Table 1. Quantitative results of different algorithms for the testing images in Figures 3,5,7.
Algorithm | Lung | Abdominal 1 | Abdominal 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | NRMSE | PSNR | SSIM | NRMSE | PSNR | SSIM | NRMSE | |||
LDCT | 38.5195 | 0.8967 | 0.0119 | 30.4167 | 0.5876 | 0.0301 | 31.6664 | 0.6469 | 0.0261 | ||
TV | 41.8727 | 0.9567 | 0.0081 | 37.3804 | 0.8786 | 0.0135 | 38.0982 | 0.8945 | 0.0124 | ||
RedCNN-MSE | 44.8781 | 0.9782 | 0.0057 | 40.0759 | 0.9348 | 0.0099 | 41.2589 | 0.9467 | 0.0087 | ||
ADAPTIVE-MSE | 44.3783 | 0.9774 | 0.0060 | 39.6627 | 0.9364 | 0.0104 | 40.5510 | 0.9441 | 0.0094 | ||
RedCNN-VGG-1000*MSE | 47.0619 | 0.9852 | 0.0044 | 40.5442 | 0.9425 | 0.0094 | 42.0989 | 0.9540 | 0.0079 | ||
ADAPTIVE-VGG-5000*MSE | 46.3096 | 0.9842 | 0.0048 | 40.1877 | 0.9405 | 0.0098 | 41.6529 | 0.9520 | 0.0083 | ||
ADAPTIVE-VGG-1000*MSE | 46.0407 | 0.9835 | 0.0050 | 39.5937 | 0.9342 | 0.0105 | 41.1898 | 0.9485 | 0.0087 |
NRMSE, normalized root mean square error; SSIM, structural similarity index metric; PSNR, peak signal-to-noise ratio.