of the entire LS-DNN architecture
were repeated separately for each value of p. For each
photon count, the acquisition of all intensity images takes
approximately 50 min, and the computation of all
approximants takes approximately 2.9 hours using
MATLAB on a regular CPU (or equivalently, approxi-
mately 1 s per example).

Design and training of the DNNs in the LS-DNN
There is a wide variety of DNN structures one may

choose to implement DNN-L, H and S. In this work, we
use the same architecture as in ref. 29 for DNN-L, i.e., a
residual U-net architecture with skip connections75. For
simplicity, DNN-H and DNN-S are also chosen to be
structures similar to DNN-L. The details of the imple-
mentations, the training curves, and the validation loss
when less training data were used are given in Section 1
and Section 9, respectively, of the Supplementary Mate-
rial. We made these choices of architectures and training
specifics to enable fair comparisons with the earlier works;
alternative architectures are certainly possible within the
LS scheme, though we judged a full exploration to be
outside the scope of the present paper.
The training of a neural network is typically imple-

mented as a stochastic optimization procedure76,77,
where the neural network internal coefficients (weights)
are adjusted to minimize a metric of the distance
between the actual output of the neural network and its
desired output to a given input (training example). This
distance is called the training loss function (TLF). In the
context of training to solve an inverse problem, the TLF
is defined as

L ¼
X

n
D f̂

ðnÞ
; f ðnÞ

� �
ð14Þ

where the superscript n is again used to enumerate the
examples and the dilemma of choosing the appropriate
metric operator D emerges.
It is generally accepted27,78–80 that the L2 metric (also

referred to as the mean square error, MSE) is a poor
choice that does not generalize well, i.e., deep neural
networks trained with the MSE do not perform well when
presented with examples outside their training set. For
image classification tasks, and in an early work on phase
retrieval27, the L1 metric (mean absolute error, MAE)
was used instead. In direct analogy with compressive
sensing, the L1 metric promotes sparsity in the internal

connectivity of the neural network, which leads to better
generalization. However, ref. 73 found that in highly ill-
posed problems, this benefit is eclipsed by the inability of
the MAE and pixel-wise metrics more generally to learn
spatial structure priors about the object class that are
crucial for regularization.
In this paper, we train DNN-L, H, and S using the

negative Pearson correlation coefficient (NPCC)29,73 as
the TLF. The NPCC is defined as in Eq. (13) but with a
negative sign. Thus, training the neural network mini-
mizes the TLF towards L � �N , where N is the number
of training examples.
The NPCC has been shown81 to be more effective in

recovering fine features than conventional loss functions
such as the mean square error (MSE), mean absolute error
(MAE) and structural similarity (SSIM) index69,70. How-
ever, the NPCC is invariant to affine transformations to its
arguments, i.e.,

DNPCC a; bð Þ ¼ DNPCC α1aþ α2; β1bþ β2
� � ð15Þ

for arbitrary real numbers α1, α2, β1, β2. For quantitative
phase retrieval, where the scale of the phase difference
matters, the affine ambiguity is resolved with a histogram
equalization step after inversion28.

Computation of the approximant
It has been shown that even under extreme noise con-

ditions, just a single iteration of the Gerchberg–Saxton
(GS) algorithm suffices as an approximant in scheme
(Eq. (8)) for phase retrieval29. We elected to use the same
approach here for the LS-DNN architecture. More
recently, a comparative study82 showed that higher iter-
ates or regularized versions of GS do improve the
appearance of the approximant result f̂ � but do not yield a
significant improvement in the end output f̂ of the DNN.
Similar conclusions hold for alternatives to GS, e.g., gra-
dient descent. While these alternative schemes are inter-
esting for the LS-DNN method, we chose to not pursue
them here.
The general form of the (k+ 1)-th GS iterate from the

k-th iterate is

f k þ 1½ � ¼ arg F�1
z

ffiffiffi
g

p
exp i arg Fz ejf ½k�

� �n on o� �n o
ð16Þ

where we have taken into account that ψinc= 1. Accord-
ingly, our approximant is

f̂ � ¼ f 1½ � ¼ arg F�1
z

ffiffiffi
g

p
exp i arg Fz 1ð Þf gf g� �	 
 ð17Þ

where 1 denotes the function that is uniformly equal to
one within the frame82.
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Figure 9 compares the 2D (log-scale) Fourier spectrum
magnitude of a ground-truth image (from ImageNet67),
the approximant (Eq. (16)) computed without noise, and
the approximant (Eq. (16)) computed from an input
subject to Poisson statistics corresponding to an average
flux of one photon per pixel. We can see that although the
single-photon approximant (which we used as the input
for the LS-DNN) has a large support in its spectrum, it is
the noise that dominates the mid-to-high frequency
range. Therefore, the learning process still bears the
burden of restoring the correct high-frequency contents,
and relying heavily on high-frequency priors, as our
DNN-H does, is justified.
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