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Abstract

In this paper, we propose a novel and simple method for discovery of Granger causality from noisy 

time series using Gaussian processes. More specifically, we adopt the concept of Granger 

causality, but instead of using autoregressive models for establishing it, we work with Gaussian 

processes. We show that information about the Granger causality is encoded in the hyper-

parameters of the used Gaussian processes. The proposed approach is first validated on simulated 

data, and then used for understanding the interaction between fetal heart rate and uterine activity in 

the last two hours before delivery and of interest in obstetrics. Our results indicate that uterine 

activity affects fetal heart rate, which agrees with recent clinical studies.

Index Terms—

Gaussian processes; Granger causality; cardiotocography; fetal heart rate; uterine activity

1. INTRODUCTION

The main goals of science are to understand Nature and, based on this understanding, predict 

how the world around us evolves. The identification of causal relationships is an important 

part of scientific research, since it provides us with insights about consequences for actions 

[1]. The gold standard for identifying causal relationships is using controlled randomized 

experiments. However, in many situations, these experiments are either impractical, 

unethical, or simply impossible [2]. The problem of inferring causal interactions from data 

has challenged scientists and philosophers for centuries [3] and many efforts have been 

made to solve it. [4].

Causal inference from time series is one important area of research in this domain, where 

many concepts and methods have been proposed. They include intervention causality [1, 5, 

6], structural causality [7] and Granger causality [8,9] (see [10] for a detailed review). The 

Granger causality is probably the most prominent and most widely used concept although its 

usefulness is somewhat controversial [10].

In practice, when detecting Granger causality a (vector) autoregressive (AR) model is often 

used, and yet in reality, many causal relationships are likely to be nonlinear, this giving rise 

to doubts about the approach [11]. Further, it has been shown that non-linearity can be 

helpful in causal discovery [2]. Therefore, instead of using AR models, we adopt the use of 
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Gaussian processes (GPs) for this purpose. They are more powerful for learning functions or 

mappings and moreover, they can accommodate prior knowledge and assumptions easily. A 

similar idea was proposed in [12], for testing Granger causality between time series using 

GPs. Unlike [12], instead of only relying on model evidence for casual discovery, we 

directly learn the mappings of possible causes and use cross-validation and model evidence 

for model selection. Further, we look into the hyper-parameters for causal discovery, which 

is more natural in the modeling sense and more robust to over-fitting.

In this paper, we are also interested in making inference about causality from 

cardiotocography (CTG). CTG is the most widely used technology for monitoring the well-

being of fetuses during labor. CTG comprises of the fetal heart rate (FHR) and uterine 

activity (UA) signals, which are both recorded and visually inspected by clinicians. The 

interpretation of FHR recordings is a highly intricate and complex task with high inter- and 

intra-variable evaluations among obstetricians, notwithstanding the availability of various 

clinical guidelines from both the National Institute of Child Health and Human Development 

(NICHD) and the International Federation of Gynecology and Obstetrics (FIGO) [13–15]. In 

fact, the current guidelines for FHR evaluation have been criticized for simplistic 

interpretation [16]. The classification of CTG tracings by computerized systems remains a 

challenging problem [17]. For improved understanding of CTG recordings, the interactions 

between FHR tracings and UA is crucial, and especially establishing if there is causality 

between them. Interestingly, this issue has been largely overlooked in the literature of 

computerized analysis of CTG.

In the machine learning literature, Gaussian processes (GPs) provide data-efficient and 

flexible Bayesian machinery for learning functions or mappings from data. GPs have been 

successfully applied in both supervised and unsupervised learning tasks [18]. For example, 

in our previous work [19], we proposed a GP-based method that employs UA signals to 

recover missing samples of FHR recordings and had excellent results. This work also 

provided evidence that the UA signals contain information about fetal well-being. Also, 

there are many applications that exploit the hyper-parameters of GPs for making inference. 

For example, in [20, 21], the hyper-parameters are used for detecting change points, and in 

[22], for epilepsy detection from electroencephalograms.

In this paper, we propose a novel and simple method for discovery of Granger causality from 

noisy time series using GPs. Our approach to finding the possible causes and effects is based 

on the hyper-parameters of the GPs. Our hypothesis is that information about causality is 

encoded in the covariances of the GPs, and in particular in the characteristic length scales of 

the used features by the GPs. We use these length scales to define coefficients that reflect on 

the direction of causality. We tested the method based on these coefficients on simulated 

data and then applied it to CTG. The results indicate that the UA is a Granger cause of FHR. 

Our finding is consistent with recent clinical studies [23].

The paper is organized as follows. In the next section, we provide a brief background on 

Granger causality and GPs. In Section 3, we present the details of our model. In Section 4, 

we describe our experiment results. Finally, we conclude with final remarks in Section 5.
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2. BACKGROUND

2.1. Granger causality

Two principles are fundamental in Granger causality: (i) the effect does not precede its cause 

in time; (ii) the causal series contains unique information about the series being caused that 

is not available otherwise. The Granger causality is usually tested using an AR model or a 

vector autoregressive (VAR) model. For the bivariate case, given x1(t) and x2(t), the AR 

models are

x1(t) = ∑
j = 1

p
a11, jx1(t − j) + ∑

j = 1

p
a12, jx2(t − j) + e1(t),

x2(t) = ∑
j = 1

p
a21, jx1(t − j) + ∑

j = 1

p
a22, jx2(t − j) + e2(t),

(1)

where p is the order of the model, and e1(t) and e2(t) are perturbations. If the prediction error 

of x1(t) is reduced by using x2(t) or equivalently, the coefficients a12, j j = 1
p  are jointly 

significantly different from zero, then x2(t) is a Granger cause of x1(t). A statistical test is 

often performed where the null hypothesis is that a12, j j = 1
p  are jointly zero. Similarly, a 

test is performed on a21, j j = 1
p .

2.2. Gaussian Processes

By definition, a GP is a collection of random variables such that every finite collection of 

those random variables has a joint Gaussian distribution. This makes GPs suitable to model 

distributions over functions, and infinite dimensionality becomes a bless instead of a curse 

given their consistency property. To be more specific, if y denotes an output and x signifies a 

vector of input variables, and if y = f(x), where f(x) is a real-valued function, than a GP can 

be seen as the distribution of the function f(x). This GP is completely specified by its mean 

function m(x) and covariance function kf(xi,xj), which are defined by m(x) = E[f(x)] and 

kf xi, xj = E f xi − m xi f xj − m xj . In machine learning, a GP is usually assumed to 

be zero mean, that is, m(x) = 0 for every x. It is also practical and common to assume the 

presence of observation noise i.e.,

y = y(x) = f(x) + ϵ, (2)

where ϵ N 0, σϵ2  is additive white Gaussian noise.

In the GP regression framework, a prior distribution of the latent function can be directly 

placed in the function space. With the model and the Gaussian noise assumption, one can 

obtain tractable posteriors of the latent function and marginal likelihoods, which makes the 

GPs a powerful Bayesian non-parametric machinery for learning functions or mappings. 

Although the function f(x) is non-parameteric, the covariance function kf(xi,xj) is 

parameterized by its set of hyper-parameters θ.
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Let X = xi i = 1
N  denote the collection of all input vectors, and Kff the covariance matrix 

obtained by evaluating the covariance function for X, i.e., Kff = kf(X,X). Then the prior 

probability density function (pdf) of f given X is given by

p(f |X, θ) = N f|0, Kff . (3)

The hyper-parameters θ are learned in the training stage by maximizing the marginal 

likelihood or model evidence,

log p(y |X, θ) = log N y|0, Kff + σϵ2I
= log N(y | 0, K)
= − 1

2yTK−1y − 1
2log |K | − N

2 log 2π .
(4)

If we have test inputs X*, the mean predictive distribution p(f*|X*,X,θ) will be Gaussian 

with a mean and covariance given by

E f* = Kf X*, X K−1y, (5)

cov f* = Kf X*, X* − Kf X*, X K−1 Kf X*, X T . (6)

In this work, we use the time variable as an input and we do not specify lengths of histories 

in the model. In other words, we model the time series simply as functions of time and do 

not make Markovian assumptions (as in AR processes). From (5), we see that the mean of 

the predictive distribution is a linear combination of all the previous observations.

2.3. Automatic Relevance Determination

The design of the covariance is of great importance, since it quantifies the distance or 

similarity between the inputs to the covariance between outputs. Thus, it encodes our prior 

knowledge or assumptions about the latent function, e.g., smoothness, periodicity, and 

stationarity. One of the most popular covariance functions is the radial basis function (RBF), 

which for the 1-D case has the form

kRBF xi, xj = σf
2 exp − 1

l xi − xj
2 , (7)

where the characteristic length-scale l > 0 and the signal variance σf
2 are its hyper-

parameters. They also have interesting meanings; σf
2 represents the variability of the 

function, and l affects the model complexity in that dimension. If l is small, a small change 

in the input distance will cause a large change in the covariance of the outputs and vice 

versa. This leads to another important interpretation of the characteristic length-scale, which 

is a measure of the importance or relevance of that dimension in the modeling. If l is small, 

the corresponding dimension is relevant. When x is a vector, we can compute the r = 1
l
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values for each dimension, where, e.g., each dimension could be a different feature, and then 

use them for feature selection. This is known as automatic relevance determination (ARD) 

[18], and is used in supervised learning and automatic dimensionality reduction in 

unsupervised learning [24–26].

3. MODEL DESCRIPTION

Given two time series xt and yt, we would like to determine their Granger causality. For each 

time series, as shown in Fig. 2, we can model it as a function of time and the history values 

of the other time series up to a certain length w, similar to the order of an AR model, i.e.,

xt = fx t, yt − w: t − 1 + ϵx, t, (8)

yt = fy t, xt − w: t − 1 + ϵy, t, (9)

where ϵx, t N 0, σx2  and ϵy, t N 0, σy2  are independent and additive white Gaussian noises, 

and the latent functions fx and fy are governed by two GPs, respectively, i.e.,

fx GP 0, kx t, yt − w: t − 1 , t′, yt − w: t − 1′ ,
fy GP 0, ky t, xt − w: t − 1 , t′, xt − w: t − 1′ , (10)

where the covariance functions kx and ky have the same form but each has a different set of 

hyper-parameters, and [.,.] denotes concatenation.

We propose to use the hyper-parameters of the GPs to determine Granger causality. In 

particular, we use the concept of relevance weights, which we define by r = 1/l. We measure 

the relevance of the history of yt when modeling xt with the maximum value of the relevance 

weight of the input yt−w:t−1, i.e., ryx = max ryt − 1
x , ryt − 2

x , …, ryt − w
x , where w is the history 

length, and ryt − k
x  is the relevance weight of the y sample with lag k. We denote the 

relevance weight of time, or equivalently xt, by rxx. It represents the overall relevance of the 

history of xt when modelling xt. Finally, we normalize rxx and ryx by their sum for proper 

comparison, i.e.,

Rx
x = rxx

rxx + ryx
, (11)

Ry
x = ryx

rxx + ryx
. (12)

Similarly, we can define ryy and rx
y, and their normalized versions Ry

y and Rx
y. The former 

metric measures the percentage of relevance of the history of yt on yt and the latter, the 

percentage of relevance of a window of history of xt on yt. An illustration of our model is 

shown in Fig 1.
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If the true direction of Granger causality is from xt to yt, then the relevance of the past values 

of xt in modeling of yt will be greater than the past values of yt in modeling xt. The reason is 

simple: the cause occurs before the effect and the change in cause entails a change in effect, 

and not the other way around. We note that from a machine learning perspective, the cause 

and effect are often viewed as a correlation only. Our interpretation of the values of Rx
x, Ry

x, 

Rx
y, and Ry

y is similar to that of the VAR model, which is that the information of Granger 

causality is encoded in the relevance weights of the GP models. Therefore, with our 

approach, if the true Granger causality is from xt to yt, this will be indicated as Rx
y > Ry

x, and 

vice versa. Obviously, it is possible that the above analysis of the two time series can show 

that there is cause and effect in both directions. In principle, the determination of causality 

would require comparisons of the obtained normalized relevances with thresholds. Setting 

thresholds, however, is out of the scope of this paper.

If there is no Granger causality between the two time series, the information from the history 

of the other time-series will not benefit the modeling of the modeled time series. This will be 

encoded with small values of both Rx
y and Ry

x. We note that since our method is based on GP 

regression, if we have more prior knowledge about the interaction or relationship between 

the time series, e.g., in forms of superpositions and/or compositions, this can be included in 

the used model. In that case, the hyper-parameters will encode even richer information about 

the possible interactions. However, then the comparisons should be made more carefully, 

i.e., the relevance weights should also be normalized by the importance of the corresponding 

explanatory variables of the model.

The above discussion is based on the assumption that we have properly selected the 

covariance function. If an inappropriate covariance function is used, the modeling and 

predictive performance will severely be deteriorated, which will most likely lead to 

unreliable conclusions. The choice of covariance function and window length of history w 
are model selection problems. Often this choice depends on how much we know about the 

addressed problem and the nature of the problem itself. One may use cross validation and 

exploit model evidence and predictive performance to select good covariance functions and 

window lengths. A tutorial on designing of covariance functions and model selection in GPs 

can be found in [18]. The window size w should not be very long, since this will increase the 

number of hyper-parameters in the model. Empirically, for determining Granger causality, 

we found that the model is robust with different choices of w.

4. EXPERIMENTS AND RESULTS

4.1. Simulations

In this section, we first provide a description of a test for our method. We simulated three 

pairs of time series (three cases), all shown in Fig. 2. The complexity of relationships 

between the time series was gradually increased as we moved from the first case to the third 

case. For each case, we wanted to discover the Granger causality. We used the RBF 

covariance function with ARD between two observed noisy time series xt and yt, each of 

length T = 300. The ground truth in the three simulations was that xt was a Granger cause of 
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yt. For Case 2 and Case 3, we included nonlinear mappings and function composition to 

increase the complexity of the relationships. To remove bias, rather than using deterministic 

functions, we generated the mappings by GPs.

4.1.1. Case 1: A delayed function with additive noise—This simple simulation 

represents the case where we have a time series xt, which represents a sinusoid in noise, and 

another time series yt, which is generated by the same, but delayed, sinusoid. The time series 

yt also contained additive noise. More precisely, we generated the time series according to 

the following model:

xt = sin(t + 0.5) + ϵx, t, (13)

yt = 0.5 sin(t) + ϵy, t, (14)

where t was equally spaced in [0,2π], and where the additive Gaussian noises in xt and yt 

was white, and ϵx, t N 0, σx2  and ϵy, t N 0, σy2 , respectively, with σx2 = 1 and σy2 = 4. The 

noises ϵx,t and ϵy,t were independent of each other.

4.1.2. Case 2: A noisy function with a nonlinear mapping—With the second 

simulation we generated more complicated relationship between the time series xt and yt. 

The time series xt was a superposition of two deterministic signals in additive Gaussian 

noise. The time series yt was composed of two parts, a function sampled from a GP that used 

xt as an input and a deterministic function of time. This time series also had zero mean 

additive Gaussian noise which was independent from the noise of xt. The exact generative 

model of the data is given by

xt = sin(t/10) + (t/50)2 + ϵx, t, (15)

yt = f(x) + sinc (t/40)2 + ϵy, t, (16)

f(x) GP 0, k x, x′ , (17)

where the noise variances were σx2 = 0.25 and σy2 = 4.

4.1.3. Case 3: A delayed noisy function with two layers of function 
composition—In this simulation, we further complicated the previous case by introducing 

another layer of function composition and delay. We first generated a time series xt as in 

Case 2, and we used its delayed version as the input to a GP with an RBF covariance 

function. A function was then sampled from this GP and used as the input to another GP. 

This generative model is described by

xt = sin(t/10) + (t/50)2 + ϵx, t, (18)
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yt = f2 f1 xt − 2.5 + sinc (t/40)2 + ϵy, t, (19)

f1(x) GP 0, k1 x, x′ , (20)

f2(x) GP 0, k2 x, x′ , (21)

where k1 and k2 are both RBF covariance functions but with different sets of hyper-

parameters. The noises, as before, were independent and zero-mean Gaussian with variances 

σx2 = 1 and σy2 = 4.

4.1.4. Results—The results of our method are summarized in Table. 1. The method 

correctly determined the causality in all three cases. We repeated the experiment five times, 

and correct decisions were made in each of them.

4.2. Real data: CTG segment

In our experiments with real CTG data, we used data records from an open access database 

that were acquired at the obstetrics ward of the University Hospital in Brno, Czech Republic. 

A detailed description of the database can be found in [27].

We applied the method on a real CTG segment of length 491 samples, as shown in Fig. 3, 

which corresponds to a duration of 2.04 minutes (the sampling rate for both FHR and UA 

signals was 4 Hz). We used the RBF covariance function with a window size of w = 4. The 

results are shown in Table 2. The values of the normalized relevance weights indicate that 

the UA is a Granger cause of FHR. This agrees with a recent clinical study [23].

Another interpretation of the second principle of Granger causality is that if the UA 

Granger-causes the FHR, then past values of UA should contain information that helps in 

predicting future values of the FHR. With this information, the predictive performance of the 

method should be better than that of using information from past values of FHR alone. This 

is consistent with our observation in [19]. There we showed that adopting information from 

UA signals helps in recovering missing samples of FHR tracings.

We also used deep Gaussian processes [28] to see if FHR and UA signals have a common 

manifold. The results indicate that they cannot be generated from a common manifold, i.e., 

the FHR and UA encode different information about fetal well-being. This is also consistent 

with our observations in [29], where the performance of classification of FHR can be 

improved using features from UA.

5. CONCLUSIONS

In this paper, we proposed a Gaussian processes-based method for detecting Granger 

causality. We showed that the interaction or causal information can be extracted from the 

hyperparameters of the Gaussian processes. itemand real CTG recordings and found the 

results very promising. Although we used bivariate time series, this methodology can be 
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easily extended to more than two time series. Furthermore, if we have additional prior 

knowledge about the time series and their interactions, it can be easily injected in the GP 

framework. After applying our method on real CTG recording, we found that uterine activity 

is a Granger cause of fetal heart rate, which agrees with recent clinical studies.
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Fig. 1. 
Illustration of our model, where the arrows stand for flow of information, and the 

normalized relevance weights indicate importance.
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Fig. 2. 
Simulated time series pairs in each simulation cases.
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Fig. 3. 
A segment of not-preprocessed (raw) FHR tracing and the corresponding UA signals.

Feng et al. Page 13

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2020 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Feng et al. Page 14

Table 1.

Simulation Results

Rx
x Ry

x Ry
y Rx

y Granger causality

Case 1 0.9931 0.0069 0.1566 0.8434 xt Granger causes yt

Case 2 0.7914 0.2086 0.0008 0.9992 xt Granger causes yt

Case 3 0.4029 0.5971 0.3986 0.6014 xt Granger causes yt
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Table 2.

Granger causality in CTG

RFHR
FHR RUA

FHR RUA
UA RFHR

UA

CTG signal 0.5090 0.4910 0.7917 0.2083
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