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Shared genetic etiology underlying Alzheimer’s
disease and major depressive disorder
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Abstract
Patients with late-onset Alzheimer’s disease (LOAD) frequently manifest comorbid neuropsychiatric symptoms with
depression and anxiety being most frequent, and individuals with major depressive disorder (MDD) have an increased
prevalence of LOAD. This suggests shared etiologies and intersecting pathways between LOAD and MDD. We
performed pleiotropy analyses using LOAD and MDD GWAS data sets from the International Genomics of Alzheimer’s
Project (IGAP) and the Psychiatric Genomics Consortium (PGC), respectively. We found a moderate enrichment for
SNPs associated with LOAD across increasingly stringent levels of significance with the MDD GWAS association (LOAD|
MDD), of maximum four and eightfolds, including and excluding the APOE-region, respectively. Association analysis
excluding the APOE-region identified numerous SNPs corresponding to 40 genes, 9 of which are known LOAD-risk loci
primarily in chromosome 11 regions that contain the SPI1 gene and MS4A genes cluster, and others were novel
pleiotropic risk-loci for LOAD conditional with MDD. The most significant associated SNPs on chromosome 11
overlapped with eQTLs found in whole-blood and monocytes, suggesting functional roles in gene regulation. The
reverse conditional association analysis (MDD|LOAD) showed a moderate level, ~sevenfold, of polygenic overlap,
however, no SNP showed significant association. Pathway analyses replicated previously reported LOAD biological
pathways related to immune response and regulation of endocytosis. In conclusion, we provide insights into the
overlapping genetic signatures underpinning the common phenotypic manifestations and inter-relationship between
LOAD and MDD. This knowledge is crucial to the development of actionable targets for novel therapies to treat
depression preceding dementia, in an effort to delay or ultimately prevent the onset of LOAD.

Introduction
Patients with late-onset Alzheimer’s disease (LOAD)

frequently manifest comorbid neuropsychiatric symptoms
(NPS), with depression and anxiety being most pre-
valent1–4. Furthermore, depression has been found to be
associated with increased risk to develop LOAD5–9. Major
depressive disorder (MDD) is a neuropsychiatric condi-
tion, and patients with MDD, especially in late life, exhibit
cognitive deficits and have an increased incidence of
LOAD10. Thus, MDD may be a risk factor for LOAD,
and/or part of the heterogeneity of NPS in LOAD11,12.
These lines of evidence suggest the possibility of shared

etiologies and intersecting pathways between LOAD
and MDD.
The pathogenesis of both LOAD and MDD is complex

and involves polygenic risk factors. Several studies sug-
gested that risk genes for MDD may be involved in
LOAD13–15. Genome-wide association studies (GWAS)
identified numerous loci associated with the risk to
develop LOAD16–22 and MDD23,24. These large publicly
accessible GWAS data sets could be leveraged to facilitate
investigations of whether the comorbidity and risk inter-
relationship of these disorders can be explained by com-
mon genetic variants. Recently, a statistical method to
evaluate genetic pleiotropic effects using GWAS summary
statistics (P-values and odds ratios) was developed25–28,
and has been utilized to examine genetic pleiotropy
between multiple diverse diseases and phenotypes25–27,29–35,
including LOAD with other conditions. Most prominent,
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polygenic overlaps were reported for LOAD with mod-
ulation of c-reactive protein (CRP) and plasma lipids28,36,
and with type 2 diabetes37. Here, we utilize this statistical
framework to investigate the genetic overlap between
LOAD and MDD.
To date, the underpinning genetics of NPS hetero-

geneity in LOAD and of depression and LOAD comor-
bidity are yet to be discovered. While it has been shown
that MDD-associated genes may contribute to LOAD13–15,
a recent study found no evidence to support a common
polygenic structure for LOAD and MDD38. Nonetheless,
the genetic pleiotropy between LOAD and neu-
ropsychiatric disorders, including MDD, has been
understudied. In this study, we characterized the genetic
signatures that are shared between LOAD and MDD. We
undertook a robust new statistical strategy that integrates
results from large multicenter meta analyses of LOAD
and MDD GWAS to identify genetic variants and genes
that are associated with LOAD conditional on an asso-
ciation with MDD. Our analysis pipeline progresses from
identification of pleiotropic single-nucleotide poly-
morphisms (SNPs) common to the two conditions,
through the genomic loci tagged by the SNPs and the
candidate genes within the associated region, and ulti-
mately, biological pathways.

Materials and methods
GWAS data sets
GWAS summary statistics were obtained from publicly

accessible web sites for the LOAD GWAS and the MDD
GWAS (see “Data availability”).
The LOAD GWAS data set consisted of summary

statistics of P-values, beta coefficients, and standard
errors, effect alleles from the International Genomics of
Alzheimer’s Disease Project (IGAP)22. IGAP is a large
three-stage study based upon GWAS on individuals of
European ancestry. Stage 1 IGAP results were used,
which included genotyped and imputed data on
11,480,632 single-nucleotide polymorphisms (SNPs)
from 21,982 Alzheimer’s disease cases and 41,944 cog-
nitively normal controls from four consortia: The Alz-
heimer Disease Genetics Consortium (ADGC); The
European Alzheimer’s disease Initiative (ELOADI); The
Cohorts for Heart and Aging Research in Genomic Epi-
demiology Consortium (CHARGE); and The Genetic and
Environmental Risk in LOAD Consortium Genetic and
Environmental Risk in LOAD/Defining Genetic, Poly-
genic and Environmental Risk for Alzheimer’s Disease
Consortium (GERAD/PERADES).
The MDD GWAS data set (PGC-MDD2) consisted of

summary statistics of P-values, odds ratios and standard
errors, reference allele, imputation quality score (INFO),
and direction of effect in each cohort from the Psychiatric
Genomics Consortium39. The results were obtained for

five cohorts described by Wray et al.39 (deCODE, Gen-
eration Scotland, GERA, iPSYCH, and UK Biobank),
excluding the Hyde et al. cohort24 (23and Me, Inc.). These
results included genotyped and imputed data on
13,554,550 variants from 59,851 MDD cases and 113,154
controls. Restricting variants to SNPs with high-quality
imputation scores (0.6 ≤ INFO < 1.06) resulted in a total of
9,154,389 SNPs in common for the two data sets that were
used for further analysis. Details for the genotyping pro-
cedure, quality control, and GWAS analysis are provided
in the primary papers for the LOAD GWAS22 and the
MDD GWAS39. All genomic coordinates are based on
NCBI Build 37/UCSC hg19.

Statistical and bioinformatics analysis
Pleiotropy analysis
The pleiotropy analysis strategy, based on conditional

false discovery rates, fold-enrichment plots, and condi-
tional quantile–quantile (Q–Q) plots, is described in
detail elsewhere28,37. In brief, for two phenotypes A and B,
pleiotropic enrichment of phenotype A conditional on
phenotype B exists if the proportion of variants (SNPs)
statistically significantly associated with phenotype A
increases as a function of increased statistically significant
SNP associations with phenotype B. The number of SNPs
associated with phenotype A was determined for several
thresholds of SNP association with phenotype B; the
proportions were calculated relative to a baseline of all
SNPs statistically significantly associated with phenotype
A. For this study the analysis was run in both directions,
with primary phenotype A as late-onset Alzheimer’s dis-
ease, and conditional phenotype B as MDD, followed by
interchange of the primary and conditional phenotypes.
Fold-enrichment plots graphically depict pleiotropy by
showing fold enrichment in terms of numbers of SNPs on
the ordinate and nominal –log10(P) values for association
with cognitive impairment on the abscissa. Separate
curves were shown for subsets of SNPs that reach specific
levels of significance for their association with MDD,
respectively. Conditional quantile–quantile plots for the
same data shown in the fold-enrichment plots provided
additional assessment of genetic pleiotropy for each set of
GWAS results. Following the prior analysis strategy28, we
focused the analysis for polygenic enrichment on SNPs
below the standard GWAS Bonferroni-corrected P-value
thresholds. Following the example of Wang et al.37 and
Desikan et al.28, the SNP data were pruned to eliminate
correlated pairs of SNPs based on linkage disequilibrium
(LD) measured in the 1000 Genomes data set (Phase 3,
version 5 of the 1000 Genomes Project, European panel).
If R2 value for a pair of SNPs was >0.2, the SNP with the
lower minor allele frequency (MAF) was removed.
For identification of specific SNPs conditionally asso-

ciated with LOAD and MDD, a conditional false discovery
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rate (FDR) statistic (Q value) was calculated as described
in the prior implementation of this analysis strategy28,37

and other publications25–27,30–33. This framework was an
extension of the standard analysis for FDR calculations
and uses information from the secondary phenotype to
re-rank the P-values for the primary phenotype. The value
of the conditional FDR for each SNP was calculated in the
case where LOAD is the principal phenotype conditioned
on MDD (LOAD|MDD) as well as the reverse (MDD|
LOAD). We used a conditional FDR of Q < 0.05 to show
statistical significance. The significance threshold of Q=
0.05 for the conditional FDR40 corresponds to 5 false
positives per 100 reported associations. Manhattan plots
of the conditional FDRs for were used to summarize
the data.
In order to detect common susceptibility loci for LOAD

and MDD after calculating the conditional FDRs (Q
values) for each SNP under LOAD|MDD and MDD|
LOAD, we computed the conjunction conditional FDR,
which refers to the probability that a given SNP is null for
both phenotypes. The conjunction conditional FDR
(ccFDR) is the maximum value of the two conditional
FDR (Q) values. A Manhattan plot was produced for the
conjunction conditional FDR.

Mendelian randomization analysis
To test for a causal relationship between the set of SNPs

identified by the conditional analysis, we performed
Mendelian randomization (MR) analysis41 using the
LOAD GWAS SNPs as instrumental variables, LOAD as
the exposure, and MDD as the outcome. The LOAD
GWAS SNPs were used to define the instrumental vari-
ables. These SNPs are highly replicated, share rigorous
genetic associations with LOAD, and are randomly dis-
tributed in the general population with respect to lifestyle
and environmental factors. Analysis of horizontal pleio-
tropy, where the SNPs associate with LOAD but influence
MDD through pathways that are not specific to AD (e.g.
the exposure) was completed. Two sample MRs42 were
used for the statistical analysis using the MR-Base
resource43,44. The MR Egger methodology45 was used
for all calculations. For the exposure (LOAD), default
parameter settings of a P-value threshold of 1 × 10−8, LD
R2 of 0.001, clumping distance of 10 kb were used.

Functional genomics bioinformatics analyses
Functional bioinformatics analysis was performed to

evaluate the biological significance of the SNPs that were
identified in the pleiotropy analysis as showing condi-
tional association between LOAD and MMD. Two
bioinformatics analysis tools were used to map the SNPs
to genes by proximity, define the genomic context for the
variant, annotate effects on phenotypes, and identify

relevant literature about the variant. The UCSC genome
browser (http://genome.ucsc.edu/) was used to map each
variant to proximate genes and to provide the first level of
information about the genes and biological consequences
of the genes46. SNPnexus (http://www.snp-nexus.org/)
was used to provide additional annotation on gene/pro-
tein consequences and phenotype- and disease-
association for the variants47,48.
Gene set enrichment and pathway analysis was com-

pleted using i-Gsea4Gwas49. This analysis was run on all
SNP association results for the IGAP discovery data set
and the MDD replication data set using the FDR Q values
Q(LOAD|PSTD). The SNP to gene mapping was limited
to 500 kb upstream and downstream of the gene. Candi-
date gene sets included canonical pathways, GO biological
processes, and GO molecular function.
Gene expression analysis and clustering was performed

using the GENE2FUNC capability of the FUMA GWAS
analysis suite50. Gene expression data for the 53 tissue
types was from Genotype-Tissue Expression (GTEx) v6,
for the whole blood from the GTEx portal v7 data
release51,52, and for the monocytes from the Cardiogenics
study53.
eQTL analyses were performed on the GTEx portal

using whole-blood data from GTEx portal v7 data release,
and using a SAS macro for the monocyte data obtained
from the Cardiogenics study53. For the latter, we applied a
Bonferroni level of 5.4 × 10−7 for significance.
Proxy SNPs (D’= 1, R2 > 0.9) were found using the

NIH LDproxy tool54 in the CEU and GBR populations
(https://ldlink.nci.nih.gov/?tab=ldproxy).

Results
Genome-wide association summary results for LOAD and
MDD
Prior to assessment of polygenic overlap between

LOAD and MDD, the individual GWAS for each phe-
notype was compared for quality control (QC) and overall
genetic association statistics. QC details are reported in
the primary publications for IGAP LOAD22 and for the
Psychiatric Genomics Consortium MDD GWAS (PGC-
MDD2)39. Genomic inflation was well controlled in both
of these GWAS, and the minor allele frequencies (MAF)
were limited to MAF > 0.01. Genome-wide significance
levels were set at P ≤ 5 × 10−8 for both the LOAD GWAS
and for the MDD GWAS based on Bonferroni corrections
for the number of SNPs.
Inspection of the Manhattan plots (Supplementary Fig.

S1) show several regions of the genome with nominal
levels of association (P ≤ 1 × 10−5) for the different phe-
notypes, LOAD and MDD. The Q–Q plots (Supplemen-
tary Fig. S2) show that population stratification was
accounted for in the association analysis.
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Fig. 1 (See legend on next page.)
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Assessment of polygenic overlap between LOAD and MDD
Genome-wide fold enrichment
The fold-enrichment plot demonstrated SNP moder-

ate (2.0–4.2-fold) enrichment for LOAD across
increasingly stringent levels of significance with the
MDD GWAS association (LOAD|MDD) (Fig. 1a). The
reverse conditional association (MDD|LOAD) showed
enrichment of ~1.8–7.0-fold (Fig. 1b). These results
support a moderate level of polygenic overlap between
LOAD and MDD.

Fold enrichment excluding the APOE region on chromosome 19
The chromosome 19 region containing the APOE gene

is well-established as a strong genetic risk factor for
LOAD, with GWAS association P-values on the order of
10−238 to 10−12 in the IGAP data set. Since the objective
of the study was to find pleiotropic variants for LOAD and
MDD, and the MDD data sets did not have any variants
close to the magnitude of the APOE level of association
(strongest association was P= 2.3 × 10−11), a second set of
analyses excluding variants in the APOE region were
performed. Variants in the APOE region on chromosome
19, defined as ± 300 Kb of the APOE epsilon coding SNPs
(chr19:45,111,942–45,711,941) were excluded. The fold-
enrichment plot demonstrated moderate (2.4–7.8-fold)
SNP enrichment for LOAD across increasingly stringent
levels of significance with the MDD GWAS association
(LOAD|MDD) (Fig. 1c). The reverse conditional asso-
ciation (MDD|LOAD) showed enrichment of ~2.0–7.2-
fold (Fig. 1d). These results support a moderate level of
polygenic overlap between LOAD and MDD. Excluding
the SNPs in the APOE region clearly identified a stronger
polygenic overlap in the direction LOAD|MDD, with
maximal fold enrichment increasing from approximately
fourfold (including APOE) to eightfold (excluding APOE),
while maximal fold enrichment in the reverse direction,
(MDD|LOAD) was similar at sevenfold for analyses that
included or excluded the SNPs in the APOE region. These
results support the conclusion that including the APOE
region for the conditional analyses can potentially mask
significant results by establishing a set of APOE SNPs with
a significant FDR that offsets other SNPs with FDRs that
do not reach the level of the APOE SNPs.

Mendelian randomization analysis
The MR analysis estimated a moderate influence of the

LOAD-associated SNPs on risk of MDD: OR= 1.4, 95%
confidence limits 1.2–1.7. These results support that the
genetic risks associated with Alzheimer’s disease may
influence the risk of MDD. To test the sensitivity of the
results to horizontal pleiotropy, we performed MR
regression. The test for directional horizontal intercept
was not significant (P= 0.09).

Specific variants and genes identified by conditional false
discovery rate analysis
Manhattan plots based on conditional FDR analysis

were constructed for data sets including (Fig. 2a, b) and
excluding (Fig. 2c, d) the APOE region. The conditional
association analysis excluding the APOE region, in which
LOAD is conditional on association with MDD, Q(LOAD|
MDD), identified a highly significant (FDR Q ≤ 5 × 10−8)
cluster of SNPs on chromosome 11. In addition, two SNPs
on chromosome 2 and two SNPs on chromosome 19 were
identified as significant at a threshold of FDR Q ≤ 1 × 10−5

(Fig. 2c, Table 1). Relaxing the FDR threshold to Q ≤ 0.05
(−log10(Q)= 1.3) resulted in numerous SNPs across the
genome (Table 1). The associated SNPs were classified as
common characterized by 0.02 ≤MAF ≤ 0.90. Individual
GWAS results for these SNPs were consistent with effect
sizes for GWAS studies of complex diseases: LOAD
(IGAP): 0.83 ≤OR ≤ 1.12, 8.67 × 10−5 ≤ P ≤ 3.15 × 10−3;
MDD: 0.86 ≤OR ≤ 1.07, 6.31 × 10−7 ≤ P ≤ 6.14 × 10−4.
Mapping the most proximate genes to the associated
SNPs defined 40 genes of which 9 have been known as
LOAD risk genes via published LOAD-GWAS: BIN1,
CELF1, CR1, FERMT2, MS4A6A, PICALM, PTK2B,
SORL1, and SPI1.
The conditional association analysis in the reverse

direction, Q(MDD|LOAD), exclusive of APOE region did
not identify any SNP with FDR Q ≤ 0.05 (Fig. 2d). The
strongest associated SNPs did not overlap with previously
known GWAS LOAD loci (Table 2). Mapping genes
based on proximity to the SNPs with the strongest con-
ditional association for Q(MDD|LOAD), identified
TRMT61A, FOLH1, CKB and PTPRJ and PTPN1.
The analyses were repeated for the data that included

the APOE region. The conditional association analysis

(see figure on previous page)
Fig. 1 Fold-enrichment plots. Ordinate is fold enrichment. a Abscissa is nominal –log10(P) for SNP association with LOAD, curves are differentiated
by the threshold for level of statistical significance for SNP association with the secondary phenotype (MDD). Plot is made for the results from the full
genome. b Abscissa is nominal –log10(P) for SNP association with MDD, curves are differentiated by the threshold for level of statistical significance
for SNP association with the secondary phenotype (LOAD). Plot is made for the results from the full genome. c Abscissa is nominal –log10(P) for SNP
association with LOAD, curves are differentiated by the threshold for level of statistical significance for SNP association with the secondary phenotype
(MDD). Plot is made for the results excluding SNPs in the APOE-associated region. d Abscissa is nominal –log10(P) for SNP association with MDD,
curves are differentiated by the threshold for level of statistical significance for SNP association with the secondary phenotype (LOAD). Plot is made
for the results, excluding SNPs in the APOE-associated region.
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including the APOE region in which LOAD is conditional
on association with MDD, Q(LOAD|MDD) showed an
extremely strong signal, with FDR Q values ≤ 10−120 for
the APOE region on chromosome 19 that was prominent
on the Manhattan plot (Fig. 2a). The highly significant
(FDR Q ≤ 5 × 10–8) cluster of SNPs on chromosome 11
also remained evident on the plot that included the APOE
region. In the reverse condition Q(MDD|LOAD) analysis
no SNPs were identified (FDR Q ≤ 1 × 10−5), however,
with a relaxed FDR Q ≤ 0.05 (−log10(Q)= 1.3) numerous
associated SNPs were found (Fig. 2b). Overall, the analysis

of Q(LOAD|MDD) ≤ 0.05 including APOE region identi-
fied 458 SNPs representing 40 genes (Supplementary
Table S1), where the corresponding analysis of the Q
(MDD|LOAD) direction found 545 SNPs representing 27
genes (Supplementary Table S2).
Manhattan plots were also constructed for the con-

junction conditional FDR (ccFDR) for the analysis that
included the APOE region (Fig. 2e) and for an analysis
that excluded the APOE region (Fig. 2f). The strongest
association signals for the ccFDR showed marginal sta-
tistical significance for SNPs rs4929858 (FDR Q= 0.06)

Fig. 2 Conditional Manhattan plots of the conditional –log10 (FDR) values. a FDR Q value for SNP association with LOAD conditional with SNP
association for MDD. Plot is made for the results from the full genome. b FDR Q value for SNP association with MDD association conditional with SNP
association for LOAD. Plot is made for results from the full genome. c FDR Q value for SNP association with LOAD association conditional with SNP
association for MDD. Plot is made for the results, excluding SNPs in the APOE-associated region. d FDR Q value for SNP association with MDD
association conditional with SNP association for LOAD. Plot is made for the results, excluding SNPs in the APOE-associated region. e conjunction
conditional FDR Q value for SNP association with LOAD conditional with SNP association for MDD. Plot is made for the results, including SNPs in the
APOE-associated region. f Conjunction conditional FDR Q value for SNP association with MDD conditional with SNP association for LOAD. Plot is
made for the results, excluding the APOE-associated region. For panels a–d, genome-wide significant line (red) is drawn at –log10(5 × 10−8),
suggestive line (blue) is drawn at −log10(1 × 10−5); for panels e and f, genome-wide significant line (red) is drawn at –log10(0.05), suggestive line
(blue) is drawn at –log10(0.1).
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and rs3103780 (FDR Q= 0.07) that are proximal to the
genes TRIM49B and MYCL, respectively.

Mapping of genes to pathways and function
Eight out of the nine genes identified through the Q

(LOAD|MDD) conditional analysis (FDR Q ≤ 0.05) were
also found in LOAD-GWAS. These genes are involved in
two major biological pathways and functional classes,
immune response and regulation of endocytosis, that were
previously implicated in LOAD by pathway analyses of
GWAS data sets55. Specifically, CR1, MS4A6A, SPI1, and
CELF1 are relevant in immune response, and BIN1,
PICALM, SORL1, and PTK2B in regulation of
endocytosis.
Next, gene set enrichment was performed for the con-

ditional FDRs in both directions, Q(LOAD|MDD) and Q
(MDD|LOAD) using all SNPs. In this analysis, the SNP to
gene mapping was limited to 500 kb upstream and
downstream of the gene, and the candidate gene sets
included canonical pathways, GO biological processes,
and GO molecular function. The pathway gene set ana-
lysis using the LOAD conditional on MDD results showed
the strongest statistical confidence (enrichment FDR <
0.05) for several biological pathways, including calcium
channel activity, oxidoreductase activity acting on
NLOADH or NLOADPH, receptor-mediated endocytosis,
and phospholipid binding (Supplementary Table S3),
following by hematopoietic cell lineage pathway with
enrichment FDR= 0.04. The pathway mapping results for
the receptor-mediated endocytosis were based on strong
associations with 12 genes, from PICALM and SORL1 that
demonstrated the strongest effects, to DMN1, IGF2R, and
SFTPD with weaker effects.
The significant pathways (FDR Q ≤ 0.05) identified using

the results of the MDD conditional with LOAD represent
a broad set of regulatory pathways, including leukocyte
transendothelial migration, adherens junction, and purine
metabolism (Supplementary Table S4). Notably, neuro-
logical system processes were identified as FDR significant
(P ≤ 0.05).
Two genes showed association trends in the ccFDR

analysis. One of which, TRIM49B, is a member of the
TRIM family proteins which has a role in the innate
immunity56, providing further evidence for the involve-
ment of the immune system in LOAD.

Gene expression analysis in brain
The tissue-specific gene expression for the 62 genes

mapped by proximity to the SNPs identified in condi-
tional association for Q(LOAD|MDD) was evaluated in 53
GTEx tissues (Fig. 3a). Fifty-three out of the total 62 genes
were mapped to unique Entrez GeneID numbers, and are
displayed in the heatmap. The heatmap was ordered by
both gene and tissue clustering and denoted 13 brain-

specific tissues. The BIN1, PICALM, and PSMC2 genes
showed high (5.7) levels of expression in the 13 brain
tissues relative to all other genes. MS4A4A, MS4A6A, and
SPI1 showed a consistent, low expression level (~1.4) in
the 13 brain tissues. MTCH2, SSBP4, and PTPMT1
showed a consistent, moderate expression level (4.2) in all
13 brain tissues (Fig. 3a).

eQTL analysis in myeloid lineage
We evaluated the set of 53 genes for expression levels in

whole blood from the GTEx portal and for expression
levels in monocyte data from the Cardiogenics study53.
Only 34 genes had expression data in both dataset
resources. We found six genes, including MS4A6A and
SPI1, with high levels of expression relative to other genes
in whole blood and in monocytes (Fig. 3b). The level of
SPI1 expression was higher than other genes in the set for
the two tissues. The level of expression of MS4A6A
was uniquely higher in monocytes than in whole blood
(Fig. 3b).
Next, we performed an eQTL analysis for the five highly

significant SNPs (FDR Q ≤ 5 × 10−8) on chromosome 11
(Table 2—marked in*; Supplementary Table S5), and
found significant associations between the four SNPs
clustered at theMS4A locus and mRNA levels ofMS4A6A
gene in whole blood (Fig. 3c; Supplementary Table S5).
These four SNPs were not available in the monocytes
expression data set; therefore, we conducted the eQTL
analysis using proxy SNPs (D’= 1, R2 > 0.9, Supplemen-
tary Table S5), and identified associations for all proxies
with MS4A4A expression in monocytes (P < 5.4 × 10−7,
Fig. 3c; Supplementary Table S5). SNP rs541458, proximal
to PICALM, showed no significant eQTL signals in whole
blood or in monocytes. SNP rs67472071 in the vicinity of
SPI1 was the next significantly associated with LOAD
conditional on MDD (FDR Q= 1 × 10−6). We extended
the eQTL analyses and found associations between this
SNP and the expression of the regional MYBPC3 and
C1QTNF4 genes in whole blood, and between its proxy
and MYBPC3 expression in monocytes (Supplementary
Table S5).

Discussion
This study represents the first step toward deciphering

the genetic heterogeneity of NPS in LOAD, and in par-
ticular the comorbidity of depression and LOAD. The
conditional FDR (cFDR) approach we undertook in this
study was to identify genetic variants and genes that are
associated with LOAD conditional on an association with
MDD and vice versa. The cFDR approach showed clear
precedent in a study that investigated overlap in variants
associated with LOAD and plasma levels of c-reactive
protein (CRP), low-density lipoprotein, high-density
lipoprotein, and triglyceride. This previous study found
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polygenic overlap between LOAD and systemic inflam-
mation measured by CRP and plasma lipids28. Moreover,
by conditioning the LOAD association on inflammation
and lipids phenotypes, they identified novel loci that were
not reported in large LOAD case–control studies, and
provided new insights into the involvement of pathways
related to systemic inflammation, plasma lipids, and
LOAD28. Similarly, another recent study examined the
polygenic overlap between cognitive impairment and
plasma CRP and lipids. They found an enrichment for
SNPs associated with cognitive impairment conditional
on plasma CRP and lipids, and significant associations for
the APOE extended locus36. Shared genetic etiology for
LOAD using the cFDR method was also investigated for
Type 2 diabetes (T2D)37. In this study, multiple known
and novel associated SNPs were identified by conditioning
LOAD association on T2D and by the reverse direction,
and mitochondrial dysfunction was highlighted as a
common pathway37. The approach has been also utilized
more broadly to examine genetic pleiotropy between
multiple diverse diseases and phenotypes including schi-
zophrenia and cognitive traits29, bipolar disorder27, mul-
tiple sclerosis26, cardiovascular disease risk factors25, and
educational attainment30. Additional diseases and phe-
notypes to which the approach has been applied include
Parkinson’s disease and autoimmune diseases31, blood
lipids, immune-related diseases32 and more33–35. Collec-
tively, using multiple disorders with overlapping pheno-
types in genetic association studies allows the
identification of shared genetic variants, genes, and
pathways, which in turn elucidate common pathobiology
and molecular mechanisms across disorders. Further-
more, conditioning genetic associations on multiple
phenotypes is crucial to the discovery of novel loci that
otherwise would not be identified via conventional
case–control design.
In this study, we demonstrated shared genetic etiologies

between LOAD and MDD. We observed a moderate
enrichment for SNPs associated with LOAD across
increasingly stringent levels of significance with MDD
GWAS association, as well as in the reverse direction.
Mendelian randomization analysis supported a potential
causal relationship between the significant LOAD SNPs
with MDD; this relationship was not a consequence of
horizontal pleiotropy. In addition, we identified numerous

associated SNPs and the biological interpretation of the
corresponding genes pinpointed the immune response
and regulation of endocytosis as common pathways. In
contrast, Gibson et al. previously assessed overlapping
polygenic architecture for LOAD and MDD and found no
evidence for pleiotropy between these disorders38. These
divergent outcomes may be explained by the different
methodology used to investigate shared genetic between
LOAD and MDD; while we applied a cFDR framework to
detect genetic pleiotropy, the previous publication used
LD score regression and polygenic risk score analysis.
Alternatively, the different MDD cohorts from different
countries may have been recruited using distinctive case
diagnostic criteria, that may be anticipated given the
arbitrary threshold criteria applied to clinical diagnosis of
depression.
The LOAD genetic association analysis conditional on

MDD Q(LOAD|MDD) showed an enrichment of SNPs on
chromosome 11 with strong level of significance (Table 1).
These SNPs are mapped predominantly in two major
clusters on chromosome 11 that include genes previously
implicated in LOAD–GWAS16,20. The first cluster fea-
tures the CELF1 and SPI1 genes; while CELF1 was the
most proximate gene to the LOAD-SNP at this locus,
SPI1 was recently suggested as a stronger candidate causal
gene for LOAD based on functional lines of evidence57.
SPI1 encodes PU.1, a transcription factor that is critical
for myeloid cell development and function. A recent study
reported an association between a SNP in the SPI1 gene,
rs1057233, and LOAD age of onset57. In addition, they
performed an eQTL analysis and found that this SNP is
associated with SPI1 expression in monocytes and mac-
rophages, suggesting that the encoded PU.1 may be a
master regulator for the expression of multiple LOAD
genes in myeloid cells57. Last, overexpression and down-
regulation of PU.1 in mouse microglial cells affected
phagocytic activity and the expression of mouse orthologs
of several LOAD risk genes. Based on these observations,
we analyzed the linkage disequilibrium region of the SPI1
locus. The SNP rs67472071 proximate to SPI1 showed a
conditional association for LOAD [Q(LOAD|MDD, FDR
= 1.05 × 10−6)]. rs67472071 is located 15,297 base pairs
from rs1057233 and is a proxy (R2= 0.95 and D’= 1) for
this reported functional LOAD SNP rs105723357. The
second cluster of LOAD conditional MDD-associated

(see figure on previous page)
Fig. 3 Gene expression and eQTL analysis for genes associated with LOAD conditional on association with MDD. a Heatmap plot of tissue-
specific gene expression data in 53 GTEx tissue types for the 53 genes identified by proximity mapping for SNP association with LOAD, conditional
with SNP association with MDD. There are 13 brain-specific tissues highlighted in the heatmap, which was ordered by both gene and tissue
clustering. b Heatmap plot of expression levels of 53 genes in whole blood from the GTEx portal and in monocyte data from the Cardiogenics study.
c Violin plots for eQTL analysis results in whole blood (upper panel) and in monocytes (lower panel) for SNPs identified as significant (FDR Q ≤ 5 ×
10−8) for the association with LOAD conditional with association for MDD (Supplementary Table S5).
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SNPs encompasses the membrane-spanning 4-domains
subfamily A (MS4A) genes region that encodes proteins
with strong expression in the hematopoietic system. A
new study integrated LOAD–GWAS with myeloid epi-
genomic and transcriptomic data sets to define candidate
LOAD-risk enhancers in myeloid cells and their linked
target causal genes58. By fine mapping of a candidate
myeloid enhancer linked to the MS4A locus, they identi-
fied candidate functional SNP rs636317-T in the MS4A
locus that affected the expression of MS4A6A, and vali-
dated it experimentally in human induced pluripotent
stem cell (hiPSC)-derived microglia58. Consistent with
this finding, our eQTL analysis showed that the cluster of
SNPs at the MS4A locus are associated with the expres-
sion of MS4A6A in whole blood. Notable, in monocytes
we showed that these SNPs were eQTLs for the adjacent
MS4A4A. To further support the functional relevance of
our finding, we examined the high LD region of theMS4A
genes cluster, and found that two of the conditional
LOAD-associated SNPs in this region, rs1582763 (prox-
imal to MS4A4E) and rs1026254 (MS4A4A) located 2,798
and 11,307 base pairs away from the functional candidate
SNP-rs636317, respectively, are proxies for this reported
functional candidate SNP (R2= 0.85 and D’= 1, R2= 1
and D’= 1, respectively). Thus, the integrated data implies
biological significance for the LOAD and MDD pleio-
tropic variants on chromosome 11 related to expression
regulation in myeloid cells such as microglia.
Genetic studies implicated several genes on chromo-

some 11, including the MS4A cluster, SPI1, and CELF1, in
both LOAD and MDD (GWAS summary statistics in
Table 1). As discussed above, we identified LOAD and
MDD pleiotropic variants proximal to these genes. The
broader pleiotropic nature of these genes has not been
studied extensively. A comprehensive literature search
showed that these genes are also involved in non-
neurological diseases (Supplementary Table S6). Inter-
estingly, all of these neurological and non-neurological
diseases are related, to varying extents, to the immune
system. We interpret that the relationships of these genes
to the various diseases may be exerted via their roles in
immune response.
Our results warrant further in-depth investigations in

several areas: (1) Confidence in the genetic association
results is increased by the conditional association of two
independent phenotypes, nevertheless future studies
using replication cohorts will provide additional support
to the results. (2) The conditional FDR framework iden-
tified associations of variants with the phenotypes. To
advance our understanding of the causality, in this study
we identified overlaps with eQTLs and suggested biolo-
gical roles of the associated variants in regulation of gene
expression. However, causality for the specific biological
pathways would require validation studied using gene

editing experiments in model systems. (3) Mapping of the
associated SNPs to genes was inferred by proximity; other
more distal relationships of the variants with genetic
enhancers, for example, are important and ought to be
evaluated experimentally using methods, such as Hi-C, to
determine topographical associated domains (TAD). (4)
The conditional FDR framework utilizes GWAS summary
statistics from well-replicated consortium studies. Impu-
tation of SNPs performed in these studies is based on
1000 Genomes reference panels, as is the pruning of SNPs
by LD in the conditional FDR approach. Several studies
have pointed to the limitations of using LD measures
based on the 1000 genomes reference panel for genetic
analysis using summary statistics, including conditional
analysis, gene-based testing, fine mapping, and polygenic
risk prediction59–61. As larger reference panels (e.g.
Haplotype Reference Consortium62) and updated GWAS
summary statistics based on these panels become avail-
able, the conditional analysis should also be updated.
In this study, we focused on LOAD and MDD to

exemplify the concept of pleiotropy between two dis-
orders that shared NPS. The results of this study provide a
proof of concept for future work extending the evaluation
of shared genetic etiology between LOAD and additional
neuropsychiatric conditions that present comorbid NPS
similar to those that manifest in LOAD. Moreover, further
investigations are warranted to determine whether our
observations are specific to LOAD and MDD, or can be
generalized to other complex neuropsychiatric disorders
with shared NPS.
In conclusion, the outcomes of this study have several

important implications to LOAD genetic architecture,
including the demonstration of genetic pleiotropy effects
between LOAD and MDD, identification of new LOAD
loci, and validation of LOAD pathways. Furthermore, our
data propose a genetic interpretation of the heterogeneity
of depression in LOAD. These findings are important for
the development of actionable targets for novel therapies
to treat depression preceding dementia, in an effort to
delay or ultimately prevent the onset of LOAD.
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