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Abstract

Various approaches have been proposed to model PM2.5 in the recent decade, with satellite-derived 

aerosol optical depth, land-use variables, chemical transport model predictions, and several 

meteorological variables as major predictor variables. Our study used an ensemble model that 

integrated multiple machine learning algorithms and predictor variables to estimate daily PM2.5 at 

a resolution of 1 km×1 km across the contiguous United States. We used a generalized additive 

model that accounted for geographic difference to combine PM2.5 estimates from neural network, 

random forest, and gradient boosting. The three machine learning algorithms were based on 

multiple predictor variables, including satellite data, meteorological variables, land-use variables, 

elevation, chemical transport model predictions, several reanalysis datasets, and others. The model 

training results from 2000 to 2015 indicated good model performance with a 10-fold cross-

validated R2 of 0.86 for daily PM2.5 predictions. For annual PM2.5 estimates, the cross-validated 
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R2 was 0.89. Our model demonstrated good performance up to 60 μg/m3. Using trained PM2.5 

model and predictor variables, we predicted daily PM2.5 from 2000 to 2015 at every 1 km×1 km 

grid cell in the contiguous United States. We also used localized land-use variables within 1 km×1 

km grids to downscale PM2.5 predictions to 100 m × 100 m grid cells. To characterize uncertainty, 

we used meteorological variables, land-use variables, and elevation to model the monthly standard 

deviation of the difference between daily monitored and predicted PM2.5 for every 1 km×1 km 

grid cell. This PM2.5 prediction dataset, including the downscaled and uncertainty predictions, 

allows epidemiologists to accurately estimate the adverse health effect of PM2.5. Compared with 

model performance of individual base learners, an ensemble model would achieve a better overall 

estimation. It is worth exploring other ensemble model formats to synthesize estimations from 

different models or from different groups to improve overall performance.
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1. Introduction

PM2.5, or fine particulate matter, is a major public health concern (Seaton, MacNee et al. 

1995, Cohen, Brauer et al. 2017), and is associated with multiple adverse health outcomes, 

including mortality (Di, Wang et al. 2017), morbidity (Lippmann, Ito et al. 2000), 

cardiovascular disease (Pope 2003), respiratory symptoms (Dominici, Peng et al. 2006), 

diabetes (Yang, Guo et al. 2018), and others. Both long-term and short-term PM2.5 

exposures are associated with adverse health effects (Kloog, Ridgway et al. 2013, Shi, 

Zanobetti et al. 2016). Recent studies suggest that PM2.5 may penetrate blood brain barrier 

and enter the brain, causing various neurodegenerative diseases (Maher, Ahmed et al. 2016, 

de Prado Bert, Mercader et al. 2018).

Accurate estimation of PM2.5 is a prerequisite of related epidemiological analyses. As PM2.5 

concentrations decline in the United States, there is a growing need for accurate estimation 

of PM2.5 at lower levels. A variety of methods have been used to model PM2.5, evolving 
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from typical linear regressions to machine learning approaches. In the following, we briefly 

summarized major methods used for PM2.5 modeling to pave the way for our own method.

Linear Regression and Correlational Study:

Ever since Wang et al. (2003) proposed that satellite-derived aerosol optical depth (AOD) 

could be used to model air quality (Wang and Christopher 2003), AOD has remained an 

important predictor for PM2.5 modeling. Early studies used simple regression models and 

correlational studies to model PM2.5 with AOD (Engel-Cox, Holloman et al. 2004, 

Koelemeijer, Homan et al. 2006). This approach soon lost popularity and almost disappeared 

from recent literature, since the relationship between PM2.5 and AOD is not straightforward. 

Explanatory power from a simple linear model was too low to be useful.

Mixed-Effect Model:

Kloog et al. blended AOD with local land-use data and used a mixed-effect model to account 

for the temporally changing slope between PM2.5 and AOD due to meteorological 

conditions (Kloog, Koutrakis et al. 2011). Use of a mixed-effect model partially resolves the 

complex relationship between AOD and PM2.5. Mixed-effect models received wide 

application ever since, for its simplicity and flexibility. Chudnovsky et al. used similar 

methodology on AOD to predict PM2.5 concentration within the Northeastern United States 

(Chudnovsky, Lee et al. 2012). Similar mixed-effect models have been re-applied with 

slightly different predictor variables, to different study areas, including Mid-Atlantic States 

in the United States (Kloog, Nordio et al. 2014), Southeastern United States (Lee, Kloog et 

al. 2015), Mexico City (Just, Wright et al. 2015), Israel (Kloog, Sorek-Hamer et al. 2015), 

Beijing, China (Xie, Wang et al. 2015), Beijing and neighboring areas of China (Zheng, 

Zhang et al. 2016), entire China (Ma, Hu et al. 2014), and London, United Kingdom 

(Beloconi, Kamarianakis et al. 2016),

Geographically Weighted Regression:

Mixed-effect models grant flexibility in the temporal dimension, and their counterparts, 

geographically weighted regression (GWR) models grant flexibility in the spatial dimension. 

Hu (2009) found a spatially inconsistent relationship between AOD and PM2.5 across the 

contiguous United States, and used geographically weighted regression to account for the 

spatially heterogeneous relationship (Hu 2009), and later updated the model for the 

Southeastern United States (Hu, Waller et al. 2013). van Donkelaar et al. (2015) used AOD 

and simulation data to obtain high-resolution PM2.5 estimation across the North America 

using geographically weighted regression (van Donkelaar, Martin et al. 2015). Similar 

methods have been repeated in Pearl River Delta Region (Song, Jia et al. 2014), Beijing and 

its neighboring areas (Zou, Pu et al. 2016), Central China (Bai, Wu et al. 2016), and entire 

China (You, Zang et al. 2016).

Generalized Additive Model:

Both mixed-effect models and geographically weighted regression assume a linear 

relationship between predictor variables and the dependent variable, although the 

coefficients may vary. Generalized additive models use smoothing functions to account for 
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nonlinear relationships. Paciorek et al. (2008) used generalized additive model and found 

nonlinear relationships between relative humidity, planetary boundary layer height, PM2.5 

monitoring data and AOD (Paciorek, Liu et al. 2008). Using a similar method, Liu et al. 

(2009) applied smoothing functions on AOD and several meteorological variables, and 

predicted PM2.5 for the Northeastern United States (Liu, Paciorek et al. 2009). Similar 

models have been applied to PM2.5 modeling in California (Strawa, Chatfield et al. 2013), 

and Northern China (Liu, He et al. 2012).

Machine Learning Algorithms:

Neural networks are able to model any kind of nonlinear and interactive relationship given 

enough data, suitable for modeling PM2.5, where the underlying atmospheric dynamics are 

elusive, and variables have complex interactions (Bishop 1995, Haykin and Network 2004). 

Gupta et al. (2009) used a neural network and included AOD, relative humidity, planetary 

boundary layer height, temperature, location, and month. The neural network was trained 

with monitored 1-hour averaged and 24-hour averaged PM2.5 (Gupta and Christopher 2009). 

Our previous PM2.5 model in the contiguous United States was also based on neural 

networks, but with a larger number of predictor variables. (Di, Kloog et al. 2016). Besides 

neural networks, other machine learning algorithms have been used in PM2.5 modeling for 

different study areas around the world, such as random forest for a Europe-wide model 

(Chen, de Hoogh et al. 2018), a US-wide model (Hu, Belle et al. 2017), a regional model for 

China (Wu, Guo et al. 2011), and Northern China (Huang, Xiao et al. 2018), and some 

localized models (Brokamp, Jandarov et al. 2017), boosted regression tree (Suleiman, Tight 

et al. 2016); support vector machine at city level (Sotomayor-Olmedo, Aceves-Fernández et 

al. 2013, Weizhen, Zhengqiang et al. 2014) and at national level (de Hoogh, Héritier et al. 

2018); and gradient boosting (Zhan, Luo et al. 2017).

In summary, we found the following patterns from existing studies, which motivate us to 

propose our own ensemble-based PM2.5 model. First, most models used a few predictor 

variables, but additional variables did contribute to better modeling. Adding extra variables, 

even when they are intuitively less relevant to PM2.5 modeling, improves model 

performance. For example, NO2 column measurement (Zheng, Zhang et al. 2016) and other 

OMI (Ozone Monitoring Instrument) measurements (Strawa, Chatfield et al. 2013) were 

found to improve models. Penalty terms can avoid overfitting by the use of too many 

covariates. Second, the model performance of different algorithms seems to vary by location 

and concentration. For example, Chen et al. (2018) found that all machine learning 

algorithms performed similarly, and no method demonstrated superior external validity 

(Chen, de Hoogh et al. 2018). A neural network only performed slightly better than a 

boosting regression tree in London (Suleiman, Tight et al. 2016). Further, geographic 

weighted regressions indicated spatial variability in predictive performance. Thus, it is 

theoretically infeasible to have a single model optimally fit all regions. Consequently, there 

is a recent tendency to use hybrid models instead of a single model, expecting that multiple 

methods would “complement” each other. A hybrid model usually combines variables or 

fitting algorithms. Some examples include a hybrid model combining mixed-effect model 

with land-use regression (Kloog, Chudnovsky et al. 2014), autoregressive-moving-average 
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model with support vector machine (Wang, Zhang et al. 2017), geographically weighted 

regression with gradient boosting (Zhan, Luo et al. 2017).

Therefore, in this study, we fit a nationwide PM2.5 model using a large number of data set 

as predictor variables and multiple learning methods. We incorporated three machine 

learning algorithms: neural network, random forest, and gradient boosting. We modeled 

PM2.5 separately with each algorithm and used a geographically weighted generalized 

additive model as an ensemble model to obtain an overall PM2.5 prediction. Predictor 

variables included satellite-derived AOD, other satellite-based measurements, chemical 

transport model predictions, land-use variables, meteorological variables, and many others. 

The ensemble model was validated with 10-fold cross-validation. After model validation, we 

made predictions of daily PM2.5 at 1 km × 1 km grid cells in the contiguous United States 

from 2000 to 2015. We also predicted the monthly standard deviation of the difference 

between monitored and predicted PM2.5 to quantify the uncertainty of PM2.5 modeling in the 

same 1 km × 1 km grid cells. Finally, we downscaled PM2.5 predictions from 1 km × 1 km 

grid cells to 100 m × 100 m grid cells, using selected downscaling predictor variables. The 

high resolution PM2.5 estimates allow epidemiologists to assess the health effects of PM2.5 

with higher accuracy, and the PM2.5 estimates further help correct residual exposure 

measurement errors. The ensemble model framework is also useful to combining air 

pollution models from different sources for future studies.

2. Data

2.1. Study Area

The study area was constrained to the contiguous United States due to data availability, from 

January 1st, 2000 to December 31st, 2015, in total 5,844 days.

2.2. PM2.5 Monitoring Data

Monitoring data for PM2.5 were obtained from the Air Quality System (AQS) operated by 

the Environmental Protection Agency (EPA), The Interagency Monitoring of Protected 

Visual Environments (IMPROVE), Clean Air Status and Trends Network (CASTNET), and 

other regional or local monitoring data sets, with 2,156 monitoring sites in our study area 

from 2000 to 2015. Not all monitoring sites were operating throughout the study period, and 

many of them operated every 3 or 6 days. We obtained or calculated 24-hour averaged PM2.5 

and converted the unit into microgram per cubic meter (μg/m3) if needed. Monitoring sites 

were not equally distributed across the study area, with more sites in the Eastern United 

States, Western coast, and urban areas. Besides, the monitoring network does not adequately 

sample the full range of concentration scales, due to the limited number of monitoring sites 

and various monitoring siting criteria. For example, mountainous regions and rural areas had 

fewer sites.

The PM2.5 distribution exhibits some degree of spatial autocorrelation. Monitoring data from 

nearby monitoring sites are more correlated than data from faraway sites. To leverage spatial 

autocorrelation and improve model performance, we incorporated spatially lagged 

monitored PM2.5 into the model as predictor variables. Spatially lagged variables were 
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weighted averages of monitored PM2.5 from nearby monitoring sites, and weights were 

inversely proportional to distance and distance squared. We also incorporated one-day 

lagged and three-day lagged values of spatially lagged terms.

2.3. AOD Measurements and Related Satellite Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Earth 

Observing System (EOS) satellite has been widely used to measure AOD (Salomonson, 

Barnes et al. 1989, King, Kaufman et al. 1992). The Multi-Angle Implementation of 

Atmospheric Correction (MAIAC) algorithm has been developed to retrieve AOD 

measurements from raw MODIS data at 1 km × 1 km resolution, especially for conditions of 

dark vegetated surfaces or bright backgrounds, where conventional AOD retrieval algorithms 

may have issues (Sayer, Hsu et al. 2013). The absorption optical depth of aerosol species 

varies with wavelength (Bergstrom, Pilewskie et al. 2007); thus, AOD measurements at 

different wavelengths are informative to account for different chemical compositions of 

PM2.5 and potentially helpful to achieve accurate modeling. We therefore included AOD 

measurements at 470 nm and 550 nm from both the Aqua and Terra satellites. AOD 

measurements retrieved from the deep-blue algorithm (with 10 km resolution) were also 

included to provide complementary information. Similar to previous studies, AOD 

measurements (1) with high uncertainty, (2) over water bodies, (3) over snow coverage, and 

(4) above 1.5 were excluded from modeling, based on the quality assurance flags (Kloog, 

Koutrakis et al. 2011, Kloog, Chudnovsky et al. 2014).

Previous studies have documented the association between errors in AOD retrievals and 

surface characteristics (i.e., surface brightness) (Drury, Jacob et al. 2008). MAIAC 

algorithm, although designed to retrieve AOD from complex background conditions, is not 

immune to distortion from surface brightness (Lyapustin, Wang et al. 2011). Thus, we 

incorporated surface reflectance (MOD09A1) from MODIS measurements to control for the 

impact of surface brightness on AOD data quality (Vermote 2015).

PM2.5 composition affects AOD measurements. For example, absorbing aerosols include 

aerosols from biomass burning, desert dust, and volcanic ash (Herman, Bhartia et al. 1997). 

The presence of absorbing aerosol components may lead to different AOD values compared 

with values for the same mass concentration of predominantly scattering components. 

Similarly, PM2.5 with larger portion of black carbon leads to higher AOD values in MODIS 

retrievals. To address this behavior, we used the absorbing aerosol index (AAI), which 

measures the portion of absorbing aerosol. We used two AAI measurements at UV and 

visible ranges (OMAERUVd, OMAEROe) from OMI (Herman, Bhartia et al. 1997, Torres, 

Bhartia et al. 1998). We also incorporated other measurements from OMI, such as column 

NO2 and SO2 measurements.

In addition to satellite-derived AOD, some reanalysis datasets provide aerosol estimation, 

such as MERRA2 (Modern-Era Retrospective analysis for Research and Applications, 

Version 2). Aerosol products from MERRA2 are not measured but simulated, and prone to 

simulation errors, but they have almost no missing values and serve as good complement to 

satellite-derived AOD. We used MERRA2 variables related to aerosol concentrations, 
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including sulfate aerosol, hydrophilic black carbon, hydrophobic black carbon, hydrophilic 

organic carbon, and hydrophobic organic carbon (Buchard, Randles et al. 2017).

2.4. Meteorological Conditions

Meteorological conditions were retrieved from the North American Regional Reanalysis 

(NOAA) data set, with more details about this data set found elsewhere (Kalnay, Kanamitsu 

et al. 1996). The full list of 16 meteorological variables can be found in the supplementary 

material (Section 1).

2.5. Chemical Transport Model

A chemical transport model (CTM) is a numerical simulation model that incorporates 

emission inventories and simulates the chemical formation, loss, transportation, and 

deposition of trace gases and particles for a 3-D Eulerian gridded domain. CTMs simulate 

the concentration of air pollutants at the surface level, and their vertical distribution using 

process-based mechanistic parameterizations. Predicted vertical profiles allow us to estimate 

the ground-level contribution to column aerosol concentrations. Since AOD is a column 

measurement of aerosols, and not the surface-level aerosol concentration, CTM predictions 

of PM2.5 vertical profiles can help calibrate AOD to ground-based monitors (Liu, Park et al. 

2004).

CTMs are also able to capture secondary aerosol formation due to complex gas, particle, and 

multiphase reactions. For example, isoprene is an important precursor of PM2.5, but relevant 

reactions were not well modeled in most CTMs. Recently, GEOS-Chem, a global CTM 

(http://www.geos-chem.org) (Bey, Jacob et al. 2001), developed a new aqueous-phase 

mechanism to simulate secondary PM2.5 coupled to a detailed gas-phase isoprene oxidation 

scheme (Marais, Jacob et al. 2016). We obtained daily predictions of total PM2.5 mass and 

mass concentration of several PM2.5 components from this new version of GEOS-Chem at 

0.5° × 0.625° resolution, as well as from the Community Multiscale Air Quality (CMAQ, 

www.epa.gov/cmaq) model, a regional CTM that is commonly run with 12-km horizontal 

resolution over the U.S. (Appel, Napelenok et al. 2017, Kelly, Jang et al. 2018).

2.6. Land-use Variables

Land-use variables are proxies for local emissions and air pollution levels. Chemical 

transport models are generally unable to simulate air pollution at fine spatial scales, due to 

the high computational cost and the lack of availability of fine scale emission inventories. 

Land-use variables approximate emission of air pollutants, often at kilometer or sub-

kilometer scale. Previous models often incorporated land-use variables directly, as an 

approximation of those localized air pollution dynamics. Land-use variables have been used 

for long-term (e.g., annual or seasonal) exposure assessment in local to continental (Eeftens, 

Beelen et al. 2012), and global scales (Larkin, Geddes et al. 2017). Recent developments 

included short-term predictions (e.g. hourly or daily) as well (Son, Osornio-Vargas et al. 

2018).

We prepared (1) land-use coverage types, (2) road density, (3) restaurant density, (4) 

elevation, and (5) NDVI (Normalized difference vegetation index) at 1 km × 1 km grid cells, 
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and also aggregated them to 10 km × 10 km grid cells, to capture the impact of emissions 

from neighboring areas. Details of data preparation can be found in the supplementary 

material (Section 2). We used both 1-km and 10-km land-use gridded variables in the model 

as separate predictor variables. We also aggregated land-use coverage type and elevation 

from its original resolution to 100 m × 100 m resolution to use as downscaling variables in 

the localized model.

3. Methods

3.1. Overview

We trained a neural network, random forest, and gradient boosting on all input variables, 

with parameters of each machine learning algorithm selected by cross-validated grid search 

processes. We obtained predicted PM2.5 from each learner; and then used a geographically 

weighted generalized additive model as an ensemble model to combine PM2.5 estimation. 

Furthermore, PM2.5 concentration exhibits some degree of spatial and temporal 

autocorrelation, which can be used to improve model performance. We calculated spatially 

and temporally lagged PM2.5 predictions from nearby monitoring sites and neighboring 

days, treated them as additional input variables, and fit the above models again alongside 

with existing predictor variables (Figure 1).

To avoid overfitting, we validated our model with 10-fold cross-validation. After splitting all 

monitoring sites into 10 splits, we trained with 90% of the data and predicted PM2.5 at the 

remaining 10% of monitoring sites. The same process also held for other splits. After 

assembling PM2.5 predictions from all ten splits, we calculated R2, spatial R2, and temporal 

R2 between predicted and monitored PM2.5 at each monitoring site. We also reported R2 by 

year.

3.2. Base Learners and Ensemble Model

The details of neural network, random forest and gradient boosting algorithms can be found 

elsewhere (Bishop 2006). A simple explanation is that all three machine learning algorithms 

attempt to model the complex relationship between input variables (X’s, predictor variables 

of PM2.5 model) and the dependent variable (Y, or monitored PM2.5 for this study) with 

different approaches. In previous studies, the three algorithms had different model 

performance under different conditions, probably because of different study areas. By 

combining the three complementary algorithms, we expect to obtain a better estimate of 

PM2.5.

The performance of each learner depends on hyper parameters, such as how many trees in a 

random forest, depth of tree; number of layers in a neural network, number of neurons in 

each layer, lasso penalty, etc. We chose values of hyper parameters for each base learner in a 

grid search process (Table S1).

A common approach for ensemble averaging is to regress the monitor measurements against 

the estimates from base learners, with the regression coefficients representing the weight 

given to each learner. This approach assumes those weights are constant across the country, 

and do not depend on the pollution concentration. We relaxed these assumptions by 
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regressing the monitored values against thin plate splines of latitude, longitude, and the 

predicted concentration for each learner. This allows, for example, one learner to have more 

weight at higher concentrations, but not at lower concentrations; or to have more weight in 

particular regions of the country.

3.3. Missing Values

Missing values occur among predictor variables. Sometimes missing values can be quite 

common. Missing values arose from different sources: (1) some predictor variables were 

unavailable for early years, such as OMI measurements and AOD measurements from the 

Aqua satellite, because the satellites were launched in 2005 and 2002, respectively. (2) 

Measurements were not possible over some locations and time, such as AOD over clouds or 

snow, or soil moisture near a waterbody. (3) Data processing removed some measurements 

due to high uncertainty, such as AOD measurements greater than 1.5, which were excluded. 

To predict PM2.5 concentration for the entire study area and during the entire study period, 

some method is required to fill in the missing values.

A good method should predict what the values would have been had they not been missing, 

so we used variables without missing values to predict each variable with missing values. 

We identified all variables with no missing values and used them as predictor variables of a 

random forest. For example, AOD measurement at 550 nm (AOD 550) has more than 50% 

missing values. We used CMAQ and GEOS-Chem predictions, land-use types, and 

meteorological variables as predictors of a random forest, since these variables have no 

missing values, and trained the random forest when AOD 550 were available. Then we 

predicted AOD 550 when AOD 550 were missing to fill in the missing values. Again, a grid 

search was used to obtain the best parameter combinations.

Some land-use measurements were intermittent and unavailable over a certain period. For 

example, NDVI and surface reflectance measurements are available every 16 and 8 days; all 

land-use terms from the NLCD were available every 5 years. Since land-surface 

characteristics can be assumed to change gradually, we use simple linear interpolation to fill 

in missing values.

3.4. Model Prediction

After filling in missing values and interpolating, all input variables were available across the 

study area. We trained the three base learners and the ensemble model with input variables 

and monitored PM2.5 as the dependent variable, and then used trained models and predictor 

variables at each 1 km × 1 km grid cell to predict PM2.5.

We also downscaled the 1-km-level predictions to 100 m × 100 m grid cells. We took the 

difference between monitored and predicted PM2.5 at monitoring sites, and used 

downscaling predictors within 100 m of the monitor as predictors in a random forest to 

predict the difference. The downscaling predictors include NLCD land-use cover types, road 

density, and elevation at 100-m level, as well as meteorological variables: air temperature, 

humidity, wind speed, and planetary boundary layer height. We trained the random forest at 

each monitoring site and predicted the within-cell variations at every 100 m × 100 m grid 

cell.
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Finally, we estimated the spatial and temporal pattern of model uncertainty. Model 

performance is determined by various factors and varies by location and time. By referring 

to previous studies and using prior knowledge, we identified several variables that edict 

model performance and used them to model monthly standard deviation of the difference 

between daily monitored and predicted PM2.5 at each monitoring site:

sdPMij = f1 Locationi + f2 Locationi, PMij + f3 elevation + f4 surface reflectance + f5 ℎumidity
+ f6 tree canopy + f8 NDVI + f9 urban + Year + eij

where sdPMij is the monthly standard deviation of the difference between daily monitored 

and predicted PM2.5 at location i and in the month j; f1 denotes a penalized spline for 

location i; f2 denotes a thin-plate spline for an interaction between location i and predicted 

PM2.5 at location i and in the month j; f3 ~ f9 denote splines for predictors at location i; 
PMij is the mean predicted PM2.5 at a location i in the month j; and eij is the error term.

4. Results

Table 1 presents the cross-validated R2 by year. R2 values ranged from 0.75 to 0.90, with an 

average of 0.86, indicating good model performance. The spatial R2 ranged from 0.73 to 

0.91, with an average of 0.89, demonstrating that our model can well capture the spatial 

variation of long-term PM2.5. The average RMSE (root mean square error) was 1.26 μg/m3 

spatially, and 2.53 μg/m3 temporally. There is a noticeable improvement compared with our 

previous model (Di, Kloog et al. 2016). Of the three machine learning algorithms, model 

performance of neural network and random forest was quite close, and better than gradient 

boosting. Overall, neural network outperformed random forest (R2: 0.855 vs. 0.854, Table 

1); but random forest outperformed for some years (Table 1), some regions (Table 2), all 

seasons except summer (Table 3), and spatially (Table S2). The overall model performance 

from the ensemble model outperformed that from any single algorithm.

Figure 2 displays the cross-validated R2 at each monitoring site, with high R2 in most areas 

of the Eastern United States and parts of the West Coast. For mountainous regions, 

especially the Appalachian and Rocky Mountains, we obtained lower R2, indicating that 

mountainous terrain has an important influence on model performance (Table 2). The spatial 

pattern of model performance for this study was similar to our previous model and other 

previous studies (Engel-Cox, Holloman et al. 2004). The predicted uncertainty demonstrated 

a similar spatial pattern. If examined by season, model performed well in the autumn and 

less unsatisfyingly in winter.

While the incremental R2 from ensemble averaging compared to the best single learner was 

not large overall, it affected the linearity of the association between measured and predicted 

PM2.5. For the ensemble, a spline fit between daily predicted and monitored PM2.5 is almost 

a straight 1:1 line up to 60 μg/m3, a concentration seldom seen in the United States, 

demonstrating satisfying performance even at high concentration, when monitoring data 

were scarce (Figure 3). The performance of the individual base learners was worse than the 

ensemble average. The random forest overestimated at high concentrations. Overestimation 
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was even more serious for the gradient boosting. Overall, the ensemble model improved 

model performance although quite close to the neural network. This pattern exemplifies the 

usefulness of ensemble averaging, and the use of splines on individual learners to do the 

averaging. The spline comparing monitored to predicted annual PM2.5 was almost a straight 

1:1 line, indicating good fit at the annual level (Figure 4).

We reported the variable importance of predictor variables from three machine learning 

algorithms in Table 4. Spatially lagged PM2.5 from nearby monitoring sites was clearly an 

important predictor. For the random forest and gradient boosting, spatially lagged PM2.5 

contributed significantly to model performance, followed by CMAQ predictions. The 

relative contribution of predictor variables varies by algorithms, and the contribution was 

spread out across more predictor variables for the neural network than random forest and 

gradient boosting. AOD related variables contributed the most to the neural network, along 

with latitude, longitude and other land-use variables.

For spatial distribution, PM2.5 concentrations were higher in populous places, such as Los 

Angeles, and the entire Eastern United States, excluding the Appalachian Mountains and 

some remote areas in Northern Maine and Florida. The Central Valley of California also had 

high concentrations. PM2.5 concentration dropped significantly after 2008 (Figure 5). The 

hotspots on the 2015 map were almost indistinguishable under the same color scale (Figure 

6).

The local regression predicting address-specific differences from the 1-km average was 

examined in the Boston metropolitan area. Figur e 7 shows the estimated concentrations on 

100 m × 100 m grid.

5. Discussion

Our ensemble model incorporates PM2.5 predictions from three machine learning 

algorithms, including neural network, random forest, and gradient boosting, and achieved 

excellent performance, with a spatial R2 of 0.89 and spatial RMSE of 1.26 μg/m3. Temporal 

R2 was also good (0.85). The three machine learning algorithms used more than 100 

predictor variables, ranging from satellite data, land-use data, meteorological data, and CTM 

predictions, with cross-validation controlling for overfitting. A generalized additive model 

combined PM2.5 estimates from machine learning algorithms and allowed the contribution 

of each algorithm to vary by location. With the trained model, we predicted daily PM2.5 for 

the entire contiguous United States from 2000 to 2015 at every 1 km × 1 km grid cell. This 

high-resolution accurate estimation allows the estimation of both short-term and long-term 

exposures to PM2.5. The modeled uncertainty of PM2.5 enables to further correct exposure 

assessment errors in epidemiology.

Our PM2.5 model outperforms previous models and our own previous model in the 

following ways. First, our model achieved high R2, with better agreement between 

monitored PM2.5 and predicted PM2.5. The cross-validated R2 (0.86) was higher compared 

with our previous model that was solely based on neural network (R2 0.84), a geographically 

weighted regression model with AOD as input (R2 0.67 in the east and 0.22 in the west) (Hu 
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2009), another a geographically weighted regression model with GEOS-Chem and AOD as 

inputs (R2 0.82) (van Donkelaar, Martin et al. 2015), and other studies estimating PM2.5 for 

the entire contiguous United States (Liu, Park et al. 2004). Moreover, our model achieved 

large spatiotemporal coverage and high spatiotemporal resolution at the same time, and 

demonstrated a potential to downscale to 100-meter level. Previous studies either achieved 

large coverage or high resolution, and few of them achieve both at the same time. Finally, 

our model estimated the monthly uncertainty of PM2.5 prediction for every 1 km grid cell, 

being the first study of this kind.

Our model outperformed previous models for the following three reasons. First, we 

incorporated a larger number of predictor variables, including two CTMs. Compared with 

our previous model, we added more detailed classification of land-use types, and new 

variables such as restaurant density. For different land-use types, the emission profiles and 

rates vary, and such differences are informative for modeling PM2.5 at local scales. The 

variable importance of land-use types also proved the importance of such detailed 

classification (Table 4). Second, we developed an approach to fill in missing values. Missing 

values in satellite data, due to cloud or snow coverage, is a concern for PM2.5 modeling, 

particularly since they are not missing at random. Previous studies either ignored the missing 

values (potentially biasing long-term averages), or used smoothing with inverse probability 

of missingness weights (Kloog, Koutrakis et al. 2011), or multiple imputation (Huang, Xiao 

et al. 2018). Our previous model used a simple interpolation to fill in missing values for 

some predictor variables. For this study, we developed a separate prediction model for each 

variable and filled in the missing values before model training and model prediction. This 

strategy is computationally intensive, but improves model performance, with most of the 

gain in spatial R2, indicating better model performance at annual level. Third, the three 

machine learning algorithms complement each other. While the neural network and random 

forest had similar overall performance, they did not perform equally well in every location 

(Table 2). The spline plots also demonstrate that the three machine learning algorithms do 

not perform equally well at all concentration levels (Figure 3). The neural network was 

better at capturing temporal variation of PM2.5, while the random forest modeled spatial 

variation better (Table S2). By non-linearly combining different base learners and allowing 

their contributions to vary by location and concentration, the base learner that performs 

better at a specific location or concentration level contributes more to the ensemble model in 

that instance. Therefore, the ensemble model can outperform the individual machine 

learning algorithms.

Our PM2.5 model revealed spatial and temporal trends in PM2.5 levels in the contiguous 

United States. Overall, there was an east-west gradient in PM2.5 concentration, with the 

Eastern United States, except the Appalachian Mountains and some remote areas of Maine, 

having relatively higher PM2.5 concentration than the Western United States, where most 

areas are either mountainous or covered by desert (Figure 6). There are some hotspots in the 

Western U.S., such as the Central Valley of California. At a small spatial scale, PM2.5 

concentration is primarily driven by land-use (Figure 7). As revealed by our localized 

modeling, PM2.5 concentrations near highways are elevated, consistent with recent near-road 

PM2.5 monitoring (DeWinter, Brown et al. 2018). In terms of temporal pattern, PM2.5 
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concentrations decreased noticeably after 2008 (Figure 5). This may be due to a combination 

of economic recession and emission controls, particularly the cross-state air pollution rule, 

which reduced emissions from coal fired power plants. The time series of PM2.5 

concentration also indicate strong seasonal patterns, with peaks in the summer (Figure 5). 

High summer concentrations were observed particularly in the Southeastern United States, 

likely due to increased secondary organic aerosol associated with isoprene and monoterpene 

emissions from trees under conducive summer conditions (Figure 6) (Sharkey, Singsaas et 

al. 1996, Sharkey, Wiberley et al. 2008, Zhang, Yee et al. 2018). Relatively low regional 

PM2.5 was observed in winter due to reduced photochemistry, associated with shorter 

daytime, lower sunlight intensity, colder temperatures, and reduced biogenic and wildfire 

emissions. However, elevated wintertime PM2.5 did occur in localized areas due to increased 

emission from home heating in combination with reduced meteorological mixing. For 

example, Salt Lake City and Central Valley experienced wintertime PM2.5 episodes due to 

temperature inversions trapping emission from residential wood combustion and other 

resources in the valley (Franchin, Fibiger et al. 2018, Kelly, Parworth et al. 2018). Elevated 

wintertime PM2.5 was also observed in the Ohio River Valley, where power plants are 

concentrated. Model performance degraded slightly in recent years (Table 1). Although the 

reason for this trend is not entirely clear, it may be associated with CMAQ, an important 

predictor variable. Annual R2 values for CMAQ sulfate predictions in the Ohio River Valley 

were negatively correlated with year during 2007–2015 (r = −0.74). Although the mean bias 

in CMAQ predictions improved over these years, the degradation in R2 suggests that 

predicting the variability of some pollutants with CTMs may be more challenging under 

lower air pollution concentrations.

The relative importance of predictor variables varied by machine learning algorithm. 

Gradient boosting heavily depended on the spatially lagged PM2.5, followed by CMAQ 

predictions, standard deviation of elevation, and land-use terms. The random forest 

demonstrated a similar pattern with less contribution from spatially lagged PM2.5. PM2.5 

distribution demonstrates a high degree of spatial and temporal autocorrelation, and that is 

why spatially lagged PM2.5 could be an important predictor variable for both gradient 

boosting and random forest. But for the neural network, AOD variables were the primary 

predictor, followed by spatially lagged PM2.5, road density, latitude, and longitude. The 

contribution of spatially lagged PM2.5 was negligible for the neural network (2.68%), 

suggesting that the neural network may find some complex and nonlinear associations 

between AOD and other predictors to predict PM2.5. For example, the AOD-PM2.5 

relationship not only relies on temperature, humidity and other meteorological conditions, 

but also demonstrates regional difference. The AOD-PM2.5 relationship in the Southeastern 

United States, where primary source of PM2.5 is from tree emission, is different from the 

Northeastern United States, where primary source is from power plants and vehicles. Also, 

the elevation variation in the Mountainous region imposes challenge to modeling, and 

simulating such complex relationship is the strength of neural network method. In 

comparison, without the ability of uncovering such complex relationship, gradient boosting 

and random forest use the superficial and obvious auto-correlation to estimate PM2.5.

Our study suggests that the best learning algorithm varies based on context (e.g., year, 

season, location, concentration, etc.), and a single fitting method will not be optimal for air 
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pollution modeling in all situations. Approaches that integrate and synthesize individual base 

learners could be developed to achieve a better overall estimation. Performance 

improvement for ensemble model in this study seems to be negligible, because the three base 

learners all performed relatively well and used the same predictor predictors, and there is 

little extra information by combining them. In practice, if combining models from different 

research groups or with different predictor variables, performance improvement would be 

more obvious. Our ensemble model demonstrates features of both geographically weighted 

regression and generalized additive models, showing flexibility and good performance. As 

more researchers explored different approaches of air pollution modeling, it is worth 

exploring other ensemble model formats to synthesize different models or estimation from 

different research groups in order to obtain an optimized overall estimation.

Our PM2.5 model can benefit subsequent epidemiological studies in multiple ways. First, our 

PM2.5 model exhibits high overall model performance. As environmental epidemiological 

studies are important to inform air quality standard setting and receive more scrutiny, 

accurate exposure assessment is both essential and critical, especially as pollution 

concentrations decrease. Moreover, our PM2.5 model performs particularly well at predicting 

annual averages, the standard metric used to assess long-term health effects of PM2.5. Also, 

the performance is good at both low and high concentrations, including daily levels up to 60 

μg/m3. Finally, we have quantified model uncertainty in the PM2.5 prediction, which will 

allow subsequent studies to take into account exposure measurement error (Spiegelman 

2016).

Conclusion

We used an ensemble model to integrate neural network, random forest and gradient 

boosting to estimate daily PM2.5 from 2000 to 2015 for the entire contiguous United States. 

Predictor variables included satellite measurements, chemical transport model predictions, 

land-use terms, meteorological variables, etc. After cross-validation, the mean R2 between 

daily predicted and monitored PM2.5 was 0.86, with RMSE 2.79 μg/m3. R2 was 0.89 at 

annual level, indicating good model performance. After model training, the model produced 

daily PM2.5 predictions at 1 km × 1 km grid cells. We further downscaled the 1-km-level 

predictions to 100 m × 100 m levels, with additional downscaling predictors. We also 

predicted monthly standard deviation of the difference between daily monitored and 

predicted PM2.5 at 1 km × 1 km grid cells. By comparing model performance of individual 

machine learning algorithms, we found that a single machine learning algorithm may 

underperform at a particular year, season, location, pollution concentration etc., and an 

ensemble model incorporating estimation from these multiple machine learning algorithms 

can achieve a superior model performance.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• An ensemble model integrates three machine learning algorithms and 

estimates PM2.5;

• Satellite measurements, land-use terms, and many variables were predictors;

• Model predicts daily PM2.5 at 1 km × 1 km grid cells in the entire United 

States;

• Model predictions were downscaled to 100 m × 100 m level;

• Monthly uncertainty level of prediction was also estimated.
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Figure 1. 
Flowchart of Model Training Process
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Figure 2. Cross-Validated R2 at Monitoring Sites and Predicted Monthly Standard Deviation
The left figures present cross-validated R2 at each monitoring site; the right figures present 

predicted monthly standard deviation at 1 km × 1 km grid cells, averaged over the entire 

years and four seasons. All maps were plotted at the same color scale.

Di et al. Page 22

Environ Int. Author manuscript; available in PMC 2020 March 10.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 3. Relationship between Monitored and Predicted PM2.5 from the Ensemble Model and 
Three Machine Learning Algorithms
We regressed daily predicted PM2.5 from the ensemble model, neural network, gradient 

boosting, and random forest against monitored PM2.5 in a generalized additive model, with 

spline on the monitored PM2.5. Dashed lines represent 95% confidence interval. All plots 

were truncated to 60 μg/m3, since 99.99% of daily PM2.5 monitoring values from 2000 to 

2015 were below 60 μg/m3.
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Figure 4. Relationship between Monitored and Predicted PM2.5 at Annual Level
We regressed annual averaged PM2.5 predictions from the ensemble model against annual 

averaged monitored PM2.5 in a generalized additive model, with spline on the monitored 

PM2.5. Dashed lines represent 95% confidence interval.
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Figure 5. Temporal Trend of PM2.5
We calculated the daily nationwide averages (blue line), by averaging daily predictions at all 

1 km × 1 km grid cells; then we calculated nationwide annual averages (orange line).
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Figure 6. Spatial Distribution of Predicted PM2.5
We predicted daily PM2.5 at each 1 km × 1 km grid cell in the contiguous United States and 

calculated annual and seasonal averages for each grid cell. All maps were plotted at the same 

color scale.
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Figure 7. Downscaled PM2.5 levels in the Great Boston Area
First, we made daily predictions of PM2.5 at 1 km × 1 km grid cells in the Great Boston 

Area; and then we predicted residuals at 100 m × 100 m grid cells using our localized 

downscaling model; finally, we added residual with 1-km-level prediction to obtain 100-m-

level predictions for the year of 2010. We visualized the annual averages at 100-m level for 

the year 2010.
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Table 1

Cross-Validated R2 for the Entire Study Area

Ensemble Model Neural Network Random Forest Gradient Boosting

Year R2 RMSE Bias Slope Spatial R2 Temporal R2 R2 R2 R2

2000 0.868 3.189 0.805 0.953 0.904 0.855 0.865
[a] 0.863 0.836

2001 0.854 3.385 0.626 0.964 0.897 0.835 0.849
[a] 0.849 0.822

2002 0.892 2.808 0.590 0.960 0.894 0.888 0.884 0.891
[a] 0.860

2003 0.885 2.706 0.547 0.965 0.883 0.877 0.877 0.881
[a] 0.853

2004 0.883 2.660 0.629 0.955 0.885 0.873 0.879 0.882
[a] 0.854

2005 0.902 2.670 0.494 0.971 0.905 0.894 0.901 0.901
[a] 0.880

2006 0.884 2.496 0.506 0.969 0.890 0.877 0.881
[a] 0.876 0.855

2007 0.884 2.696 0.483 0.976 0.905 0.877 0.879 0.880
[a] 0.859

2008 0.876 2.417 0.440 0.972 0.890 0.867 0.872
[a] 0.865 0.834

2009 0.861 2.404 0.341 0.981 0.883 0.851 0.855
[a] 0.847 0.817

2010 0.849 2.538 0.538 0.965 0.872 0.844 0.842
[a] 0.835 0.809

2011 0.832 2.670 0.742 0.940 0.871 0.832 0.829
[a] 0.822 0.792

2012 0.818 2.656 0.921 0.914 0.884 0.809 0.814
[a] 0.805 0.744

2013 0.781 3.020 0.929 0.908 0.734 0.789 0.777
[a] 0.775 0.718

2014 0.751 2.940 0.792 0.936 0.772 0.752 0.746
[a] 0.734 0.701

2015 0.783 2.851 0.804 0.922 0.824 0.786 0.767 0.774
[a] 0.711

Overall 0.860 2.786 0.625 0.956 0.894 0.847 0.855
[a] 0.854 0.818

[a]
the learner outperformed other learners in that year.

Note: All presented R2 values were based on 10-fold cross-validation from the ensemble model. We used the trained ensemble model to make 

prediction at 1-km level. The calculation of daily R2, spatial R2, and temporal R2 have been described elsewhere (Kloog, Koutrakis et al. 2011). 
We regressed predicted PM2.5 against monitored PM2.5 in a linear regression model, and obtained the slope and intercept (bias in the Table).
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Table 2

Cross-Validated R2 for Different Regions

Ensemble Model Neural 
Network

Random 
Forest

Gradient 
Boosting

Region R2 RMSE Bias Slope Spatial R2 Temporal R2 R2 R2 R2

East North 
Central

0.924 2.106 0.344 0.981 0.915 0.925 0.917
0.921

[a] 0.899

East South 
Central

0.894 2.214 0.533 0.964 0.897 0.891 0.888
0.891

[a] 0.872

Middle Atlantic
0.893 2.512 0.420 0.978 0.870 0.900

0.887
[a] 0.883 0.863

Mountain
0.769 3.337 0.891 0.911 0.769 0.764 0.765

0.769
[a] 0.694

New England
0.889 2.122 0.356 0.979 0.878 0.894

0.883
[a] 0.875 0.852

Pacific
0.802 4.045 0.929 0.936 0.850 0.776

0.797
[a] 0.797 0.750

South Atlantic
0.895 2.117 0.441 0.974 0.907 0.890 0.888

0.893
[a] 0.872

West North 
Central

0.862 2.326 0.408 0.966 0.875 0.854
0.856

[a] 0.851 0.824

West South 
Central

0.850 2.246 0.717 0.942 0.788 0.857
0.841

[a] 0.841 0.824

[a]
the learner outperformed other learners in that location.

Note: Region division was based on U.S. Census Bureau. New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, 
Vermont; Middle Atlantic: New Jersey, New York, Pennsylvania; East North Central: Indiana, Illinois, Michigan, Ohio, Wisconsin; West North 
Central: Iowa, Nebraska, Kansas, North Dakota, Minnesota, South Dakota, Missouri; South Atlantic: Delaware, District of Columbia, Florida, 
Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia; East South Central: Alabama, Kentucky, Mississippi, Tennessee; West 
South Central: Arkansas, Louisiana, Oklahoma, Texas; Mountain: Arizona, Colorado, Idaho, New Mexico, Montana, Utah, Nevada, Wyoming; 
Pacific: Alaska, California, Hawaii, Oregon, Washington. Although the Pacific Region includes Alaska and Hawaii, both states were not included in 
our modeling.
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Table 3

Cross-Validated R2 for Four Seasons

Ensemble Model Neural Network Random Forest Gradient Boosting

Season R2 RMSE Bias Slope Spatial R2 Temporal R2 R2 R2 R2

Spring 0.853 2.801 0.604 0.955 0.890 0.837 0.848 0.848
[a] 0.812

Summer 0.858 2.271 0.421 0.972 0.895 0.841 0.852
[a] 0.847 0.826

Autumn 0.901 2.445 0.544 0.962 0.939 0.881 0.896 0.896
[a] 0.859

Winter 0.825 3.484 0.888 0.940 0.829 0.813 0.819 0.820
[a] 0.777

[a]
the learner outperformed other learners in that season.
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Table 4

Relative Contribution of Predictor Variables for Three Machine Learning Algorithms

Gradient Boosting % Neural Network % Random Forest %

Spatially Lagged Monitored PM2.5 46.52%
AOD related variables

[c] 9.25% Spatially Lagged Monitored 
PM2.5

28.96%

CMAQ PM2.5 11.58% Spatially Lagged Monitored 
PM2.5

2.68% CMAQ PM2.5 16.51%

CMAQ PM2.5 Sulfate 4.89% Road Density (All Roads) 2.10% CMAQ PM2.5 Elemental Carbon 14.80%

Standard Deviation of Elevation 3.58% Longitude 2.02% CMAQ PM2.5 Organic Carbon 6.28%

NLCD Developed Area
[a] 2.79% Latitude 1.99% CMAQ PM2.5 Sulfate 5.88%

CMAQ PM2.5 Elemental Carbon 2.74% Standard Deviation of Elevation 1.93% Spatially Lagged Monitored 

PM2.5
[b]

3.29%

CMAQ PM2.5 Organic Carbon 2.65%
NLCD Planted Land Coverage

[a] 1.93%
AOD related variables

[c] 2.65%

Spatially Lagged Monitored 

PM2.5
[b]

2.22% Soil moisture 1.92% CMAQ NO2 1.86%

Longitude 1.93% Road Density (Pri-Secondary 
Road)

1.80% Latitude 1.69%

NLCD Impervious Land 

Coverage
[a]

1.82% NLCD Developed Area 1.72%
NLCD Impervious Land

[a] 1.40%

Standard Deviation of Elevation
[a] 1.51%

NLCD Waterbody Coverage
[a] 1.63%

NLCD Developed Area
[a] 1.37%

Road Density (All Roads) 1.51%
NLCD Tree Canopy

[a] 1.57% Road Density (All Roads) 1.32%

AOD related variables
[c] 1.50% Standard Deviation of 

Elevation
[a]

1.55% Longitude 0.99%

Latitude 1.36% Road Density (Pri-Secondary 

Road)
[a]

1.55% Standard Deviation of Elevation 0.91%

NLCD Planted Land Coverage
[a] 1.03%

NLCD Herbaceous Land
[a] 1.53% Upward Longwave Radiation 0.59%

NLCD Tree Canopy Coverage 0.81%
NLCD Wetland Coverage

[a] 1.51% CMAQ PM2.5 Nitrate 0.59%

Road Density (Pri-Secondary Road)
[a]

0.72% NLCD Tree Canopy Coverage 1.51% Daily Maximal Air Temperature 0.54%

NLCD Barren Land Coverage
[a] 0.72%

Road Density (Primary Road)
[a] 1.46% Road Density (Pri-Secondary 

Roads)
[a]

0.54%

MERRA2 Sulfate Aerosol 0.59% Road Density (Primary Road) 1.45% MODIS Daytime Surface 
Temperature

0.54%

OMI NO2 Column Concentration 0.57% Spatially Lagged Monitored NO2 1.41%
NLCD shrubland

[a] 0.44%

[a]
These land-use variables were averaged over 10000 m × 10000 m;

[b]
These were 1-day lagged values;

[c]
AOD related variables include: AOD at 470 nm from the Terra and Aqua satellites (both retrieved by the MAIAC algorithms), AOD at 550 nm 

from the Terra and Aqua satellites (both retrieved by the MAIAC algorithms), AOD at 550 nm (retrieved by the deep blue algorithm), OMI AAI (at 
the visible and UV spectrum), surface reflectance, and aerosol products from MERRA2 (sulfate aerosol, hydrophilic black carbon, hydrophobic 
black carbon, hydrophilic organic carbon, and hydrophobic organic carbon)
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Note: For each learning algorithm, we ranked the importance of predictor variables and listed the first 20 of them. For random forest and gradient 
boosting, we calculated how much the squared error over all trees decreased after a variable was selected to split on in the tree building process. 
The decreased squared error was determined as the relative influence of that variable (Rifkin and Klautau 2004). For neural network, the sensitivity 
of output to input was used to assess variable importance (Gedeon 1997).
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