Skip to main content
. 2020 Feb;10(2):415–427. doi: 10.21037/qims.2019.12.12

Table 1. Quantitative results of different algorithms for the testing images in Figures 3,5,7.

Algorithm Lung Abdominal 1 Abdominal 2
PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE
LDCT 38.5195 0.8967 0.0119 30.4167 0.5876 0.0301 31.6664 0.6469 0.0261
TV 41.8727 0.9567 0.0081 37.3804 0.8786 0.0135 38.0982 0.8945 0.0124
RedCNN-MSE 44.8781 0.9782 0.0057 40.0759 0.9348 0.0099 41.2589 0.9467 0.0087
ADAPTIVE-MSE 44.3783 0.9774 0.0060 39.6627 0.9364 0.0104 40.5510 0.9441 0.0094
RedCNN-VGG-1000*MSE 47.0619 0.9852 0.0044 40.5442 0.9425 0.0094 42.0989 0.9540 0.0079
ADAPTIVE-VGG-5000*MSE 46.3096 0.9842 0.0048 40.1877 0.9405 0.0098 41.6529 0.9520 0.0083
ADAPTIVE-VGG-1000*MSE 46.0407 0.9835 0.0050 39.5937 0.9342 0.0105 41.1898 0.9485 0.0087

NRMSE, normalized root mean square error; SSIM, structural similarity index metric; PSNR, peak signal-to-noise ratio.