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Introduction

Colorectal cancer (CRC) is the third most diagnosed cancer 
and the second most common cause of cancer-related 
deaths worldwide (1). Approximately 50% of patients 
with CRC develop liver metastases either by the time of 
diagnosis or later during the disease course. Preoperative 
prediction of hepatic metastasis in patients with CRC is 
crucial to treatment decisions and patient prognosis (2,3). 
The liver is the most common metastatic organ of CRC. 

Thus, accurate diagnosis of liver metastases in patients with 
CRC before surgery is crucial to ensuring the appropriate 
treatment choice and for prognostic evaluation. Computed 
tomography (CT) is widely used to diagnose colorectal 
diseases because it can better show the primary tumor, 
local lymph node metastasis, and distant metastasis of the 
lesion, but the sensitivity and specificity of CT images are 
low when used to assess small or atypical liver metastases 
(4-8). Some studies have focused on colorectal cancer liver 
metastasis (CRLM) with magnetic resonance imaging (MRI) 
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and achieved excellent results (9,10). For some CRLM 
patients with whom a diagnosis is difficult, liver MRI 
enhancement examination or needle biopsy is performed for 
diagnosis. However, MRI examination is expensive and time 
consuming, while biopsy is an invasive examination.

Radiomics (11) extracts mineable high-dimensional 
information from medical images (CT, MRI, etc.), and 
is a mature research field that aims to build models to 
improve diagnostic, prognostic, and prediction accuracy, 
which enhance precision medicine (12-15). Radiomics 
procedures can be divided into several steps, namely, region 
of interest (ROI) extraction, radiomics feature extraction, 
feature selection, and building models. Each step requires 
a reasonable assessment to build robust models that can be 
transferred to clinical practice for prognosis, noninvasive 
assessment, and tracking disease response to treatment. 
Scholars have also used radiomics in research on clinically 
relevant CRC issues (16-18). This study develops an 
individualized nomogram to predict CRC synchronous liver 
metastases based on radiomics data of primary CRC from 
CT images.

Methods

Framework for predicting colorectal liver metastases

We built two models to predict colorectal liver metastases: 
one based on radiomics feature signatures, and the 
other one based on both radiomics features and clinical 
information signatures. The process for analyzing the 

radiomics features is shown in Figure 1.

Materials

Subjects
We performed a retrospective analysis of patients from 
the First Hospital of Jilin University from June 2017 
to December 2017. The criteria for inclusion were (I) 
patients with CRC and liver metastases confirmed by MRI 
or pathology and (II) patients who received preoperative 
colon CT plain scan and enhanced examination. The 
criteria for exclusion were (I) patients who received new 
adjuvant chemotherapy before surgery and (II) patients 
with poor image quality that was unsuitable for quantitative 
analysis. One hundred patients were selected from the 
eligible patients; the selected patients included 50 with liver 
metastasis and 50 without liver metastasis.

The whole dataset comprising data of 100 patients was 
randomly divided into the cross-validation set and the test 
set at a ratio of 8:2; that is, 80 patients were assigned to the 
cross-validation set, and 20 were assigned to the test set.

All the primary CRC lesions were single tumors. Finally, 
we adopted the maximum-level enhanced CT image in the 
portal venous phase of each patient as the input image. The 
filtering process is shown in Figure 2.

CT scanning protocol
A Philips Brilliance 256 iCT scanner was used for plain 
and enhanced abdominal scanning. The layer thickness was  
5 mm, the layer spacing was 5 mm, the frame rotation speed 

Figure 1 The process for analyzing radiomics features.
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Figure 2 The patient selection process. Negative = patients without colorectal liver metastasis; positive = patients with colorectal liver 
metastasis.
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was 2 r/s, the pitch was 0.800, the tube voltage was 120 
kV, the tube current was 150 mA, and the matrix size was 
512×512. The output CT images were exported in DICOM 
format.

Data collection
Two radiology physicians with an average age of 37 years 
(radiologist 1, HM Zhang, chief physician, 25 years of 
experience; radiologist 2, Y Guo, 3 years of experience) 
read the CT images. In-house developed software was used 
to select the slice that included the largest of the venous 
image tumor lesions to place the ROIs along the contour of 
the lesion while removing cystic, necrotic, and transitional 
areas between lesions and normal intestine. An agreement 
between the two radiologists regarding ROI extraction was 
evaluated using the intraclass correlation coefficient (ICC). 
An ICC greater than 0.75 was considered good agreement; 
the remaining ROIs were placed by radiologist 1.

The patients’ clinical information included age, sex, 
carcinoembryonic antigen (CEA) (normal reference value 
≤3.7 ng/mL), and carbohydrate antigen 19-9 (CA19-9) 
(normal reference value ≤27 U/mL).

Radiomics method

We developed a medical image quantitative analysis 
platform called the Radiomics Intelligent Analysis Toolkit 
(RIAT) to assist radiologists. RIAT consists of two 
main parts: (I) DICOM file preprocessing and (II) data 
processing. Its main functions include the following: (I) 
removing personal information from DICOM files and 
optimizing ROI extraction; (II) extracting either fewer or 
more radiomics features based on the radiologists’ needs; 

(III) acquiring the radiomics features signature using 
different algorithms; (IV) building and saving high-accuracy 
machine learning models by automatically selecting the 
optimal parameters; (V) using the receiver operating 
characteristic (ROC) curves of the cross-validation and test 
set to evaluate the models; and (VI) building models and 
performing predictions using an embedded device.

The graphical user interface (GUI)
The GUI of RIAT supports DICOM file preprocessing 
and ROI extraction, radiomics feature extraction, data 
preprocessing, radiomics features and model parameter 
selection, model building and prediction, logging, etc. (see 
Figure 3A,B). The GUI was developed by QT® (Qtsoftware, 
Norway).

Optimized identification and extraction of ROI
Some of the functions in RIAT include ROI optimized 
extraction and matching ROI binary images to DICOM 
files. RIAT can set the window widths and centers of 
DICOM files. The preprocessed DICOM and label files can 
be used directly for feature selection. A red line indicates 
the ROI of the CT image, and the optimization algorithm 
must extract the best ROI. RIAT supported the extraction 
of single ROIs, multiple ROIs, and nested ROIs. Some 
optimization results are shown in Figure 4.

Automated radiomics module
Radiomics consists of five parts: (I) ROI extraction; (II) 
feature extraction; (III) feature selection; (IV) machine 
learning model development; and (V) model evaluation 
and prediction. Recently, automatic and semiautomatic 
segmentation via deep learning have achieved excellent 
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Figure 3 The GUI: (A) for radiomics features in RIAT; (B) for radiomics features and clinical information in RIAT. GUI, graphical user 
interface; RIAT, Radiomics Intelligent Analysis Toolkit.
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performance (19-21). However, most researchers still 
use manual extraction (22-24). Feature selection is 
conducted after feature extraction. Removing redundant 
features is conducive to building highly accurate models, 
which are based on hypothesis tests and regularization. 
Although statistics occupies a vital position in the study of  
radiomics (25), few studies have applied hypothesis tests 
to select radiomics features (26,27). Most studies use the 
least absolute shrinkage and selection operator (LASSO) 
regularization to select radiomics features because of 
its stability and effectiveness (23,24,28-30). In addition, 
minimum redundancy maximum relevance (mRMR) has 
proven to be effective in some studies (31).

Support vector machine (SVM) (32,33) and the random 
forest classifier (RFC) have been used (27,34) in radiomics. 
The nomogram is widely used with the radiomics feature 
and clinical information because it is more interpretable 
(23,35). ROC and area under the receiver operating 
characteristic (AUROC) curves are regarded as the most 
used evaluation standards. The results of cross-validation 
in large datasets are representative and enable objective 
validation of the data distribution of the whole dataset (36).  
The combination of radiomics features and clinical 
information can improve model accuracy for some diseases 
(33,35). Machine learning has the potential to improve the 
ability and accuracy of radiomics (37-41) and can improve 
radiologists’ efficiency (42-44).

RIAT uses pyradiomics, which is highly accurate and 
written in Python, to extract the following radiomics 
features (19): (I) up to 187 first-order and shape features 
based on the original image and (II) up to 1,470 first-order 
and higher-order features based on the original image 

and other image transforms (such as a wavelet transform). 
Using the ROIs annotated by a radiologist, RIAT extracts 
841 features for each CT image on the complete dataset. 
These features include the following: (I) wavelet transform; 
(II) first-order texture feature; (III) shape features (surface 
area, sphericity, flatness, etc.); (IV) gray-level co-occurrence 
matrix (GLCM) (contrast, correlation, joint entropy, etc.); 
(V) gray-level size-zone matrix (GLSZM) [gray-level 
nonuniformity (GLN), size-zone nonuniformity (SZN), 
gray-level variance (GLV), etc.]; (VI) gray-level run-length 
matrix (GLRLM) [run variance (RV), run entropy (RE), 
short-run emphasis (SRE), etc.]; (VII) neighborhood gray-
tone difference matrix (NGTDM) (coarseness, contrast, 
complexity, etc.); and (VIII) gray-level dependence matrix 
(GLDM) (gray level, GLV, GLN, and level dependence). 
Figure 5 shows an example of an original ROI image 
and feature matrix visualizations of the same ROI under 
different image transformations.

LASSO regularization and gradient feature selection 
are implemented in RIAT. In each method, different 
numbers of cross-validation folds can be set by the user. 
RIAT automatically plots the convergence and feature 
selection curves after performing LASSO regularization. 
RIAT provides several stable machine learning models: 
RFC, gradient decision tree (GBDT), SVM, LR, multilayer 
perceptron (MLP), and stacking classifier (SCLF).

Evaluation module
Model evaluation methods have always been a focus of 
research. As RIAT randomly divides the dataset into a 
cross-validation set and a test set, we can see whether 
the feature selection method is effective across the entire 

Figure 4 (a1,b1,c1,d1) are the ROIs of the original CT images marked by the red line; (a2,d2,c2,d2) are unoptimized ROI binary images; 
and (a3,b3,c3,d3) are optimized ROI binary images. ROI, region of interest.

a1 a2 a3 b1 b2 b3BA

c1 c2 c3 d1 d2 d3DC
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cross-validation set. This procedure helps to understand 
data distribution characteristics and assess model 
generalizability. The ROC can effectively reduce accuracy 
deviations caused by imbalanced data. RIAT provides cross-
validation for the training and verification sets and plots 
every ROC curve, mean ROC curve, and the standard 
deviations under different folds. Some diseases require high 
sensitivity, specificity, positive predictive value, or negative 
predictive value; this aspect forms a vital part of the model 
effectiveness evaluation. Based on the number of folds 
selected for cross-validation, RIAT calculates the average 
value and standard deviation for sensitivity, specificity, 
positive predictive value, and negative predictive value for 
each training and verification set.

Data standardization and gradient feature selection
Because the absolute values of the radiomics feature are 
quite different, data standardization is the first step before 
data processing. We obtain the mean and variance from the 
cross-validation set; these values are used to standardize the 
test set in RIAT.

Feature selection is required before modeling. We 
independently select the radiomics feature signature from 
the cross-validation set only to ensure that the test set is 
unaffected. We use gradient feature selection to evaluate the 
841 features of each CT image. Features are selected when 
the t-test results are P<0.05 based on the hypothesis. Then, 
these features are further filtered by LASSO with 10-fold 
cross-validation. We select the α value in which the mean 
square error is the smallest. Using the α value, we obtain 
the radiomics feature signature and feature coefficients.

Models and performance for CRLM prediction

Radiomics feature signature
We built six models using RIAT on the radiomics feature 
signature for CRLM prediction. The optimal parameters 
for all the models were set by automatic selection except 
for the SCLF model, which consists of RFC, GBDT, and 
LR. The optimized model parameters were selected when 
the mean AUROC of the cross-validation set is the highest. 
The initial parameter range of each model is reported in 
Table 1; the three values in ‘n_estimators’ and ‘max_depth’ 
are the start value, end value, and step size, respectively.

After selecting the optimal parameters for each model, 
the ROC curve is plotted as 5-fold cross-validation on 
the cross-validation set. The proportion of negative and 
positive patients in each training and verification set is to 1:1. 
The ROC of the training set and verification set contains 
the independent ROC for each fold, the mean ROC of the 
5-fold cross-validation, the mean AUROC, and its standard 
deviation. Thus, we can see the overall data distribution of 
the cross-validation set and the ROC fluctuation in each 
dataset. Using this approach not only serves to verify the 
efficacy and generalizability of feature selection on the 
entire cross-validation set but also functions as a reference 
for the test set ROC. Consequently, it increases the fairness 
and objectivity of the model evaluation.

The radiomics feature signature of the entire cross-
validation set is used as a training set when building a 
new model to perform predictions based on the radiomics 
feature signature of the test set. Among all the models, 
the best model is found by comparing the mean AUROC 
and standard deviation of the cross-validation set with the 
AUROC of the test set.

In addition to using ROC and AUROC as a reference 
for model performance evaluation, RIAT also provides 
sensitivity, specificity, positive predictive value, and negative 
predictive value scores. RIAT only calculates the average 

Figure 5 Original ROI images and feature visualizations under 
different radiomics features. ROI, region of interest.
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value and standard deviation of the cross-validation set, and 
not those of the test set.

Radiomics feature signature and clinical information 
signature
We transformed the multidimensional radiomics feature 
signature into a one-dimensional radiomics feature 
signature using Eq. [1]. By applying a chi-square test to 
sex and lesion location clinical information and a t-test to 
the other clinical information, if we can obtain a clinical 
information signature of P<0.05, we use it to build a model 
with the one-dimensional radiomics feature signature. The 
model-building process is the same as that used to build the 
model for the radiomics feature signature:

n
i ii

R* = v c ,∗∑ 	 [1]
where R* is the one-dimensional radiomics feature 

signature, vi is the multidimensional radiomics feature 
signature, and ci is the feature coefficient.

Results

Gradient feature selection and the heat map of the feature 
correlation coefficient matrix

We first selected 210 radiomics features of P<0.05 from 841 
radiomics features using a t-test. Then, the 12 radiomics 

feature signatures were selected by LASSO in a 10-fold 
cross-validation from the 210 radiomics features. An 
example LASSO regularized diagram is shown in Figure 6. 
The feature names, feature values, and feature coefficients 
of the 12 radiomics feature signatures are listed in Table 2.

The heat map of the radiomics feature correlation 
coefficient matrix and the heat map of the radiomics feature 
signature correlation coefficient matrix are shown in Figure 7.  
As shown in Figure 7, the gradient feature selection removed 
redundant features but retained the feature correlations.

Evaluation of radiomics feature signature models

According to the radiomics feature signature, we traversed 
all the initialized parameters using five models (e.g., RFC, 
GBDT, MLP, SVM, and LR) to select optimal parameters. 
The selection criterion is to select the largest mean 
AUROC of the 5-fold cross-validation. The final optimal 
parameters of each model are reported in Table 1.

We plotted the ROCs of the training and verification sets 
in RIAT using the model with optimal parameters from the 
5-fold cross-validation. Then, we applied the entire cross-
validation set as a training set to build a model and use it to 
predict the test set. All the ROCs of the different models 
are shown in Figure 8.

Table 1 The parameter search range of models and selected model parameters

Parameter RFC GBDT MLP SVM LR

n_estimators (100, 200, 10)a,  
(130)b, (150)c

(100, 200, 10)a,  
(110)b, (160)c

max_depth (2, 10, 2)a, (2)b, (2)c (2, 10, 2)a, (2)b, (4)c

hidden_layer_
size

[(10, 10),(50, 50),(100, 100)]a, 
(50, 50)b, (50, 50)c

solver (lbfgs, sgd, adam)a,  
(lbfgs)b, (lbfgs)c

(newton-cg, lbfgs, liblinear, sag, 
saga)a, (newton-cg)b, (newton-cg)c

kernel (rbf, linear)a, (rbf)b, 
(rbf)c

C (1, 10, 100, 1000)a, 
(1)b, (1)c

cv_folder 5 5 5 5 5

The first column presents the parameter names of all models except ‘cv_folder’. The first row presents the names of all models. a, 
represents the parameter search range of each model. In addition, the third place of ‘n_estimators’ or ‘max_depth’ means the step 
size of the corresponding parameter change. The models automatically search for the optimal parameters from the parameter search 
range according to the cross-validation set. b, represents the optimal parameters of each model with the radiomics feature signature. 
c, represents the optimal parameters of each model with the radiomics feature signature and clinical information signature. ‘cv_folder’ 
represents the cross-validation folder.
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Table 2 Feature name and feature coefficient of radiomics feature 
signatures

Feature name Coefficients

original_firstorder_Median 0.0258837

wavelet-LLL_gldm_DependenceVariance 0.00187731

wavelet-LLH_firstorder_Skewness 0.0850055

wavelet-LLH_glcm_MaximumProbability 0.056486

wavelet-LHL_glcm_Idmn 0.0664622

wavelet-HLL_glrlm_
ShortRunLowGrayLevelEmphasis

−0.0743506

wavelet-HLL_glszm_ZoneEntropy −0.0415202

wavelet-HLH_firstorder_Median −0.10654

wavelet-HLH_glrlm_RunLengthNonUniformit
yNormalized

0.0606122

wavelet-HHL_firstorder_Maximum 0.0436455

wavelet-HHL_glszm_SmallAreaEmphasis 0.0410796

wavelet-HHH_glcm_Contrast 0.0380088

Original: the original image; wavelet: wavelet transform; LLL, 
LLH, LHL, HLL, HLH, HHL, and HHH: subbands of the wavelet 
transform; firstorder: first-order feature; gldm: gray-level 
dependence matrix; glcm: gray-level co-occurrence matrix; 
glrlm: gray-level run-length matrix; glszm: gray-level size-zone 
matrix; Idmn: inverse difference moment normalized.

Figure 6 (A) The relationship between the mean square of the LASSO 10-fold cross-validation and the value of -log(α); (B) the relationship 
between the feature coefficient and the value of -log(α). The thick solid line is the mean curve of the LASSO 10-fold cross-validation curve, 
and the thin dotted line is the LASSO regularized curve of each fold in (A). The thin dotted line is the feature coefficient value of each fold 
at different -log(α) values in (B). The thick dotted line is the value of -log(α) at the minimum mean square error. LASSO, least absolute 
shrinkage and selection operator.

0.5	 1.0	 1.5	 2.0	 2.5	 3.0	 3.5
-log(α)

M
ea

n 
sq

ua
re

 e
rr

or

Fe
at

ur
e 

C
oe

ffi
ci

en
t

0.5	 1.0	 1.5	 2.0	 2.5	 3.0	 3.5
-log(α)

Average across the folds

alpha: CV estimate
alpha: CV estimate

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

2.5

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

BA

Figure 7 The abscissa and ordinate in (A) are the 841 standardized 
radiomics features. The abscissa and ordinate in (B) are the 12 
radiomics feature signatures. When the correlation coefficient 
value is closer to 1, the two features are more correlated, and when 
the correlation coefficient value is closer to −1, the two features are 
less correlated.

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	12

0
1
2
3
4
5
6
7
8
9

10
11
12

1.00

0.75

0.50

0.25

0.00

−0.25

B

0
41
82

123
164
205
246
287
328
369
410
451
492
533
574
615
656
697
738
779
820

0.8

0.4

0.0

−0.4

−0.8

0 33 66 99 13
2

16
5

19
8

23
1

26
4

29
7

33
0

36
3

39
6

42
9

46
2

49
5

52
8

56
1

59
4

62
7

66
0

69
3

72
6

75
9

79
2

82
5

A



405Quantitative Imaging in Medicine and Surgery, Vol 10, No 2 February 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(2):397-414 | http://dx.doi.org/10.21037/qims.2019.12.16

RFC

GBDT

MLP

SVM
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Figure 8 The training ROC curve, verification ROC curve, cross-validation ROC curve, and test ROC curve of the radiomics features 
signatures from different models. The solid blue line denotes the mean ROC curve or the ROC curve, while the red dotted line is the 
diagonal of the ROC curve. The gray shaded area is the standard deviation range of the ROC curve on the cross-validation set, and the thin 
solid line is the ROC curve for each fold in cross-validation. (A) The ROC of the training set on the cross-validation set; (B) the ROC of the 
verification set on the cross-validation set; (C) the ROC of the cross-validation; and (D) the ROC of the test set. ROC, receiver operating 
characteristic.
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The AUROC scores for each model on the training 
set, verification set, cross-validation set, and test set are 
reported in Table 3. A histogram of the AUROC scores 
for each model on the training set, verification set, and 
test set is shown in Figure 9. The sensitivity, specificity, 
positive predictive value, and negative predictive value of 
the training set, verification set, cross-validation set and test 

set for each model with the radiomics feature signature are 
reported in Table 4.

As Figure 9A and Table 3 (part A) show, the mean 
AUROC of the LR model on the verification set is 0.79, 
which is the highest of the six models. The absolute value of 
the standard deviation of the LR model is 0.04, which is the 
smallest of the six models. The AUROC of the RFC model 

Table 3 The AUROC scores for each model

Variable Training set Verification set Cross-validation set (95% CI) Test set (95% CI)

A: The AUROC scores for each model with the radiomics signature on the training set, verification set, cross-validation set and test set

RFC 0.97±0.00 0.79±0.10 0.964 (0.929–0.998) 0.768 (0.542–0.994)

GBDT 0.99±0.00 0.76±0.05 1.000 (*) 0.788 (0.560–1.000)

MLP 0.99±0.00 0.78±0.09 1.000 (*) 0.778 (0.570–0.986)

SVM 0.96±0.00 0.78±0.07 0.948 (0.906–0.990) 0.798 (0.573–1.000)

LR 0.91±0.03 0.79±0.04 0.904 (0.836–0.971) 0.758 (0.521–0.994)

SCLF 0.99±0.00 0.71±0.09 1.000 (*) 0.788 (0.594–0.982)

B: The AUROC scores for each model with radiomics signature and clinical information in training, verification, cross-validation, and test set

RFC 0.98±0.01 0.85±0.09 0.967 (0.931–1.000) 0.848 (0.640–1.000)

GBDT 0.99±0.00 0.81±0.12 1.000 (*) 0.848 (0.640–1.000)

MLP 0.99±0.00 0.72±0.09 1.000 (*) 0.768 (0.542–0.994)

SVM 0.91±0.03 0.81±0.12 0.909 (0.847–0.972) 0.778 (0.515–1.000)

LR 0.90±0.02 0.86±0.11 0.906 (0.840–0.971) 0.899 (0.761–1.000)

SCLF 0.99±0.00 0.79±0.10 1.000 (*) 0.843 (0.674–1.000)

*, means that no 95% confidence interval exists. AUROC, area under the receiver operating characteristic.

Figure 9 Histogram of the mean AUROC. (A) The AUROC of the training set, verification set, and test set of the radiomics feature 
signatures from six models; (B) the AUROC of the training set, verification set, and test set of radiomics feature signatures and clinical 
information signatures. AUROC, area under the receiver operating characteristic.
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on the test set is 0.798, which is the highest, but it is similar 
to the AUROC of the LR model. The sensitivity, specificity, 
positive predictive value, and negative predictive value of 
the LR model are all the highest among all the models, 
whether on the verification set or the test set. Therefore, 
the LR model has better classification efficiency for the 
radiomics feature signature.

Evaluation of the radiomics feature signature and clinical 
information signature models

The clinical information in which the chi-square test and 
the t-test result were P<0.05 was selected as the clinical 
information signature from all the patients’ clinical 
information. All the clinical information and the P values 
are reported in Table 5. CEA and CA19-9 can be used as 
clinical information signatures (P<0.01). We obtained the 
one-dimensional radiomics feature signature of all the 
datasets using Equation 4. Then, we plotted a box plot of 
the cross-validation set and test set, as shown in Figure 10.

The one-dimensional radiomics feature signature and the 
clinical information signature were used to build different 
models as above. The best parameters of the various models 
are reported in Table 1. The ROC of the cross-validation 
set and the test set are plotted in Figure 11. The specific 
AUROC values are reported in Table 3 (part B), and a 
histogram of the AUROC of each model on the training, 
verification, and test sets are shown in Figure 9B. Figure 9 
indicates that the highest mean AUROC of the verification 
set is 0.86, and the lowest standard deviation is 0.11; all are 
from the LR model. The AUROC of the test set is 0.899 
(95% CI, 0.761–1.000), which is also the highest.

The sensitivity, specificity, positive predictive value, and 
negative predictive value of the training, verification, cross-
validation, and test sets for each model with the radiomics 
feature signature and clinical information signature are 
reported in Table 6, which shows that the LR model is the 
best among all models.

Model selection and nomogram

The mean AUROC scores on the verification sets and the 
AUROC scores on the test sets of all models are shown 
in Figure 12. As indicated in the figure, the LR model 
performed the best, followed by the RFC model. The LR_
CI model with a radiomics feature signature and clinical 
information signature achieved the highest AUROC on 
the test set. The LR_CI model performed significantly T
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better than the LR model only with the radiomics feature 
signature on the test set (P=0.0239). The nomogram drawn 
based on the LR_CI model is shown in Figure 13.

Execution time

We measured the execution time required for the four 
parts of RIAT; the results are shown in Figure 14. The total 
execution time was 270.35 s. The entire experiment was 
performed on a PC with a Windows 10 64-bit operating 
system equipped with an Intel i7 3.6 GHz CPU (Intel Core 
i7-7700), 16 GB of memory, and an NVIDIA GeForce 
GTX 1060 6G graphics card.

Discussion

This study developed an individualized nomogram created 

using RIAT to predict CRLM in patients with CRC based 
on radiomics applied to CT images. This study provides 
the following two contributions. (I) To predict the risk 
of CRLM in CT images, we applied statistics to select 
features, for instance, using a t-test to preselect radiomics 
features, and the CRLM nomogram was used to show 
the prediction of each variable, including radiomics and 
clinical information signatures. (II) We designed a smart 
medical platform called RIAT, which can help radiologists 
conveniently analyze data and build models automatically. 
RIAT is the first radiomics software to predict CRLM. 
The main innovations in RIAT include the following: (I) 
RIAT minimizes the radiomics feature error by optimizing 
the ROI through image analysis and threshold tuning; (II) 
RIAT proposes gradient feature selection, which involves 
first performing preselection using a t-test to evaluate a 
hypothesis and then using LASSO to select the features. 
This method effectively retains more highly correlated 
features; therefore, it can help in constructing a highly 
accurate model. Benefiting from statistical methods, the 
selected features have good interpretability. (III) RIAT sets 
the range of initialized parameters for different models and 
saves models with high accuracy and strong generalization 
ability by selecting the best parameters. (IV) RIAT plots 
the mean ROC of the cross-validation set and calculates the 
mean accuracy and standard deviation to assess the ROC 
fluctuation. Finally, it builds a model by training on the 
complete cross-validation set and plotting the ROC results 
of the test set to evaluate the generalization ability of the 
model.

By using RIAT, we developed an individualized 
nomogram to predict CRLM in patients with CRC, and we 
have achieved the goal of measuring the radiomics feature 
signature and clinical information signature according to 
the presence of CRLM.

At present, radiomics computing methods mainly 
use MATLAB® (MathWorks Inc., USA), Python, and 

Table 5 All clinical information of patients with colorectal cancer in the liver metastasis group and nonliver metastasis group

Label
Number  
of cases

Age (years)
Sex Lesion location

CEA (ng/mL) CA19-9 (U/mL)
Male Female Right colon Left colon

Liver metastasis 50 59.5 (52.0–68.5) 31 19 24 26 22.88 (5.15–67.17) 31 (9.24–161.03)

Nonliver metastasis 50 63.5 (56.2–69.7) 26 24 28 22 6.33 (2.79–19.40) 15.45 (9.47–42.45)

P value 0.38 a 0.31 b 0.423 b <0.01 a 0.01 a

Age, CEA, CA19-9 are shown as medians (upper and lower quartiles). Sex and lesion locations are shown as the number of patients. a, 
means t-test; b, means chi-square test.
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Figure 10 Box plot of the one-dimensional radiomics feature 
signature on the cross-validation and test sets. A label of 0 
indicates colorectal cancer without liver metastasis, while a label 
of 1 indicates colorectal cancer with liver metastasis. As the 
figure shows, the two labels have obvious differences in both 
the cross-validation and test sets. This result indicates that the 
one-dimensional radiomics feature signature results in better 
classification performance.
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Figure 11 ROCs of the training set, verification set, cross-validation set, and test set in different models. ROC, receiver operating 
characteristic.
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commercial software such as the Artificial Intelligence 
Kit, A.K. (General Electric Company) (35). MATLAB is a 
semi-open-source software package in which viewing and 
changing the base functions is neither easy nor convenient 
for researchers. Pyradiomics offers a more comprehensive 
method for calculating feature values. Some open-source 
projects (e.g., IBEX and QIFE) have been developed for 
radiomics (44,45) but offer only a few functions, such as 
image processing and simple model building.

In this study, we developed RIAT quantitative medical 
imaging for the prediction of CRLM based on maximum-
level enhanced CT images in the portal venous phase. In 
contrast, RIAT not only provides basic radiomics functions 
but also enables a new feature selection method and 
statistics while outputting the evaluation results of models 
intelligently. In addition to the above advantages, RIAT 
uses contour recognition and edge acquisition algorithms, 
median filtering denoising, and binary image transformation 
to extract the main ROI contour. Then, it determines the 
best edge through dynamic threshold processing of the 
RGB channel. In addition, RIAT can independently identify 
and optimize multiple ROIs in one image at the same time.

In this paper, we introduced some of the functions 
and algorithms of RIAT for analysis of CRLM. From  
Figure 12, it can be observed that the LR_CI model has 
the best performance in the test set and verification set 
compared with other models. According to Figure 9 and 
Table 3, the model using both the radiomics features 
signature and the clinical information signature is better 
than the model using only the radiomics feature signature. 
By comparing the mean AUROC (5-fold) on the cross-
validation set with the AUROC on the test set in all 
models, along with the sensitivity, specificity, positive 
predictive value, and negative predictive value, we found 
that the LR_CI model achieved the best performance. The 
improvement is reflected not only by the AUROC score 
but also by the sensitivity, specificity, positive predictive 
value, and negative predictive value results. The Delong 
test was performed on the ROC curves of the nomogram to 
assess possible overfitting and revealed that the differences 
were not statistically significant among the AUCs of the 
cross-validation set and test set in LR_CI, with a P value of 
0.9330. From the boxplot and nomogram, we can see that 
the radiomics feature signature is the most critical weight 
among all the signatures. Nomograms can effectively 
help physicians understand the probability of CRC liver 
metastasis by combining one-dimensional radiomics feature 
signatures with clinical information signatures.



411Quantitative Imaging in Medicine and Surgery, Vol 10, No 2 February 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(2):397-414 | http://dx.doi.org/10.21037/qims.2019.12.16

Figure 12 The total AUROCs of different models. Radiomics: models with the radiomics feature signature; CI: models with the radiomics 
feature signature and clinical information signature; CV5: the AUROC in verification set of 5-fold cross-validation. AUROC, area under the 
receiver operating characteristic.

Figure 13 The nomogram based on the LR_CI model. The nomogram critical score is 66; that is, the probability of liver metastasis of 
colorectal cancer is greater than 50% when the total score is greater than 66. The higher the score is, the higher the probability of colorectal 
cancer liver metastasis.
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Although the AUROC scores of the six models provided 
by RIAT differ, even the lowest AUROC of the model 
exceeded 0.70. Moreover, the AUROC of each model was 
significantly improved after adding the clinical information 
signature. Thus, the data drive the models. Of course, there 
are no specific models. In RIAT, we included a process that 
automatically tunes each model parameter. To find the 
initially optimal parameters for the models, it is necessary 
to adopt the values when the mean AUROC on the cross-
validation set is highest.

To remain objective when evaluating the models, we 
proposed a double test in RIAT. The double-test approach 
involves first obtaining the mean AUROC from the cross-
validation set and then obtaining the AUROC from the 
test set using the entire cross-validation set as a training 
set. The mean AUROC shows the model’s generalizability 
after performing features selection on the cross-validation 
set and helps us observe the distribution of data. The 
standard deviation of the mean AUROC shows the range 
of fluctuations in the curve. The ROC of the test set 
further reveals the generalizability and robustness of the 
final model, and it is tested on data that are not involved 
in training. The double-test method can conclusively 
reveal the phenomenon that large fluctuations of ROC are 
common because of training data limitations. It can also 
explain the real data distribution and avoid the limitation of 
having only a single ROC of the test set.

Our study has some limitations. First, only 100 cases 
met the inclusion criteria, and the sample size was not 
large. Second, this was retrospective, single-center study, 
and more center patients are expected to participate in 
the future. Radiologists have different requirements for 
different research purposes, such as higher sensitivity or 
specificity. Therefore, a key problem is how to make the 
model smarter in order to not only achieve high AUROC 
scores but also to achieve higher sensitivity and specificity. 
Sometimes large ROC fluctuations are unavoidable due 
to the limited amounts of data in radiomics. How to more 
effectively build optimal models and reduce the ROC 
fluctuations is an issue that should be addressed by future 
work.

Conclusions

For predicting CRLM, we found that the LR model 
with both the radiomics feature signature and the clinical 
information signature has good predictive ability. The 
AUROC, sensitivity, specificity, positive predictive values, 

and negative predictive values of the LR_CI model all 
exceed those of the other models.
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