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BACKGROUND: Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor targeting estrogen receptors (ERs), has been implicated in the
promotion of breast cancer. Perinatal exposure of BPA could induce longitudinal alteration of DNA hydroxymethylation in imprinted loci of mouse
blood cells. To date, no data has been reported on the effects of BPA on DNA hydroxymethylation in breast cells. Therefore, we asked whether BPA
can induce DNA hydroxymethylation change in human breast cells. Given that dysregulated epigenetic DNA hydroxymethylation is observed in vari-
ous cancers, we wondered how DNA hydroxymethylation modulates cancer development, and specifically, whether and how BPA and its analogs pro-
mote breast cancer development via DNA hydroxymethylation.
OBJECTIVES:We aimed to explore the interplay of the estrogenic activity of bisphenols at environmental exposure dose levels with TET dioxygenase-catalyzed
DNA hydroxymethylation and to elucidate their roles in the proliferation of ER+ breast cancer cells as stimulated by environmentally relevant bisphenols.
METHODS: Human MCF-7 and T47D cell lines were used as ER-dependent breast cell proliferation models, and the human MDA-MB-231 cell line
was used as an ER-independent breast cell model. These cells were treated with BPA or bisphenol S (BPS) to examine BPA/BPS-related prolifera-
tion. Ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) and enzyme-linked immunosorbent assays
(ELISAs) were used to detect DNA hydroxymethylation. Crispr/Cas9 and RNA interference technologies, quantitative polymerase chain reaction
(qPCR), and Western blot analyses were used to evaluate the expression and function of genes. Co-immunoprecipitation (Co-IP), bisulfite
sequencing-PCR (BSP), and chromatin immunoprecipitation-qPCR (ChIP-qPCR) were used to identify the interactions of target proteins.
RESULTS:We measured higher proliferation in ER+ breast cancer cells treated with BPA or its replacement, BPS, accompanied by an ERa-dependent
decrease in genomic DNA hydroxymethylation. The results of our overexpression, knockout, knockdown, and inhibition experiments suggested that
TET2-catalyzed DNA hydroxymethylation played a suppressive role in BPA/BPS-stimulated cell proliferation. On the other hand, we observed that
TET2 was negatively regulated by the activation of ERa (dimerized and phosphorylated), which was also induced by BPA/BPS binding. Instead of a
direct interaction between TET2 and ERa, data of our Co-IP, BSP, and ChIP-qPCR experiments indicated that the activated ERa increased the DNA
methyltransferase (DNMT)-mediated promoter methylation of TET2, leading to an inhibition of the TET2 expression and DNA hydroxymethylation.

CONCLUSIONS: We identified a new feedback circuit of ERa activation–DNMT-TET2-DNA hydroxymethylation in ER+ breast cancer cells and
uncovered a pivotal role of TET2-mediated DNA hydroxymethylation in modulating BPA/BPS-stimulated proliferation. Moreover, to our knowledge,
we for the first time established a linkage among chemical exposure, DNA hydroxymethylation, and tumor-associated proliferation. These findings
further clarify the estrogenic activity of BPA/BPS and its profound implications for the regulation of epigenetic DNA hydroxymethylation and cell
proliferation. https://doi.org/10.1289/EHP5862

Introduction
Bisphenol A (BPA) is awell-known environmental endocrine disrup-
tor, causing adverse alterations in the reproductive system, liver, and
mammary glands (Vandenberg et al. 2007; Michałowicz 2014;
Rodgers et al. 2018). In China, Canada, the United States, the
European Union, and some other countries, BPA has been banned
from use in the raw materials for the production of some baby prod-
ucts (EFSA CEF Panel 2015; Aungst 2014). Due to industrial
demands, bisphenol S (BPS) has been widely used as a replacement
forBPA in the production of thermal paper, food packagingmaterials,
food can coatings, and bottles and in leather processing (Chen et al.
2016; Rochester and Bolden 2015). Recent studies demonstrated that
BPS also has estrogenic activity (Chen et al. 2016; Héliès-Toussaint
et al. 2014;Kinch et al. 2015;Viñas andWatson 2013).

Environmental exposures of BPA and BPS to humans have
been extensively surveyed. Both BPA (nBPA = 293, 93%) (Zhang
et al. 2011) and BPS (nBPS = 255, 81%) (Liao et al. 2012) were
detected in most urine samples (ntotal = 315) from the United States
and seven Asian countries. Epidemiological surveys in the United
States showed that BPA levels (ranging from 0.4 to 149 lg=L)
were detectable in 95% of the urine samples (Calafat et al. 2005;
Zhou et al. 2014), and biomonitoring studies indicated that BPA
was also found in maternal plasma (3:1 ng=mL; ∼ 13 nM), fetal
plasma (2:3 ng=mL; ∼ 10 nM), amniotic fluid (8 ng=mL; ∼ 35 nM),
and placental tissues (1–104:9 ng=g) (Corrales et al. 2015; Pfeifer
et al. 2015;Vandenberg et al. 2010).

The endogenous hormone estradiol (E2) is a key regulator for a
variety of physiological functions and acts through two estrogen
receptors (ERs), ERa and ERb (Burns et al. 2011; Pettersson and
Gustafsson 2001). The adverse health effects of BPAandBPSmight
be associated with their ability to regulate the actions of ERs
(Acconcia et al. 2015; Viñas and Watson 2013). To explain BPA-
caused dysregulation of gene transcription and health effects, three
major ER-associated mechanisms have been proposed: a) direct
interaction of the ligand-bound ERwithDNAestrogen response ele-
ments (EREs) that are located in the regulatory regions of the ER tar-
get genes (Pettersson and Gustafsson 2001); b) interaction of the
ERs with other transcription factors (TFs), such as activator protein
1 (AP-1) or Sp1 transcription factor (SP-1) (Métivier et al. 2003);
and c) activation of intracellular signaling cascades involving p44/
42,mitogen-activated protein kinase (MAPK), SRCproto-oncogene,
non-receptor tyrosine kinase (Src), andAKT serine/threonine kinase
1 (Akt) (Burns et al. 2011). However, epigenetic factors involved
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in those mechanisms remain unclear. We attempted to gain new
insight into the BPA/BPS-caused health effects via epigenetic
DNAhydroxymethylation.

DNA 5-hydroxymethylcytosine (5hmC) is a major oxidation
product of DNA 5-methylcytosine (5mC) catalyzed by the ten-
eleven translocation (TET) family of dioxygenases (Tahiliani et al.
2009) and is critical for active and passive DNA demethylation
(He et al. 2011), locus-specific regulation of gene activities (Wu
and Zhang 2010), and large-scale nuclear reprograming (Ficz et al.
2011; Tan and Shi 2012). The alterations in genomic 5hmC and
TET dioxygenases are tightly associated with the survival rate of
cancer patients (Haffner et al. 2011; Jin et al. 2011; Tan and Shi
2012) and involved with breast (Zhong et al. 2019), prostate, liver
(Liu et al. 2019), lung, pancreatic, colorectal, gastric, small intestine,
brain, kidney, and skin cancers and myeloid diseases (Albano et al.
2011; Chou et al. 2011; Ko et al. 2010). At the global level, genomic
5hmC has been shown to bemuchmore dramatically decreased in the
cancer state than in normal tissue compared with genomic 5mC
(Haffner et al. 2011; Tan and Shi 2012). Interestingly, perinatal expo-
sure of BPA can induce persistent 5hmC markers at imprinted loci in
mouse blood throughout development (Kochmanski et al. 2018).

As a stable epigenetic marker in mammalian tissues, 5hmC is a
better indicator of stimuli of environmental molecules than the
well-known 5mCmarker (Yin et al. 2013; Zhao et al. 2014, Zhong
et al. 2019). We wondered if BPA and BPS could induce alteration
of the 5hmCmarker. That perinatal BPA exposure has resulted in a
change of the 5hmC loci in mouse blood (Kochmanski et al. 2018)
supports this probability. So the question was whether and how
DNAhydroxymethylation shapes the adverse health effects caused
by BPA/BPS exposure, especially cellular proliferation. Of note,
cellular proliferation is a critical indicator for the growth, invasion,
recurrence, and metastasis of cancers (López-Sáez et al. 1998; Zhu
and Thompson 2019). To answer our questions, we explored the
interplay between estrogenic activity, TET dioxygenases, and
5hmC and investigated their roles in the proliferation of breast can-
cer cells uponBPA/BPS exposure.

Materials and Methods

Chemicals and Antibodies
Dimethyl sulfoxide (DMSO), 17-beta-estradiol (E2), BPA, and BPS
were obtained from Sigma Chemical Co. Dimethyloxaloylglycine
(DMOG) was purchased from Absin. Antibodies used in this work
are listed in the Table S1.

Cell Culture
Human breast cancer cell lines MCF-7 (ER+, with higher
ERa=ERb ratios), T47D (ER+, with lower ERa=ERb ratios), and
MDA-MB-231 (a triple-negative breast cancer cell line) were sup-
plied by the cell culture center of the Chinese Academy of Medical
Sciences. MCF-7 and MDA-MB-231 cells were cultured in phenol
red-free Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with a high-glucose medium containing charcoal-stripped
fetal bovine serum (FBS; Catalog No. 12676011, GIBCO, New
Zealand Origin), 1% glutamine, and 1% penicillin/streptomycin.
T47D was cultured in phenol red-free RPMI 1640 medium supple-
mented with 10% charcoal-stripped FBS, 1% glutamine, and 1%
penicillin/streptomycin. All cell lines were incubated in 5% carbon
dioxide (CO2) at 37°C.

Justified Doses of BPA and BPS Treatment
Based on more than 80 published human biomonitoring studies,
long-term exposure of BPA leads to steady-state BPA concentra-
tions in the nanograms-per-milliliter (nanomolar) range in human

urine and blood (Calafat et al. 2005; Vandenberg et al. 2010; Zhou
et al. 2014). Vandenberg et al. (2007) estimated the theoretical in-
ternal dose to be 10–100 nM among the general population, based
on measured levels of BPA in body fluids and tissues. Therefore,
the environmentally relevant doses of BPA/BPS (10–1,000 nM)
were chosen for use in our study.

Cell Treatment with BPA or BPS
BPA and BPS were each dissolved in DMSO, and a 20-mM stock
solution of each was stored at room temperature (RT) and diluted
as needed to the indicated concentrations using culture medium.
The final DMSO concentration in the culture medium was 0.1%
(vol/vol). Medium with 0.1% (vol/vol) DMSO (vehicle) was used
as the control. Three wells per assay were used for each treatment
in each cell line.

MCF-7, T47D, and MDA-MB-231 cells were cultured in 96-
well plates or 6-cm dishes for 24 h and then treated with
10–1,000 nM BPA/BPS for 24, 48, or 72 h, after which the cells
were harvested for cell proliferation assays or for 5hmC analysis.
MCF-7 cells were cultured in 6-cm dishes for 24 h and then
treated with 10–1,000 nM BPA/BPS for 24, 48, and 72 h, after
which the cells were used for DNA or RNA extraction, enzyme-
linked immunosorbent assays (ELISAs), bisulfite sequencing,
protein extraction, plasmid transfection, and subsequent experi-
ments. MCF-7 cells were cultured in eight-chamber slides (Lab-
tek) for 24 h and then treated with 10–1,000 nM BPA/BPS for
24, 48, and 72 h, after which the cells were used for immunofluo-
rescent staining and imaging analysis.

Cell Treatment with E2

E2 was dissolved in DMSO to a stock solution of 10mM. The
stock solution was diluted as needed to the indicated concentra-
tions using culture medium.

MCF-7 cells were cultured in 96-well plates for 24 h and then
treated with 1:0 nM E2 for 24, 48, or 72 h, after which the cells
were used for cell proliferation assays. Similarly, MCF-7 cells
were cultured in 6-cm dishes for DNA or RNA extraction, 5hmC
analysis, protein extraction, and subsequent experiments. Three
wells per assay were used for each treatment.

Cell Treatment with DMOG
MCF-7 cells were treated with 200mM DMOG for 24 h. The
cells were then subjected to BPA and BPS exposure, as described
for proliferation and for 5hmC analysis.

MTS Cell Proliferation Assay
The MTS assay is based on the conversion of a tetrazolium salt
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium] into a colored, aqueous-soluble
formazan product by mitochondrial activity (Malich et al.
1997). We used a cell density of 2 × 103 cells (MCF-7, T47D,
and MDA-MB-231 cells) per well as a starting point. After cul-
ture in 96-well plates for 24 h, the cells were exposed to BPA,
BPS, or vehicle at different concentrations. At the indicated
times, the cells were incubated with the MTS assay reagents for
4 h, and absorbance was measured at 490 nm by a microplate
reader (Varioskan Flash, Thermo).

The relative proliferation was calculated by the formula:
½AðsampleÞ −AðblankÞ�=AðblankÞ. AðsampleÞ represented the optical den-
sity ðODÞ490 value of cells treated with vehicle, BPA, or BPS,
and AðblankÞ represented the OD490 value of the blank group.
Note, the blank group contained only culture medium and MTS
solution (without cells).
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5-Ethynyl-20-Deoxyuridine Cell Proliferation Assay
After being seeded (5,000 cells per chamber) in eight-chamber
slides (Lab-tek) for 24 h, MCF-7 cells were treated with BPA or
BPS at different concentrations. At indicated times, cells were
incubated with 5-ethynyl-20-deoxyuridine (EdU; 30 lM) from
Invitrogen for 6 h and then washed twice with phosphate-buffered
saline (PBS; Catalog No. 10010049, Gibco, Thermo Scientific) and
fixed with 4% paraformaldehyde for 10 min. MCF-7 cells were
permeabilized with 0.1% Triton X-100 in PBS for 5 min, then incu-
bated with 5% normal donkey serum–blocking buffer for 2 h.
Incorporated EdUwas detected with a copper-catalyzed fluorescent
azide reaction (Click-iT EdU Microplate Assay, Catalog No.
C10214, Invitrogen), after which the slides were washed with PBS
andmounted on cover slips withmountingmedium containing 40,6-
diamidino-2-phenylindole (DAPI) (Vector). Fluorescence imaging
was collected by confocal fluorescence microscopy (Leica). The
EdU signal was visualized with excitation at 550 nm and emission
at 565 nm, and the DAPI signal was visualized with excitation at
350 nm and emission at 461 nm.

DNA Extraction and Enzymatic Digestion
Following our previous work (Yin et al. 2013; Zhao et al. 2014),
genomic DNA was extracted from the harvested cells (MCF-7,
T47D, andMDA-MB-231 cells) using a GenomicDNAPurification
Kit (Promega) according to the manufacturer’s instructions. The
DNA (5 lg) was digested to nucleosides with 1.0 U DNase I, 2.0 U
calf intestinal phosphatase, and 0.005 U snake venom phosphodies-
terase I (NewEnglandBiolabs) at 37°C for 24 h.Thedigestswerefil-
tered using ultrafiltration tubes (Millipore) by centrifuging at
10,000× g for 30 min in order to remove the proteins from the DNA
digestion system.

Ultra-High Performance Liquid Chromatography–Tandem
Mass Spectrometry Analysis
The digested DNA (5:0–15:0 lL) was subjected to ultra-high
performance liquid chromatography–tandem mass spectrometry
(UHPLC-MS/MS) analysis for detection of 5hmC and 5mC, as
previously described (Yin et al. 2013; Zhao et al. 2014). The
Agilent 1200 Series Rapid Resolution LC system with a reverse-
phase Zorbax SB-C18 2:1× 100 mm column (1.8-mm particles)
was applied for UHPLC separation. Mass spectrometric detection
in the positive ion mode was achieved by the Agilent 6410B tri-
ple quadrupole MS with an electrospray ionization source.

Quantification of Global DNA Hydroxymethylation (5hmC)
by ELISA
The extracted genomic DNA was stored at −80�C. Global DNA
hydroxymethylation (5hmC) were assessed using the MethylFlash
Global DNA Hydroxymethylation ELISA Easy kit (colorimetric)
fromEpiGentek.

Immunofluorescent Staining And Imaging Analysis
Cultured MCF-7 cells (5,000 cells per chamber) were plated onto
eight-chamber slides (Lab-tek) and treated with 10–1,000 nM
BPA/BPS for 48 h. At the indicated times, the MCF-7 cells were
first washed with PBS and then fixed with 4% paraformaldehyde
solution for 15 min, followed by another PBS wash. After perme-
abilization with 0.1% Triton X-100 in PBS for 10 min, the MCF-
7 cells were incubated with 4 N HCl for 15 min at RT, rinsed
with distilled water, and placed in 100mM Tris–HCl (pH 8.5) for
10 min. The MCF-7 cells were washed with PBS and incubated
in a blocking solution [3% goat serum in PBS-Tween (PBST;
Catalog No. 28352, Pierce, Thermo Scientific)] for 1 h at RT.

The MCF-7 cells were then treated with diluted (1:1,000) anti-
5hmC rabbit polyclonal antibody (Active Motif) overnight at 4°
C. Finally, the slides were washed with PBST solution and incu-
bated with Alexa Fluor 555-conjugated goat anti-rabbit IgG sec-
ondary antibody at the dilution of 1:2,000 for 1 h at RT, followed
by application of DAPI (10 lg=mL in PBS) for 10 min to stain
the nuclei. Fluorescence imaging was collected by confocal fluo-
rescence microscopy (Leica).

Western Blot Analysis
MCF-7 cells (1 × 105=dish) were plated in 10-cm dishes and
treated with 100 nM BPA or BPS for 48 h. Cells were collected by
resuspension in the cell lysis buffer for Western blot and IP
(Beyotime), incubated on ice for 30 min, and centrifuged at
12,000× g for 10 min at 4°C. The supernatant was collected, and the
protein content was quantified using a bicinchoninic acid (BCA) pro-
tein assay kit (Beyotime). Protein samples (50 lg) were separated on
a 10% sodium dodecyl sulfate (SDS)-polyacrylamide gel and trans-
ferred to a polyvinylidene difluoride membrane (Millipore). After
washing with PBST three times, the membranes were blocked with
5%nonfatmilk for 30min and then incubatedwith primary antibodies
overnight at 4°C. The blots were then washed with PBST three times
and incubated with appropriate (anti-rabbit or anti-mouse) secondary
antibodies conjugated to IRDye680 or IRDye800 fluorescence dye.
After washing with PBST three times, the protein bands were
detected using an Odyssey Infrared Imaging system (Li-COR
Biosciences). The primary antibodies for TET1, TET2, TET3, DNA
methyltransferase (DNMT)1, DNMT3A, DNMT3B, ERa, ERb, and
SP1were used at the dilution of 1:1,000, and the secondary antibodies
were used at the dilution of 1:2,000 (see Table S1). The relative inten-
sity was analyzed with ImageJ software (version 1.47) (Schneider
et al. 2012) and calculated by the ratio relative to the glyceraldehyde
3-phosphate dehydrogenase (GAPDH) intensity. For the evaluation
of different blots, each band of the replicates was normalized to
GAPDH and then averaged. The averaged intensities were taken for
comparison.

Total RNA Extraction and Quantitative Reverse
Transcription–Polymerase Chain Reaction
Total RNA was extracted from the harvested MCF-7 cells
according to the manufacturer’s instructions using TRI reagent
(Sigma). The concentration of RNA was determined by meas-
uring OD at 260 nm. First-strand complementary DNA (cDNA)
was synthesized with the SuperScript II First-Strand Synthesis
System for quantitative reverse transcription–polymerase chain
reaction (qRT-PCR; Invitrogen). qPCR amplification was carried
out using actin as an endogenous control. SYBR Green probes for
each gene were used. The primers are listed in Table S2. Real-time
PCR was carried out using 50 ng of cDNA and SYBR PCR master
mix (TaKaRa) in the AgilentMx3000PReal-time PCRSystemwith
the two-step procedure (95°C 2min, 1 cycle; 95°C 15 s, 60°C 1min,
30 cycles). Relative quantitation of each single gene expression was
performed using the comparative threshold cyclemethod.

Total TET Activity Determination by ELISA
Total TET activity was analyzed using a fluorescence-based
ELISA kit according to the instructions provided by the manufac-
turer (Epigentek). This assay involves the conversion of 5mC sub-
strate, coated onto microplate wells, by the TET enzymes in the
sample, resulting in the conversion of 5mC to 5hmC, which in turn
is detected fluorometrically using a specific antibody. MCF-7 cells
(1 × 105=dish) were seeded in 6-cm dishes for 24 h and then treated
with BPA or BPS (10–1,000 nM) for 48 h for the subsequent nuclear
extracts. Nuclear extracts were prepared using a nuclear extract
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preparation kit (Active Motif), and the protein concentrations were
determined using a BCA protein assay kit (Beyotime Biotechno-
logy). Then 5 lg of the nuclear extract was used for the TET activity
assay, and the relative fluorescence intensity was measured at excita-
tion 530 nm and emission 590 nm using a microplate reader
(Varioskan Flash, Thermo). Data were expressed as relative fluores-
cence units.

Short Hairpin RNA Knockdown
The short hairpin RNAs (shRNAs) were designed and chemically
synthesized by Sangon. The shRNAs were annealed in a thermocy-
cler at 95°C for 5minwith a cooldown at RT for 1 h and cloned into a
short interfering RNA-expressing vector named pSilencer4.1 (pur-
chased from Addgene) using the restriction–ligation method with
BamHI (Catalog No. R3136, NEB) and T4 DNA ligase (Catalog No.
M0202, NEB). The shRNA-targeted sequences are listed in Table
S3. Purified plasmids were transfected into MCF-7 cells at 40–60%
confluency with Lipofectamine 2000 (Invitrogen Life Technolog-
ies) according to the manufacturer’s instructions. After culture for
2 d, the transfected cells were selected using the geneticin G418
(500 lg=mL) for 5 d.

CRISPR/cas9 Knockout
For CRISPR/cas9 knockout, the guide RNAs (gRNAs) for ERa (for-
ward: 50-CACCGCGCCTACGAGTTCAACGCCG-30; reverse: 50-
AAACCGGCGTTGAACTCGTAGGCGC-30) and ERb (forward:
50-CACCGCCGTGTACAACTACCCCGA-30; reverse: 50-AAAC-
TCGGGGTAGTTGTACACGGC-30)were designed and chemically
synthesized by Sangon. The gRNAswere then annealed by heating at
95°C for 5 min with a cooldown at RT for 1 h and cloned into a
PX458 vectorwith a greenfluorescent protein (GFP) label (purchased
from Addgene) by the restriction–ligation method with estriction en-
donuclease BbsI (Catalog No. R3539, NEB) and T4 DNA ligase
(CatalogNo.M0202, NEB).MCF-7 cells (purchased fromATCC) at
a density of 1× 104 cells=well on 24-well plates were transfected
with 5 lg of PX458. After culture in 5% CO2 at 37°C for 24 h, cells
were selected by GFP fluorescence using BDAriaII flow cytometry,
then cultured for 7 d for isolating single-cell clones.

Construction of pcDNA3-FLAG-TET2 and Cell
Transfection
The pcDNA3-FLAG-TET2 was constructed by insertion of the
open reading frame of TET2 into the pcDNA3-FLAG vector
(purchased from Addgene) by homologous recombination using
High-Fidelity Taq DNA Ligase (NEB). The primers for the clon-
ing of the open reading frame of TET2 were as follows: (forward: 50-
TATAGGGAGACCCAAGCTTGGTACATGGAACAGGATA-
GAACCAACC-3 0; reverse: 5 0-TCGTCCTTGTAGTCCATG-
TCGGTACTCATATATA-TCTGTTGTAAGGC-3 0). The con-
structed plasmid was amplified in Escherichia coli (Catalog No.
9057, TaKaRa), cultured in a shaker at 37°C for 12 h. Plasmids
were then extracted using the EndoFree Maxi Plasmid Kit
(Catalog No. DP117, TIANGEN) and verified by Sanger
sequencing (Sangon). MCF-7 cells (1 × 104 cells=well) seeded
on 24-well plates were transfected with 5 lg of the verified plas-
mid using Lipofectamine 2000 (Invitrogen Life Technologies)
according to the manufacturer’s protocol. MCF-7 cells were
serum-starved overnight 24 h after transfection and then cultured
in 5%CO2 at 37°C.

Co-Immunoprecipitation
The MCF-7 cells (1 × 105=dish) were cultured on 6-cm dishes and
treated with 100 nM BPA, 100 nM BPS, or vehicle for 48 h. At the

end of treatment, theMCF-7 cells were rinsed three times with ice-
cold PBS buffer, followed by incubation for 30 min at 4°C with
1 mL ice-cold IP lysis buffer (Beyotime) containing the serine pro-
tease inhibitor phenylmethanesulfonyl fluoride (PMSF). Cell
lysates were then centrifuged at 12,000× g for 20 min at 4°C.
Supernatants were collected and the protein concentrations were
determined by a BCA protein assay kit (Beyotime Biotechnology).
Cell extracts were incubated with anti-ERa or anti-IgG antibody
(at the dilution of 1:1,000) plus protein G–conjugated Sepharose
beads (Amersham Pharmacia) in a ratio of 1 lg of extract per
30 lL of beads. After overnight rocking at 4°C, the precipitates
were collected by centrifugation at 2,500× g for 3 min and washed
with ice-cold IP lysis buffer (Beyotime) three times, then subjected
to SDS-polyacrylamide gel electrophoresis and Western blotting
with anti-ERa, anti-TET2, and anti-SP1 antibodies.

Bisulfite Sequencing-PCR of TET2 CpG Islands
MCF-7 cells (1 × 105=dish) were plated in 6-cm dishes for 24 h,
followed by treatments with 100 nMBPA, 100 nMBPS, or vehicle
for 48 h, and the genomic DNA was then extracted from the har-
vested MCF-7 cells using a Genomic DNA Purification Kit
(Promega). The specific primers for TET2 promoter region (for-
ward: 50-TTTTTTTTTAGGGGTGGA-30; reverse: 50-ACTTA-
CATACGAACGAAACCC-30) was designed by Methyl Primer
Express™ (version 1.0; ThermoFisher). Bisulfite treatments of the
genomic DNA samples were carried out with the Qiagen EpiTect kit
according to the manufacturer’s instructions, followed by the PCR
amplification procedure (98°C 30 s; 98°C 10 s, 60°C 30 s, 72°C 10 s,
35 cycles; 72°C 2 min; 4°C hold) using Q5 Hot Start High-Fidelity
Master Mix (NEB). The PCR products were identified by electro-
phoresis and gel-purified with the Gel and PCR Clean-up System
(Promega). The purified PCR products were inserted into
pCR™4Blunt-TOPO® Vector using the Zero Blunt™ TOPO™
PCRCloning Kit (Invitrogen) and sequenced by Sanger sequenc-
ing (Sangon).

Chromatin Immunoprecipitation-qPCR
Chromatin immunoprecipitation-qPCR (ChIP) assays were per-
formed for MCF-7 cells using the SimpleChIP Plus Enzymatic
Chromatin IP Kit (Cell Signaling Technology) according to the
manufacturer’s instructions. MCF-7 cells (1× 105=dish) were
plated in 6-cm dishes for 24 h and treated with 100 nM BPA,
100 nM BPS, or vehicle for 48 h. Precipitated DNA from the
MCF-7 cells was dissolved in 50 lL of Tris-EDTA (TE) buffer
and subjected to qPCR using the Agilent Mx3000P Real-time
PCR System. The primers for ChIP-qPCR assay are listed in
Table S4.

Statistical Analysis
All assays were repeated independently a minimum of three times
(n≥ 3), and three wells per assay were used for each treatment in
each cell line. We averaged the data to arrive at a single (mean)
value per treatment per cell line per time per replicate. The experi-
mental data were expressed as themean± standard deviation (SD),
and the raw data used to generate all bar graphs are listed in the sup-
plemental Excel files. Differences among treatments were eval-
uated by two-way analysis of variance (with Bonferroni posttest),
and the statistical comparisons of two treatments were determined
by Student’s paired t-tests using SPSS® statistical software (version
22.0; IBM). The statistical significance was indicated by * for
p<0:05, ** for p<0:01, and # for p<0:05.
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Results

Proliferation of BPA/BPS-Treated Breast Cancer Cells
First, we examined the effects of BPA/BPS on the proliferation
of breast cancer cells (MCF-7, T47D, and MDA-MB-231 cells).
Both BPA and BPS treatments (10–1,000 nM) promoted the

proliferation of ER+ MCF-7 over 24–72 h (Figure 1A,B), except
that of 72 h× 100 nM and 72 h× 1,000 nM BPA/BPS treatment.
Using endogenous E2 as the positive control, the proliferation
effects of 100 nM BPA/BPS were equivalent to that of 1 nM E2
(see Figure S1A). BPA/BPS treatment also consistently promoted
the proliferation of T47D cells, but the proliferation efficiency

Figure 1. Proliferation of bisphenol A (BPA)- or bisphenol S (BPS)-treated MCF-7 breast cancer cells. (A,B) MTS assay of MCF-7 cell proliferation induced by
BPA/BPS. The data of mean±SD (five replicates) are shown. Statistical analysis was performed with two-way ANOVA (with Bonferroni posttest). (C,D) MTS
assay of the effect of dimethyloxaloylglycine (DMOG) on BPA/BPS-stimulated MCF-7 proliferation. Data represent mean±SD of five independent experiments.
Statistical analysis was performed with Student’s paired t-test. (E) 5-Ethynyl-20-deoxyuridine (EdU) assay of the effect of DMOG on BPA/BPS-stimulated MCF-7
proliferation. MCF-7 cells were pretreated with DMOG for 24 h and then subjected to BPA or BPS exposure for 48 h. *, p<0:05 or **, p<0:01 vs. control of
24 h; #, p<0:05 vs. indicated samples. Note: ANOVA, analysis of variance; DAPI, 40,6-diamidino-2-phenylindole; MTS, a tetrazolium salt; SD, standard deviation.
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Figure 2. Proliferation and genomic 5-hydroxymethylcytosine (5hmC) level of T47D and MDA-MB-231 breast cancer cells treated with bisphenol A (BPA) or
bisphenol S (BPS). (A) MTS assay of BPA/BPS-treated T47D and MDA-MB-231 cells. (B) Detection of genomic DNA 5hmC level by UHPLC-MRM
MS/MS analysis in T47D and MDA-MB-231 cells upon BPA or BPS treatment. For each combination of treatment and time point, the mean and
corresponding± SD (of three replicates) are shown. Statistical analysis was performed with two-way ANOVA (with Bonferroni posttest). *, p<0:05 or **,
p<0:01 vs. control of 24 h; #, p<0:05 vs. indicated samples. Note: ANOVA, analysis of variance; MTS, a tetrazolium salt; SD, standard deviation; UHPLC-
MRM MS/MS, ultra-high performance liquid chromatography–tandem mass spectrometry.
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was lower than that of MCF-7 cells (Figure 2A). BPA/BPS expo-
sure had no notable effect on the proliferation of triple-negative
MDA-MB-231 cells (Figure 2A).

Based on above results, we felt that MCF-7 was an excellent
ER+ cell line, representing a strong proliferation response to
BPA/BPS. Hence, we extensively used the MCF-7 cells for the
following experiments.

We further examined the possibility of TET dioxygenases
involved in BPA/BPS-promoted proliferation. Surprisingly, DMOG
(200mM, 48 h), a cell-permeable competitor of TET cofactor
a-ketoglutarate (a-KG), could further stimulate the proliferation
of MCF-7 cells upon BPA/BPS exposure (Figure 1C,D). To fur-
ther validate these observations, we used the EdU probe to detect

cell proliferation (Figure 1E). Consistently, as shown by fluores-
cence imaging, both BPA and BPS treatments (10–1,000 nM,
48 h) promoted the proliferation ofMCF-7 cells. AlthoughDMOG
treatment slightly increased the proliferation of control cells, BPA
andBPS treatments (10–1,000 nM, 48 h) induced greater prolifera-
tion in DMOG-treated MCF-7 cells than in cells not treated with
DMOG (Figure 1E).

Genomic DNA Hydroxymethylation in BPA/BPS-Treated
Breast Cancer Cells
To verify whether TET dioxygenases are involved in BPA/BPS-
promoted cell proliferation, we examined genomic 5hmC inMCF-

Figure 3. Genomic DNA 5-hydroxymethylcytosine (5hmC) level in bisphenol A (BPA)- or bisphenol S (BPS)-treated MCF-7 cells. (A,B) 5hmC frequency
measured by UHPLC-MRM MS/MS analysis of enzymatically digested genomic DNA from MCF-7 cells exposed to BPA (A) and BPS (B). (C,D) Relative
level of genomic 5hmC measured by ELISA of genomic DNA from MCF-7 cells exposed to BPA (C) and BPS (D). (E) Immunofluorescence analysis of
5hmC in MCF-7 cells exposed to BPA and BPS. The data of mean± SD (five replicates) are shown. Statistical significance was evaluated by two-way
ANOVA (with Bonferroni posttest). *, p<0:05 or **, p<0:01 vs. control of 24 h; #, p<0:05 vs. indicated samples. Note: ANOVA, analysis of variance;
DAPI, 4 0,6-diamidino-2-phenylindole; ELISA, enzyme-linked immunosorbent assay; SD, standard deviation; UHPLC-MRM MS/MS, ultra-high performance
liquid chromatography–tandem mass spectrometry.
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Figure 4. Cell proliferation and 5-hydroxymethylcytosine (5hmC) level in ten-eleven translocation 2 (TET2)-knockdown and TET2-overexpression MCF-7 cells
treated with bisphenol A (BPA) or bisphenol S (BPS). (A) Identification of the short hairpin RNA (shRNA)-transfected MCF-7 cell lines using Western blot. (B) Cell
proliferation assay by MTS of shRNA-transfected MCF-7 cells exposed to vehicle, BPA, or BPS. Data represent mean±SD of five independent experiments.
Statistical analysis was evaluated by two-way ANOVA (with Bonferroni posttest). *, p<0:05 or **, p<0:01 vs. control of cells transfected with shNC (NC). (C)
UHPLC-MRM MS/MS analysis of 5hmC in the enzymatic digest of genomic DNA from shRNA-transfected MCF-7 cells exposed to vehicle, BPA, or BPS. Data
represent mean±SD of five independent experiments. Statistical analysis was performed with two-way ANOVA (with Bonferroni posttest). #, p<0:05 vs. indicated
samples. (D) Identification of TET2 protein in MCF-7 cells transfected with pcDNA3-FLAG-TET2 plasmid using Western blot. The relative intensity was analyzed
with ImageJ software (Schneider et al. 2012) and calculated by the ratio relative to the GAPDH intensity. Data represent mean±SD of three independent experi-
ments. Statistical analysis was performed with Student’s paired t-test. #, p<0:05 vs. indicated samples. (E) Cell proliferation assay by MTS of MCF-7 cells trans-
fected with pcDNA3-FLAG-TET2 exposed to vehicle, BPA, or BPS. Data represent mean±SD of five independent experiments. Statistical analysis was performed
with Student’s paired t-test. #, p<0:05 vs. indicated samples. (F) 5hmC frequency measured by UHPLC-MRM MS/MS analysis of digested genomic DNA from
MCF-7 cells transfected with pcDNA3-FLAG-TET2 exposed to vehicle, BPA, or BPS. Data represent mean± SD of five independent experiments. Statistical analysis
was performed with Student’s paired t-test. #, p<0:05 vs. indicated samples. Note: ANOVA, analysis of variance; GAPDH, glyceraldehyde 3-phosphate dehydrogen-
ase; MTS, a tetrazolium salt; SD, standard deviation; UHPLC-MRM MS/MS, ultra-high performance liquid chromatography–tandem mass spectrometry.
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7 cells (Figure 3). Ultrasensitive UHPLC-MS/MS analysis showed
that BPA/BPS treatment (10–1,000 nM, 24–72 h), induced a sig-
nificant decrease in the level of genomic 5hmC. The dosing regi-
men in which the greatest difference in 5hmC (40%) between
treated and control was seen under the 48 h× 100 nM BPA/BPS
treatment compared with the control group (Figure 3A,B), which
was almost equivalent to that of 1 nM E2 (see Figure S1B). Similar
results were obtained from the quantification assay of 5hmC level
using an ELISA kit (Figure 3C,D), and the immunofluorescence
assay also confirmed that the genomic 5hmC was visibly lower af-
ter BPA/BPS treatment (Figure 3E).

BPA/BPS treatment could also result in lower in genomic 5hmC
content in the T47D cells, but much less than that in MCF-7 cells
(Figure 2B). In contrast, BPA/BPS had no significant effect on the
5hmC level in triple-negativeMDA-MB-231 cells (Figure 2B).

TET2 Expression in BPA/BPS-Treated Breast Cancer Cells
As the enzymes catalyzing 5hmC formation, the expression of
TET dioxygenases (TET1, TET2, and TET3) were examined af-
ter BPA/BPS exposure in MCF-7 cells. qRT-PCR analysis
showed that the transcription level of TET2 in MCF-7 cells was

Figure 5. Cell proliferation, 5-hydroxymethylcytosine (5hmC) level, and ten-eleven translocation 2 (TET2) expression in estrogen-receptor-knockout MCF-7 cells
treated with bisphenol A (BPA) or bisphenol S (BPS). (A) Cell proliferation assay byMTS of ERa−=− and ERb−=− MCF-7 cells exposed to vehicle, BPA, or BPS.
Data represent mean±SD of five independent experiments. Statistical analysis was performed with two-way ANOVA (with Bonferroni posttest): *, p<0:05 or **,
p<0:01 vs. control of ERa+=+ or ERb+=+ cells. (B) 5hmC frequency measured by UHPLC-MRM MS/MS analysis of digested genomic DNA from ERa−=− and
ERb−=− MCF-7 cells exposed to vehicle, BPA, or BPS. Data represent mean±SD of five independent experiments. Statistical analysis was performed with two-
way ANOVA (with Bonferroni posttest). *, p<0:05 or **, p<0:01 vs. control of ERa+=+ or ERb+=+ cells. (C) Quantification of Western blot detection of TET1,
TET2, and TET3 proteins in ERa−=− MCF-7 cells at 48 h after vehicle, BPA, or BPS treatment. The relative intensity was analyzed with ImageJ software
(Schneider et al. 2012) and calculated by the ratio relative to the GAPDH intensity. Data represent mean±SD of three independent experiments. Statistical analysis
was performed with Student’s paired t-test. *, p<0:05 vs. control. (D) Identification of TET2 protein in ERa−=− MCF-7 cells transfected with short hairpin RNA
(shRNA)-TET2 plasmid using Western blot. The relative intensity was analyzed with ImageJ software and calculated by the ratio relative to the GAPDH intensity.
Data represent mean± SD of three independent experiments. Statistical analysis was performed with Student’s paired t-test. #, p<0:05 vs. indicated samples. (E)
Cell proliferation assay by MTS of ERa−=− MCF-7 cells transfected with shRNA-TET2 exposed to BPA and BPS. Data represent mean±SD of five independent
experiments. Statistical analysis was performed with two-way ANOVA (with Bonferroni posttest). *, p<0:05 or **, p<0:01 vs. ERa+=+ of each treatment. (F)
5hmC frequency measured by UHPLC-MRM MS/MS analysis of digested genomic DNA from ERa−=− MCF-7 cells transfected with shRNA-TET2 exposed to
BPA and BPS. Data represent mean± SD of five independent experiments. Statistical significance was evaluated by two-way ANOVA (with Bonferroni posttest). *,
p<0:05 or **, p<0:01 vs. control of ERa+=+ cells. Note: ANOVA, analysis of variance; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; MTS, a tetrazolium
salt; SD, standard deviation; UHPLC-MRMMS/MS, ultra-high performance liquid chromatography–tandemmass spectrometry.
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significantly higher than that of TET1 and TET3, whereas
the expression of TET2 in MCF-7 cells was notably lower
after 48 h× 100 nM BPA/BPS treatment (see Figure S2A).
Immunoblotting assay showed that the protein level of TET2
was highest among the three TET dioxygenases in untreated
MCF-7 cells, and 100 nM BPA/BPS treatment reduced the
expression of TET2 protein (see Figure S2B,C). As a positive
control, 1:0 nM E2 treatment induced the inhibitory effects on
the TET2 expression similar to the exposure of 100 nM BPA/
BPS (see Figure S1C–E).

Effects of TET2 on the BPA/BPS-Stimulated Proliferation
of Breast Cancer Cells
To further investigate the role of TET dioxygenases in BPA/
BPS-induced proliferation of MCF-7 cells, we designed shRNA
expression vectors for TET1, TET2, and TET3 to construct the
knockdown cells of MCF-7, respectively. Western blotting anal-
ysis showed that the transfection of TET1-shRNA, TET2-
shRNA, and TET3-shRNA plasmids reduced only the target pro-
tein effectively, whereas the expression of the other two proteins
was not affected (Figure 4A). MCF-7 cells transfected with
TET2-shRNA displayed higher proliferation when treated with
BPA/BPS (48 h× 100 nM) than those transfected with TET1- or

TET3-shRNA (Figure 4B). Meanwhile, the genomic 5hmC level
and TET2 protein expression in MCF-7 cells transfected with
TET2-shRNA decreased significantly compared with the control
group (Figure 4C; see also Figure S3A,B). There was a trend that
the genomic 5hmC levels in MCF-7 cells transfected with TET1-
or TET3-shRNA were lower (compared with the control cells),
but it did not reach statistical significance to be accurate (Figure
4C). For further confirmation, the second shRNA constructs for
each TET gene were used and similar results were obtained (see
Figure S4).

To verify the role of TET2 in the proliferation of MCF-7
cells, we constructed a pcDNA3-FLAG-TET2 plasmid that was
transfected into MCF-7 cells to obtain the TET2 overexpression
cell lines. Western blot analysis showed that the transfection of
the pcDNA3-FLAG-TET2 plasmid in MCF-7 cells increased the
expression of TET2 by 91:3±3:5% compared with that of con-
trol group (Figure 4D). Meanwhile, MTS assay showed that the
TET2 overexpression reduced the BPA/BPS-stimulated prolifera-
tion of MCF-7 cells (Figure 4E) and that the genomic 5hmC con-
tent and TET2 protein expression increased significantly compared
with that of the control group (Figure 4F; see also Figure S3C,D).
Of note, DMOG, an inhibitor repressing the catalytic oxidation ac-
tivity of TET dioxygenases on DNA 5mC, promoted the prolifera-
tion ofMCF-7 cells (Figure 1D).

Figure 5. (Continued.)
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Influences of ERa Activation on the TET2 Expression and
DNA Hydroxymethylation in BPA/BPS-Treated Breast
Cancer Cells
Wenext examined the total ER protein expression and phosphoryl-
ation at different ERa and ERb sites in MCF-7 cells exposed to
BPA and BPS. Western blotting analysis showed that BPA/BPS
treatment did not significantly change the total protein expression
of ERa but, rather, increased its phosphorylation levels at the S118,
S167, S305, and T311 sites, especially at the S118 and S167 sites
(see Figure S5A,C). At the same time,Western blot analysis showed
that the total protein expression of ERb and its phosphorylation lev-
els at sites S87 and S105 of ERb did not change significantly upon
BPA/BPS exposure (see Figure S5B,D).

In order to further elucidate the roles of activated ERs in the
BPA/BPS-stimulated proliferation of MCF-7 cells, we con-
structed ERa−=− and ERb−=− MCF-7 cells using the Crispr/
Cas9 technique. The knockout effect was verified by sequencing
(see Figure S6A) and Western blot (see Figure S6B). The MTS
assay consistently showed that the depletion of ERa, but not
ERb, repressed the proliferation of MCF-7 cells upon BPA/BPS
exposure (Figure 5A). UHPLC-MS/MS analysis revealed that the
genomic 5hmC content of ERa−=− MCF-7 cells was significantly
higher than that in wild-type cells (Figure 5B), whereas that of
ERb−=− MCF-7 exhibited no obvious difference (Figure 5B).

Next, we focused on the effects of BPA/BPS on expression of
TETs in ERa−=− cells. Upon BPA/BPS exposure, both the tran-
scriptional mRNA and protein of TET2maintained a higher level in
the ERa−=− MCF-7 cells than that of ERa+=+ MCF-7 cells (Figure
5C; see also Figures S7A and S8). In contrast, whether ERb was
depleted or not, BPA/BPS exposure consistently reduced the

expression of TET2 (see Figure S7B). Furthermore, we observed
that the TET2 knockdown alleviated the ERa knockout-caused inhi-
bition in proliferation but reduced the genomic 5hmC content upon
BPA/BPS exposure in ERa−=− MCF-7 cells (Figure 5D–F).

Impacts of BPA/BPS-Stimulated ERa on the Promoter
Methylation of the TET2 Gene
The above results motivated us to find out how ERa affects TET2
in ER+ breast cells upon BPA/BPS exposure. To do this, we
examined the interaction of ERa and TET2 protein and gene
silence-associated promoter methylation of TET2. As revealed by
Co-IP analysis, we did not observe any direct interaction between
ERa and TET2 protein (see Figure S9). Using BSP to target a
423-bp CpG island (containing 54 paired CpGs) (Figure 6A), we
observed that the methylation ratio dramatically increased from
about 32:1± 3:2% for the control MCF-7 (Figure 6B,C) up to
77:5± 5:1% and 68:3± 4:6% for the MCF-7 cells with the respec-
tive BPA and BPS treatments (48 h× 100 nM). On the contrary,
ERa depletion reduced the methylation ratio of MCF-7 cells
(19:3± 2:9%), and exposure to BPA or BPS caused a moderate
increase in the methylation ratio (30.1–39.2%), which was much
lower than that of ERa+=+ MCF-7 cells (Figure 6B,C).

Roles of ERa-Regulated DNMTs Expression in the
Promoter Methylation of the TET2 Gene under BPA/BPS
Exposure
The promotermethylation is catalyzed byDNAmethyltransferases
(DNMTs). We observed that the transcriptional and protein levels
of DNMT1, DNMT3A, and DNMT3B significantly increased

Figure 6. Detection of interaction between ERa and ten-eleven translocation 2 (TET2) under bisphenol A (BPA) or bisphenol S (BPS) exposure using bisul-
fite sequencing-PCR (BSP). (A) CpG island of TET2 gene with location and sequence of methylation-specific primers. (B,C) DNA sequencing analysis (B)
and quantitative statistics (C) of methylation-specific PCR product of TET2 promoter in ERa+=+ and ERa−=− MCF-7 cells exposed to vehicle, BPA, or
BPS. Data represent mean± SD of five independent experiments. Statistical significance was evaluated by two-way ANOVA (with Bonferroni posttest). *,
p<0:05 or **, p<0:01 vs. control of ERa+=+ cells; #, p<0:05 vs. indicated samples. Note: ANOVA, analysis of variance; PCR, polymerase chain reaction;
SD, standard deviation.
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upon BPA/BPS exposure (see Figure S10A–C). The depletion of
ERa diminished the elevation of DNMT1 and DNMT3B induced
by BPS/BPA exposure, at both the expression levels of mRNA
and protein (see Figure S10D–F). However, the expression of
DNMT3A in ERa−=− MCF-7 cells displayed a similar pattern as
that in ERa+=+ MCF-7 cells (see Figure S10D–F).

Furthermore, ChIP-qPCR analysis showed that the binding of
ERa to the promoter regions of DNMT1 and DNMT3B was nota-
bly enhanced by BPA/BPS treatment (Figure 7A,C), whereas there
was no significant difference in the binding of ERa to the promoter
regions of DNMT3A (Figure 7B). ChIP-qPCR supported the
enrichment of DNMT1, DNMT3A, and DNMT3B on TET2 pro-
moter as induced by BPA/BPS treatment (Figure 8A).

To verify the regulatory effect of DNMT proteins on TET2
expression, vectors for shDNMT1, shDNMT3A, and shDNMT3B
were constructed and transfected intoMCF-7 cells. The transfection
of DNMT1-shRNA, DNMT3A-shRNA, and DNMT3B-shRNA

plasmids could reduce the protein expression of only the target genes
(Figure 8B), and the knockdown of either DNMT1 or DNMT3A
inhibited their proliferation (Figure 8C). Meanwhile, UHPLC-MS/
MS analysis showed that the knockdown of both DNMT1 and
DNMT3A partially alleviated the 5hmC decline induced by BPA/
BPS exposure (Figure 8D). The TET2 expression in DNMT1- or
DNMT3A-knockdown cells increased significantly at both tran-
scriptional (Figure 8E) and protein levels (Figure 8F,G). Finally,
the BSP sequencing-PCR showed that the methylation ratio of
TET2 promoter induced by BPA/BPS exposure was decreased by
knockdown of DNMT1, DNMT3A, or DNMT3B, especially for
the knockdown of DNMT1 or DNMT3A (Figure 8H,I).
Furthermore, using the second shRNA constructs for each
DNMT gene for further confirmation resulted in similar results
(see Figure S11).

Discussion
The results of the present study using an MCF-7 cell line suggest
that the ubiquitous bisphenol pollutants BPA and BPS can repress
both the expression of TET2 protein and its catalyzed DNA
hydroxymethylation in ER+ breast cancer cells. Environmentally
relevant doses of BPA/BPS (Corrales et al. 2015), which also
include measurable levels in body fluids and tissues (Vandenberg
et al. 2007, 2010; Zhou et al. 2014), were used in this work, and our
mechanistic study supports a tight linkage of these effects with the
activation of ERa through dimerization and phosphorylation.
Further exploration on the regulation by ERa on TET2 expression
and DNA hydroxymethylation revealed a new feedback circuit of
ERa activation−DNMT-TET2-DNA hydroxymethylation for
shaping the proliferation of MCF-7 cells, which might be true for
other ER+ breast cancer cells. In this signal-transducing circuit,
TET2 and its mediated DNA hydroxymethylation play a pivotal
role in BPA/BPS-stimulated breast cancer cell proliferation.

TET2-Mediated DNA Hydroxymethylation Represses
Bisphenol-Stimulated Proliferation
Widespread exposure to bisphenol compounds (BPA and BPS)
of humans occurs through the oral, dermal, and inhalation routes.
Low dosages of BPA/BPS might trigger a proliferative effect in
various cell types, as has been shown for cells of the pancreatic
islets (Carchia et al. 2015; Wei et al. 2017), endothelium (Xu et al.
2017), and breast after developmental treatment of mice with
BPA (Acevedo et al. 2013) and cells of the pituitary gland of
zebrafish treated with BPS (Ji et al. 2013) and a rat pituitary cell
line after BPS treatment (Viñas and Watson 2013).

In this work, three breast cancer cell lines, MCF-7, T47D, and
MDA-MB-231, were used in assaying proliferation. The first two
cell lines are ER+, and the last is triple-negative [ER/HER2/PR-
negative (Veronesi et al. 2005)]. Notably, the MCF-7 cells had a
higher ratio of ERa=ERb than T47D cells (Lacroix and Leclercq
2004; Neve et al. 2006). Consistent with those reports, we also
observed that BPA/BPS stimulated the proliferation of ER+ breast
cancer cells in a dose- and time-dependent manner (Figure 1; see
also Figure S1).

Although bisphenol chemicals might have a function as a poten-
tial regulator of epigenetic modification (Acevedo et al. 2013;
Manikkam et al. 2013; Singh and Li 2012) and BPA exposure has
been shown to alter DNAmethylation—BPA specifically increased
DNA methylation of specific genes in the breast cancer epithelial
cell line MCF-10 (Fernandez et al. 2012) and resulted in lower
global methylation in the mouse placenta in an in vivo study
(Susiarjo et al. 2013). The study of the effects of bisphenol chemi-
cals onDNAhydroxymethylation has just begun (Kochmanski et al.
2018).

Figure 7. Chromatin immunoprecipitation–quantitative polymerase chain
reaction (ChIP-qPCR) analysis of the binding of ERa to the promoters of
(A) DNA methyltransferase (DNMT), (B) DNMT3A, and (C) DNMT3B
genes in bisphenol A (BPA)- or bisphenol S (BPS)-treated MCF-7 cells. Data
represent mean±SD of three independent experiments. Statistical analysis
was performed with Student’s paired t-test, and asterisks indicate a significant
difference from the control. *, p<0:05. Note: SD, standard deviation.
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Here we showed that DMOG induced cell proliferation and
5hmC decline upon BPA/BPS exposure (Figure 1; Figure 3).
Considering that DMOG is a potential competitor of a-KG in not
only inhibiting the TET activity but also in inhibiting hypoxia

inducible factor (HIF) prolyl hydroxylases and causing the stabiliza-
tion of HIF1-alpha (Liu et al. 2009; Ghadge et al. 2017), inhibitory
experiments alone cannot determine the vital roles of TET proteins
in DNA hydroxymethylation and cell proliferation. Our study also

Figure 8. Regulation of ten-eleven translocation 2 (TET2) promoter methylation by DNA methyltransferases (DNMTs) in bisphenol A (BPA)- or bisphenol S
(BPS)-treated MCF-7 cells. (A) Chromatin immunoprecipitation–quantitative polymerase chain reaction (ChIP-qPCR) analysis of the binding of DNMT1,
DNMT3A, and DNMT3B to the promoter of the TET2 gene. Data represent mean± SD of three independent experiments. Statistical analysis was performed
with Student’s paired t-test, and asterisks indicate a significant difference from the control. *, p<0:05. (B) Identification of DNMT-knockdowns in the MCF-7
cells transfected with short hairpin RNA (shRNA)-DNMTs using Western blots. (C) MTS proliferation assay of MCF-7 cells transfected with shRNA-DNMTs
in response to BPA/BPS treatment. Data represent mean±SD of five independent experiments. (D) UHPLC-MS/MS analysis of 5hmC in genomic DNA of
MCF-7 cells transfected with shRNA-DNMTs in response to BPA/BPS treatment. Data represent mean±SD of five independent experiments. (E) qRT-PCR
analysis of TET2 expression in MCF-7 cells transfected with shRNA-DNMTs at 48 h of BPA and BPS treatment. Data represent mean± SD of five independ-
ent experiments. (F,G) Immunoblotting of TET2 protein in MCF-7 cells transfected with shRNA-DNMTs at 48 h of BPA and BPS treatment. The relative in-
tensity was analyzed with ImageJ software (Schneider et al. 2012) and calculated by the ratio relative to the GAPDH intensity. Data represent mean±SD of
three independent experiments. (H,I) DNA sequencing analysis (H) and quantitative statistics (I) of methylation-specific PCR product of TET2 promoter in
MCF-7 cells transfected with shRNA-DNMTs at 48 h of BPA/BPS treatment. Data represent mean±SD of five independent experiments. Statistical signifi-
cance was evaluated by two-way ANOVA (with Bonferroni posttest). *, p<0:05 or **, p<0:01 vs. control of cells transfected with shNC (NC); #, p<0:05 vs.
indicated samples. Note: ANOVA, analysis of variance; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; MTS, a tetrazolium salt; SD, standard deviation;
UHPLC-MRM MS/MS, ultra-high performance liquid chromatography–tandem mass spectrometry.
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shows that TET2-mediated DNA hydroxymethylation plays a criti-
cal role in the proliferation of ER+ breast cancer cells in vitro.
Globally decreased 5hmC content was originally observed in hema-
tological malignancies. Compared with normal tissues, a majority of
cancers exhibited a global reduction in 5hmC, as observed in various
regions of the genome, including in promoters (Jin et al. 2011; Jones
2012), gene bodies (Jones 2012), and intergenic regions (Feng and
Fan 2009; Jones 2012). Similarly, in solid tumors such asmelanoma,
breast cancer, and prostate cancer, the loss of 5hmC and the dysregu-
lation of TETs have been linked to malignant transformation and
progression (Chou et al. 2011; Haffner et al. 2011; Jin et al. 2011;
Tan and Shi 2012). Loss of 5hmC has been recognized as one of the
key features of cancer, and DNA demethylation-mediated oncogene
activation has been proposed to contribute to tumorigenesis (Jin et al.
2011; Ko et al. 2010). On the other hand, a large number of natural
and synthetic chemicals have been reported to alter epigenetic DNA
hydromethylation (Coulter et al. 2013; Heindel et al. 2015; Yin et al.
2013; Zhao et al. 2014). However, to our knowledge, no report has
yet established a linkage between chemical exposure, DNA hydrox-
ymethylation, and tumor-associated proliferation. Our data suggest
that BPA/BPS exposure significantly decreases the genomic DNA
5hmC content in MCF-7 cells (Figure 3). The TET protein family,
consisting of TET1, TET2, and TET3, is responsible for the forma-
tion of the 5hmC marker (Kohli and Zhang 2013). Hence, the
decrease in 5hmC abundance can further be explained by the cata-
lytic actions of the TET proteins (Ko et al. 2010; Kohli and Zhang
2013). We observed that the expression of TET2 at both the tran-
scriptional and the protein levelswas significantly higher than that of
TET1 and TET3 in MCF-7 breast cancer cells (see Figure S2). The
TET2 expression notably decreased upon BPA/BPS exposure (see
Figure S2), and the depletion of TET2 remarkably promoted the
BPA/BPS-induced proliferation ofMCF-7 cells, whereas its overex-
pression inhibited the proliferation (Figure 4; see also Figures S3 and
S4). Furthermore, use of the catalytic inhibitor DMOG showed that
the inhibition on the catalytic activity of TET dioxygenases alone
could repress the BPA/BPS-stimulated proliferation. Altogether, we
have showed and corroborated the suppressive roles of TET2-
mediated DNA hydroxymethylation in BPA/BPS-induced cell pro-
liferation inMCF-7 cells.

Of note, we observed a reduced proliferation of MCF-7 cells
treated with high doses of BPA, BPS, or E2. A high dose of
estrogen-like compounds might activate the mitochondrial path-
way of apoptosis (Li et al. 2019). Alternatively, by 72 h after

BPA and BPS treatment, the excessive growth induced by BPA/
BPS might result in insufficient nutrition within the culture me-
dium in the 96-well plates, leading to inhibited proliferation.

Activation of ERa by BPA/BPS Modulates TET2-Mediated
DNA Hydroxymethylation
Biochemical and genetic studies strongly suggest that an ER-
dependent pathway implicated in gene transcriptional regulation
underlies the mechanism of biological processes induced by
bisphenol chemicals (Acconcia et al. 2015; Viñas and Watson
2013; La Rosa et al. 2014; Xu et al. 2014). ERs play vital roles in
the classification, diagnosis, and treatment of breast cancer
(Schneider et al. 2006). Phosphorylation of ERa=ERb promotes
the activation of intracellular signaling pathways that modulate
gene transcription (Burns et al. 2011; Métivier et al. 2003;
Pettersson and Gustafsson 2001). Our data show that BPA/BPS
increased the phosphorylation of ERa (S118 and S167) but not
ERb (S87 and S105) in MCF-7 cells (see Figure S5). The toxico-
logical effects of BPA and BPS are associated with their ability to
regulate the actions of ERa and ERb (Acconcia et al. 2015; Viñas
andWatson 2013). In our work, the depletion of ERa, but not ERb,
diminished the BPA/BPS-stimulated proliferation that accompa-
nied an elevation of TET2 expression, leading to an increase in
genomic DNA hydroxymethylation (Figure 5). The knockdown of
TET2 in ERa−=− MCF-7 cells partly alleviated the inhibition on
BPA/BPS-stimulated cell proliferation via reduced DNA hydroxy-
methylation (Figure 5). These results support that the activation of
ERa represses TET2 expression and reduces genomic DNA
hydroxymethylation. In this pathway, BPA/BPS exposure is a key
initiating event for the activation of ERa and the inhibition of
TET2-mediated DNA hydroxymethylation. On the other hand,
TET2 plays a pivotal role in repressing bisphenol-stimulated breast
cancer cell proliferation.

ERa Enhances DNMT-Mediated Promoter Methylation
of TET2
Most CpG-rich regions (CpG islands) overlap with proximal pro-
moters, whereas DNA methylation is linked to gene silencing (Wu
and Zhang 2014). It should be noted that the TET2 gene possesses a
CpG island in the promoter region. Regarding undetectable interac-
tion between ERa and TET2 protein (Figure 6), we focused on the

Figure 9. Proposed ERa-DNA methyltransferase (DNMT)–ten-eleven translocation 2 (TET2) pathway for modulating bisphenol A (BPA)- or bisphenol S
(BPS)-stimulated proliferation in ERa+ breast cancer cells. Note: E, estrogen; ER, estrogen receptor; hm5C, DNA 5-hydroxymethylcytosine; m5C, DNA 5-
methylcytosine m5C; P, phosphorylation.
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possible involvement of the promoter methylation of the TET2
gene. The methylation of CpG islands in the promoter region of
genes is a well-known inhibitorymechanism for down-regulation of
gene and protein expression (Figueroa et al. 2010; Gong et al.
2017). The hypermethylation ofTET1gene has been found inmulti-
ple primary tumors (Li et al. 2016), and DNMT3A-mediated meth-
ylation of TET2 and TET3 promoters has been implicated in the
induction of the epithelial–mesenchymal transition-like process and
metastasis inmelanoma (Gong et al. 2017). TET2 promotermethyl-
ation has been implicated in lymphoblastic leukemia (Figueroa et al.
2010; Musialik et al. 2014) and has also been reported in a small
fraction (4.4%) of myeloproliferative neoplasms (Chim et al. 2010).
We showed that in an ERa-dependent manner, TET2 promoter
methylation was elevated by BPA/BPS exposure (Figure 6).
Accumulating evidence supports that, in a number of human malig-
nancies, DNMTsmediate transcriptional silencing, which is charac-
terized by DNA hypermethylation of promoter regions (Foltz et al.
2009; Jones 2012;Wu et al. 2010; Wu and Zhang 2014). Our ChIP-
qPCR data show that the increased binding of DNMT1, DNMT2,
and DNMT3B to the TET2 promoter induced by BPA/BPS treat-
ment and the knockdown of DNMT1 and DNMT3B effectively
diminishes the promoter methylation of TET2 and up-regulates
TET2 expression, resulting in an increase in DNA hydroxymethyla-
tion accompanied by an inhibition of the BPA/BPS-stimulated pro-
liferation ofMCF-7 cells (Figure 8; see also Figure S11).

It should be mentioned that we detected the promoter methyl-
ation of TET2 using bisulfite sequencing, which cannot distin-
guish 5hmC from 5mC (Huang et al. 2010). Hence, the data of
the TET2 promoter methylation level might be affected by the ex-
istence of 5hmC. However, the content of 5hmC is much lower
than that of 5mC in genomic DNA (Branco et al. 2011; Shen and
Zhang 2013).

Furthermore, ERa was found to be critical for the increased
expression of DNMT1 and DNMT3A induced by BPA/BPS,
whereas ChIP-qPCR data indicate that a direct interaction of ERa
with the promoter regions of DNMT1 and DNMT3B, but not
DNMT3A, was notably enhanced by BPA/BPS treatment (Figure
7). These results indicated that ERa induced epigenetic silence of
TET2 by DNMT-catalyzed promoter methylation in the BPA/
BPS-treated MCF-7 proliferation. Interestingly, DNMT3A was
involved in the modulation of TET2 expression, but was not
directly regulated by ERa, implying the complexity and diversity
of the signal pathways involved in the regulation of the biological
processes induced by BPA/BPS in MCF-7 cells.

Proposed ERa-DNMT-TET2 Pathway
Based on our data and the above discussion, we propose a signal
transduction feedback pathway for ER+ breast cells (Figure 9):
TET2 and its mediated DNA hydroxymethylation restrict the pro-
liferation. Upon binding of BPA/BPS to ERa, an ERa homo-
dimer forms and is further phosphorylated, leading to ERa
activation. The activated ERa homodimer translocates into the
nucleus to bind to the promoter region of the DNMT genes
(DNMT1 and DNMT3B) to promote their transcription, which is
followed by increased translation. The binding of the increased
DNMT proteins to the promoter region of TET2 elevates the
methylation of its CpG island. With the elevated methylation,
both the transcription and expression of TET2 gene are repressed,
reducing genomic 5hmC, ultimately promoting the proliferation
of breast cancer cells.

In summary, our study revealed a regulatory mechanism of
ERa on TET2 protein and uncovered a signal-transducing circuit
of ERa–DNMT1=3B-TET2-DNA hydroxymethylation for shap-
ing the proliferation of MCF-7 cells. This might be also true for
other ER+ breast cancer cells. The bisphenol chemical exposure

functions as an initiator for all these biological events. Our study
revealed new insight into the toxicology and pathogenic effects of
bisphenol chemicals, emphasizing the pathway of ER receptor–
DNMTs-TET2-DNA hydroxymethylation.
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