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Abstract A vaccine protective against diverse HCV variants is needed to control the HCV

epidemic. Structures of E2 complexes with front layer-specific broadly neutralizing antibodies

(bNAbs) isolated from HCV-infected individuals, revealed a disulfide bond-containing CDRH3 that

adopts straight (individuals who clear infection) or bent (individuals with chronic infection)

conformation. To investigate whether a straight versus bent disulfide bond-containing CDRH3 is

specific to particular HCV-infected individuals, we solved a crystal structure of the HCV E2

ectodomain in complex with AR3X, a bNAb with an unusually long CDRH2 that was isolated from

the chronically-infected individual from whom the bent CDRH3 bNAbs were derived. The structure

revealed that AR3X utilizes both its ultralong CDRH2 and a disulfide motif-containing straight

CDRH3 to recognize the E2 front layer. These results demonstrate that both the straight and bent

CDRH3 classes of HCV bNAb can be elicited in a single individual, revealing a structural plasticity of

VH1-69-derived bNAbs.

Introduction
HCV infections are on the rise in the United States, reflecting increasing rates of opioid addiction

(Zibbell et al., 2018). An HCV vaccine is urgently needed to control the epidemic, but vaccine devel-

opment is challenging due to the enormous genetic diversity of the HCV envelope proteins

(Yusim et al., 2010). The HCV genome encodes two structural proteins, E1 and E2, that associate to

form a noncovalent heterodimer, E1E2 (Freedman et al., 2016). Potent bNAbs isolated from HCV-

infected individuals predominantly target conserved epitopes in the front layer of the E2 glycopro-

tein. The majority of bNAbs that bind to the front layer are derived from VH1-69 genes

(Tzarum et al., 2019), which are also associated with bNAbs that target conserved epitopes on influ-

enza virus and HIV-1 envelope glycoproteins (Chen et al., 2019).

We recently described crystal structures of two VH1-69 bNAbs, HEPC3 and HEPC74, isolated

from individuals who spontaneously cleared HCV infection (Flyak et al., 2018). Both bNAbs utilized

a disulfide motif in their CDRH3 regions to recognize a conserved epitope in the front layer of E2.

While the HEPC3 and HEPC74 CDRH3 loops adopted a straight ß-hairpin conformation, the VH1-

69-encoded AR3A and AR3C bNAbs that were isolated from an individual with a chronic HCV infec-

tion included bent CDRH3 loops that contained an analogous disulfide motif (Kong et al., 2013).

Since the two bNAbs with straight CDRH3s were isolated from individuals who spontaneously

cleared HCV infection and the two bNAbs with bent CDRH3s were isolated from a single chroni-

cally-infected individual, we wondered if some individuals are naturally predisposed to make
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antibodies with straight or bent CDRH3s and/or whether the straight CDRH3 conformation was

related to the ability to clear HCV infection. Among bNAbs isolated from a chronically-infected indi-

vidual (Law et al., 2008), we found AR3X, a VH1-69-encoded antibody that included a CDRH3 with

a disulfide motif and an unusually long 14-amino acid-long insertion in CDRH2 (Figure 1A). AR3X

provided an opportunity to explore the structural plasticity of VH1-69-derived anti-HCV bNAbs with

a disulfide-containing CDRH3 and to determine the impact of a long CDRH2 insertion on the recog-

nition of the conserved epitope in E2 front layer.

Results
The most likely scenario resulting in the insertion into the CDRH2 of AR3X involves a duplication

event, as the CDRH2 insertion has 69% identity with the N-terminal sequence preceding the CDRH2

(Figure 1B). Similar to other front layer-specific bNAbs with the CDRH3 disulfide motif (Figure 1E),

the cysteines in the AR3X CDRH3 region are encoded by the human D gene segment 15 (IGHD2-15)

(Figure 1C). The C-terminal portion of the AR3X CDRH3 is likely encoded by human J-gene segment

3*02 (J3*02). Not including the 14-amino acid insertion in CDRH2, AR3X shares 91% nucleotide

                                  

VH1-69*01  ...................................................--------------...................... 

AR3Xrua  QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGI--------------IPIFGTANYAQKFQGRVTITAD
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VH1-69*01  .........................------------------------------
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AR3X   ..MT.V.............M............R......G...M...........
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J3*02 --------------D...I
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          FR2                             CDRH2
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AR3Xrua .............................................------------------------------------------...
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HEPC3  DG-VRYCGGGRCY-NWFDP

HEPC74 DL-LKYCGGGNCHSLLVDP

E

Figure 1. AR3X includes a 14-residue insertion in CDRH2. (a) Sequence alignment of a portion of the heavy chain variable region gene sequences of

AR3X and the AR3X germline precursor (AR3Xrua) (uppercase letters) and the VH1-69 gene segment (lowercase letters). The CDRH2 insertion is

indicated by a dark gray box with the position of the potential duplication site indicated by a light gray box. CDR loops were defined based on Kabat

nomenclature Kabat and National Institutes of Health (U.S.). Office of the Director, 1991). Dots indicate identical nucleotides and dashes indicate

gaps. (b) Sequence alignment of the CDRH2 insertion and the potential duplication origin site in VH1-69. (c) Amino acid sequence alignment of the

AR3X CDRH3 and the AR3X germline precursor genes determined by IMGT/V-QUEST. Dots indicate identical amino acids and dashes indicate regions

encoded by other gene segments or N-nucleotide additions. Two cysteines encoded by the D gene segment are highlighted in bold and underscored.

(d) Amino acid sequence alignment of the heavy chain variable region sequences of AR3X, AR3X DINS (AR3X without insertion), AR3Xrua (germline

precursor of AR3X), and AR3Xrua + INS (germline precursor of AR3X with insertion). CDR loops were defined based on Kabat nomenclature and

colored purple (CDRH1), orange (CDRH2), and blue (CDRH3), with the CDRH2 insertion highlighted in bold. Dots indicate identical amino acids and

dashes indicate gaps. (e) Alignment of AR3X, AR3A, AR3C, HEPC3, and HEPC74 CDRH3 sequences. The AR3X sequence is highlighted in red and the

two cysteines in each CDRH3 are underscored.
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identity with the VH1-69 gene segment and includes 17 somatic mutations (Figure 1D). To investi-

gate the importance of the CDRH2 insertion and the effects of somatic mutations on AR3X binding

and neutralization, we generated a panel of AR3X variants: AR3X DINS (AR3X without the CDRH2

insertion), AR3Xrua (germline precursor of AR3X, which lacks the CDRH2 insertion and somatic

mutations), and AR3Xrua + INS (germline precursor of AR3X with the CDRH2 insertion) (Figure 1D).

We evaluated the binding of AR3X and AR3X variants to a panel of E2 ectodomain (E2ecto) pro-

teins representing the E2 envelopes from 19 HCV genotype 1 strains. We also tested the binding of

AR3X and AR3X variants to E2ecto proteins from genotypes 2, 3, 4, 5, and 6 strains. AR3X recog-

nized all 19 E2 envelopes from genotype 1 including the 1a116 strain, which was not recognized by

other front layer-specific bNAbs that include the CDRH3 disulfide motif (Figure 2A, Figure 2—fig-

ure supplement 1; Flyak et al., 2018). AR3X also recognized E2 envelopes from genotypes 2, 3, 4,

5, and 6 (Figure 2A). In contrast to mature AR3X, the AR3X DINS protein that lacks the CDRH2 inser-

tion bound only 4 of the 25 variants, indicating that the CDRH2 insertion mediates the breath of

Strain AR3X AR3X INS AR3Xrua+INS AR3Xrua

1a09 2.2 > > >

1a31 1.4 > > >

1a38 16.1 > > >

1a53 5.4 > > >

1a72 10.3 > > >

1a80 51.1 > > >

1a116 > > > >

1a123 3.2 > > >

1a129 > > > >

1a142 16.2 > > >

1a154 4.6 > > >

1a157 15.5 > > >

1b09 1.7 > > >

1b14 9.5 > > >

1b21 1.2 > > >

1b34 17.6 > > >

1b38 6.9 > > >

1b52 11.3 > > >

1b58 27.6 > > >

A BBinding (EC
50

; ng/mL) Neutralization (IC
50

; µg/mL) 

10 - 100 ng/mL

>100 - 1,000 ng/mL

1,000 - 10,000 ng/mL

>10,000 ng/mL

>

1.0 - 10.0 µg/mL

10.0 - 100.0 µg/mL >100.0 µg/mL

HCV genotype Strain AR3X AR3X INS AR3Xrua+INS AR3Xrua

1a09 79 1,528 > >

1a31 155 > > >

1a38 42 > > >

1a53 20 > > >

1a72 44 > > >

1a80 55 1,495 > >

1a116 1,370 > > >

1a123 250 > > >

1a129 100 > > >

1a142 145 4,479 > >

1a154 114 > > >

1a157 14 24 876 >

1b09 96 > > >

1b14 105 > > >

1b21 455 > > >

1b34 117 > > >

1b38 130 > > >

1b52 74 > > >

1b58 107 > > >

JFH1 80 > > >

J6 163 > > >

3 S52 73 > > >

4 ED43 79 > > >

5 SA13 135 > > >

6 HK6a 60 > > >

1

2

Figure 2. The CDRH2 insertion in AR3X is required for maximal binding and broad neutralization. (a) Heat map showing the binding of AR3X and its

variants to a panel of HCV E2ecto proteins. The EC50 value for each E2ecto-mAb combination is shown, with dark red, orange, yellow, or white shading

indicating high, intermediate, low, or no detectable binding, respectively. The > symbol indicates EC50s greater than 10 mg/mL or EC50s in which the

OD450 values at the highest antibody concentration tested were lower than 0.5. One experiment representative of two independent experiments is

shown. (b) Heat map showing neutralization activities of AR3X and AR3X variants measured using a panel of genotype 1 HCVpp. IC50 values for each

virus-mAb combination are shown. The > symbol indicates IC50s greater than 100 mg/mL or IC50s in which the percent neutralization at the highest

antibody concentration tested was lower than 50%.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Binding of AR3X and its variants to a panel E2ecto proteins.

Figure supplement 2. Neutralization activities of AR3X and its variants against a panel of genotype 1 HCVpp.
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binding. While AR3Xrua failed to bind any E2ecto proteins, AR3Xrua + INS recognized 1 of the 25

variants, further highlighting the importance of the CDRH2 insertion in initial recognition of the E2

antigen by naı̈ve B cells. The fact that AR3Xrua + INS only bound to one HCV strain, whereas mature

AR3X recognized all strains, indicated that somatic mutations, in addition to the CDRH2 insertion,

are required for breath of binding and optimal E2 recognition. Consistent with our previous studies

in which the strain 1a157 E2ecto envelope was recognized by HEPC3, HEPC74, AR3C and their

germline precursors (Flyak et al., 2018), AR3X and two AR3X variants (AR3X DINS, AR3Xrua + INS)

also bound to 1a157, suggesting that immunogens based on the genotype 1 1a157 ectodomain

sequence could be used to stimulate the development of potent front layer-specific bNAbs

(Figure 2A, Figure 2—figure supplement 1).

To evaluate the neutralization breadth of AR3X variants, we evaluated antibodies in an in vitro

neutralization assay using a panel of 19 genotype 1 HCV pseudoparticles (HCVpp) that represents

94% of the amino acid polymorphisms present at >5% frequency in a reference panel of 643 geno-

type 1 HCV isolates from GenBank (Munshaw et al., 2012). Only mature AR3X exhibited neutraliza-

tion activity, neutralizing 17 of 19 HCV strains (Figure 2B, Figure 2—figure supplement 2). The

neutralization breadth of AR3X (89%) was slightly lower than the breath of AR3C bNAb (100%)

(Flyak et al., 2018), which was isolated from the same HCV-infected individual (Law et al., 2008).

AR3X variants failed to neutralize HCV isolates, suggesting that both the CDRH2 insertion and

somatic mutations are required for the broad neutralization activity of AR3X.

We and others described two classes of VH1-69 bNAbs with a CDRH3 disulfide motif: bNAbs

with a straight CDRH3 (HEPC3 and HEPC74) and bNAbs with a kinked CDRH3 (AR3A and AR3C)

(Flyak et al., 2018; Kong et al., 2013; Tzarum et al., 2019; Figure 3). To determine to which class

AR3X belongs, we determined the crystal structure of AR3X in complex with E2ecto from the 1b09

HCV strain (Figure 4, Figure 4—figure supplement 1). The 2.2 Å AR3X-E2ecto structure demon-

strated that, similar to previously-characterized HCV bNAbs that recognize the neutralizing face of

E2 (Flyak et al., 2018; Kong et al., 2013; Tzarum et al., 2019), AR3X binds to the conserved epi-

tope in the E2 front layer (Figure 4A). The AR3X CDRH3 loop contains two cysteines that form a

disulfide bond, as seen in multiple other E2 front layer-binding bNAbs, and the AR3X CDRH3 adopts

the straight conformation we previously described in the HEPC3 and HEPC74 bNAbs that were

AR3A AR3C AR3X HEPC3 HEPC74

Isolated from a single chronically-infected individual Isolated from individual

who cleared infection

Isolated from individual

who cleared infection

Antibodies with bent CDRH3 Antibodies with straight CDRH3

CDRH1

CDRH2

CDRH3

Figure 3. The shared CDRH3 motif in E2 front layer-specific HCV bNAbs adopts different orientations. Fab structures in liganded state of AR3A (PDB

6BKB), AR3C (PDB 4MWF), AR3X (this paper), HEPC3 (PDB 6MEI), and HEPC74 (PDB 6MEH). The structures were superimposed on their VH domains.

Protein backbones are shown as ribbons and CDR loops are purple (CDRH1), orange (CDRH2), and blue (CDRH3).
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isolated from an individual who cleared HCV infection (Flyak et al., 2018; Figure 3). By contrast, the

CDRH3s of AR3A and AR3C, which were isolated from the same HCV-infected individual as AR3X

(Law et al., 2008), are bent (Kong et al., 2013; Tzarum et al., 2019). The tip of the AR3X CDRH3

loop interacts with the same conserved residues in the front layer of E2 as the CDRH3 tips in the

other HCV bNAbs (Figure 4e, Figure 4—figure supplement 2).

Overall, AR3X has a similar binding footprint to the footprints of HEPC3, HEPC74, AR3C, and

AR3A, sharing multiple contact residues in the front layer and CD81 receptor-binding loop (Fig-

ure 4—figure supplement 2). As also found for these other front layer-specific bNAbs, AR3X’s con-

tacts with E2ecto almost exclusively involved VH domain residues, burying 1,250 Å2 (98% of the total

Fab buried surface area; BSA) (Figure 4B), with the CDRH3 accounting for 44.5% (556 Å2) of the

total BSA on the VH domain (Figure 4B, Figure 4—figure supplement 2). However, in contrast to

other front layer-specific bNAbs in which the CDRH3 plays a dominant role in the interactions with

E2 envelope (Flyak et al., 2018; Kong et al., 2013; Tzarum et al., 2019), the main contributor to

the AR3X-E2ecto binding interface was CDRH2, which accounted for 48.2% (602 Å2) of the total

BSA of the VH domain, with the majority of the binding footprint provided by the CDRH2 insertion

(45.4% or 567 Å2 of total BSA of the VH domain) (Figure 4C).

We next investigated the frequency of antibodies with 14-residue CDRH2 insertions. While the

size of an insertion or deletion in human antibody genes ranges from 3 to 33 nucleotides

(Kanyavuz et al., 2019), AR3X has a unusually long 42-nucleotide insertion, which results in a 31-res-

idue CDRH2 (Kabat definition: [Kabat and National Institutes of Health (U.S.). Office of the Direc-

tor, 1991]). According to the abYsis database (Swindells et al., 2017), a typical human CDRH2 is 17

residues (relative frequency 67%) (Figure 4D), and CDRH2s longer than 20 residues are rare (relative

frequency <1%). To our knowledge, AR3X with its 31-residue CDRH2 represents the longest CDRH2

among antibody structures available in the Protein Data Bank (PDB).

Although the CDH3s of AR3X, AR3A, AR3C, HEPC3, and HEPC74 CDRH3s make similar binding

footprints on the E2 surface (Figure 5), the difference in Fab approach angles and the presence of

the long insertion in the AR3X CDRH2 result in different footprints on E2 for the VH1-69–encoded

CDRH2 loops of the bNAbs: AR3X CDRH2 contacts the C-terminus of the E2 a1-helix, the portion of

the E2 front layer between the a-helix, variable region 2 (residues 446–448), and the back layer of

E2 (residues 444, 445) (Figure 4F and Figure 4—figure supplement 2). In contrast, the AR3A and

AR3C CDRH2 contacts are reduced to hydrophobic residues in a1-helix (Kong et al., 2013), whereas

the HEPC3 and HEPC74 CDRH2s contact the E2 a1-helix and the portion of the E2 front layer

between the a1-helix and variable region 2 (residues 446–448) (Flyak et al., 2018).

A feature of VH1-69-derived antibodies is the presence of two hydrophobic residues at the tip of

the CDRH2 loop that facilitate interactions with hydrophobic epitopes. The CDRH2s of AR3A and

AR3C contain an Ile/Val-Pro-Met/Leu-Phe motif in which hydrophobic residues interact with the E2

front layer and CD81 binding loop (Chen et al., 2019). The CDRH2s of HEPC3 and HEPC74 are less

hydrophobic and contain a Thr/Ser-Pro-Ile-Phe/Ser motif (Chen et al., 2019). In addition to hydro-

phobic interactions with the E2 front layer, the HEPC3 CDRH2 also makes a single hydrogen bond

with E2 (Flyak et al., 2018). By contrast, AR3X is a not a typical VH1-69 antibody in which hydropho-

bic residues in CDRH2 mediate the binding to hydrophobic residues in E2 (Chen et al., 2019).

Instead, the AR3X CDRH2 forms eight hydrogen bonds with the E2 glycoprotein, four of which are

mediated by AR3X residue Arg52g (AR3X-E2ecto: Pro52c-His445, Pro52e-Thr444, Arg52g-Ala440,

Arg52g-Phe442, Arg52g-Tyr443, Arg52g-Pro612, Asn52n-Tyr443, Trp52i-Tyr613) (Figure 4F, Fig-

ure 4—figure supplement 2). Notably, these differences in binding interactions have functional

implications, as these mAbs differ in potency of neutralization of individual HCV strains in the HCVpp

panel. For example, the AR3X neutralization IC50 for strain 1b21 is ~17 fold lower than the IC50 of

HEPC3 (1.2 vs. 20.5 mg/mL). In contrast, the AR3X neutralization IC50 for strain 1a142 is ~9 fold

higher than the IC50 of HEPC3 (16.2 vs. 1.9 mg/mL) (Figure 2; Flyak et al., 2018).

A signature feature of the AR3A/AR3C and HEPC3/HEPC74 types of HCV bNAbs is the long

CDRH3 that forms multiple main chain–main chain hydrogen bonds with E2 front layer residues

(Flyak et al., 2018; Tzarum et al., 2019). Similar to other front layer-specific bNAbs with a CDRH3

disulfide motif, the first cysteine residue of the AR3X CDRH3 (Cys100a) hydrogen bonds with E2 resi-

due Cys429 (Figure 4G, Figure 4—figure supplement 2; Flyak et al., 2018; Kong et al., 2013;

Tzarum et al., 2019). Three additional hydrogen bonds (AR3X-E2ecto: Arg99-Asp431, Arg99-

Asn430, Asn96-Asp431), as well as a salt bridge between CDRH3 (Arg100b) and a CD81 binding
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Figure 4. Details of the AR3X interactions with E2ecto. (a) Crystal structure of the AR3X-E2ecto complex. E2ecto is shown as a cartoon representation

within a transparent surface with N-glycans highlighted as sticks and disulfide bonds shown as yellow sticks. The AR3X Fab is shown in a surface

representation with highlighted CDRs. (b) Comparison of buried surface areas (BSAs) of E2ecto on the HC and LC of AR3X. (c) Percentage of BSA

contributed from CDRH loops of the total BSA on the AR3X HC. The portion of CDRH2 within the CDRH2 insertion is separated from the main pie

chart. (d) Length distribution of human CDRH2s. Human CDRH2 lengths were extracted from the online abYsis system (http://www.bioinf.org.uk/abysis/)

using the Kabat numbering scheme Kabat and National Institutes of Health (U.S.). Office of the Director, 1991). (e) Interactions of AR3X heavy

chain CDRs with E2ecto. CDRs are purple (CDRH1), orange (CDRH2), and blue (CDRH3) tubes. Disulfide bonds are shown as yellow sticks. (f) CDRH2

interactions with E2ecto. Interacting residues are shown as sticks. AR3X CDRH1 – purple, AR3X CDRH2 – orange, and AR3X CDRH3 – blue. Disulfide

bonds are shown as yellow sticks. Potential H-bonds are shown as black dashed lines, and residues at the interface are indicated. (g) CDRH3

interactions with E2ecto. Interacting residues shown as sticks. For clarity, only the CDRH3 of AR3X is shown. Disulfide bonds are shown as yellow sticks

and E2 glycans are shown as sticks with light blue, red, and dark blue colors for carbon, oxygen, and nitrogen atoms, respectively. Potential H-bonds

and salt bridges are shown as black or red dashed lines, respectively. Residues at the interface are indicated.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Data collection and refinement statistics for AR3X-E2ecto1b09 complex.

Figure supplement 2. Interface residues between AR3X and E2ecto.
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loop residue (Glu531), further stabilize the interaction of AR3X with E2. The AR3X-E2ecto crystal

structure also shows contacts between the AR3X CDRH3 and N-glycans attached to E2 residues

Asn423 and Asn430 (Figure 4G).

Discussion
We and others previously described HCV bNAbs that utilize the VH1-69 gene segment and a germ-

line-encoded disulfide motif in CDRH3 to recognize the conserved epitope in E2 front layer

(Flyak et al., 2018; Keck et al., 2019; Kong et al., 2013; Tzarum et al., 2019). Here we structurally

characterized a front layer-specific HCV bNAb that is encoded by the VH1-69 gene that includes an

ultralong insertion in CDRH2 as well as the disulfide motif in CDRH3. We found that AR3X, isolated

from the same chronically-infected patient as AR3A or AR3C (Law et al., 2008), surprisingly exhibits

AR3A-E2core AR3C-E2core AR3X-E2ecto HEPC3-E2ecto HEPC74-E2ecto

HC
HC

HC HC HC

LC LC
LC LC LC

Antibodies with bent CDRH3 Antibodies with straight CDRH3

C429 C429 C429 C429 C429

1 helix
1 helix

1 helix 1 helix
1 helix

E531 A531 E531 E531 E531

Q434
N434 H434

H434 H434

AR3A epitope AR3C epitope AR3X epitope HEPC3 epitope HEPC74 epitope

Isolated from a single chronically-infected individual Isolated from individual

who cleared infection

Isolated from individual

who cleared infection

Figure 5. A structural plasticity of VH1-69-derived bNAbs with the CDRH3 disulfide motif. (Top) Surface representations of AR3X-E2 and other bNAb-E2

structures. E2, gray; AR3A-HC, red; AR3A-LC, light red; AR3C-HC, orange; AR3C-LC, yellow; AR3X-HC, green; AR3X-LC, light green; HEPC3-HC, blue;

HEPC3-LC, light blue; HEPC74-HC, purple; HEPC74-LC, pink. (Bottom) Comparison of AR3A (red), AR3C (orange), AR3X (green), HEPC3 (blue), and

HEPC74 (purple) epitopes. Epitopes on the E2 front layer (surface representation) were defined as residues in E2 containing an atom within 4 Å of the

bound Fab.
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the straight CDRH3 conformation found in the HEPC3 or HEPC74 bNAbs isolated from individuals

who spontaneously cleared HCV infection (Figure 3). This indicates that a single individual can pro-

duce potent HCV-specific bNAbs using the common VH1-69 and D2-15 genes that bind to the con-

served region of E2 in at least three different configurations (straight CDRH3 with CDRH2 insertion,

straight CDRH3 without CDRH2 insertion, or bent CDRH3 without CDRH2 insertion), highlighting

the intrinsic plasticity of the VH1-69–encoded CDRH1 and CDRH2 loops that accommodate different

antibody approach angles (Figure 5). It’s likely that the CDRH3s of these bNAbs dictate the prefer-

ential mode of engagement of bNAb germline precursors with the conserved epitope in the E2 front

layer. Overall, these data demonstrate that B cells using VH1-69 and D2-15 genes can follow multi-

ple pathways of affinity maturation to achieve broad neutralizing activity.

In the four bNAbs that were previously characterized structurally (Flyak et al., 2018; Kong et al.,

2013; Tzarum et al., 2019), the first cysteine residue of the CDRH3 hydrogen bonds with E2 residue

Cys429 (Figure 4G, Figure 4—figure supplement 2). We hypothesize that after the initial recogni-

tion of the front layer by CDRH3, the VH1-69-encoded CDRH1 and CDRH2 further stabilize the inter-

action while subsequent somatic mutations increase the bNAb affinity and breadth. Other

antibodies that utilize a CDRH3 stabilized by a disulfide bond have been also described in the litera-

ture (Sui et al., 2009; Thomson et al., 2008; Ying et al., 2015). For example, M336, a potent

human antibody that neutralizes severe acute respiratory syndrome coronavirus (Ying et al., 2014),

is encoded by the VH1-69 gene segment and includes a germline-encoded disulfide bond in its

CDRH3 (Ying et al., 2015).

Nucleotide insertions and deletions play an important role in diversification of the antibody reper-

toire (de Wildt et al., 1999; Reason and Zhou, 2006; Wilson et al., 1998). Insertions are produced

by sequence duplications; while the average size of insertion varies from 3 to 33 nucleotides, the

majority of antibodies contain short insertions (Kanyavuz et al., 2019; Wilson et al., 1998). AR3X

with its 42-nucleotide insertion in CDRH2 represents an interesting case of an antibody that utilizes

an ultralong CDRH2 to bind its epitope (Figure 4). The insertion was required for recognition of E2

glycoproteins across multiple HCV strains, as evidenced by the poor binding activity of AR3X var-

iants lacking the CDRH2 insertion (Figure 2). While several neutralizing antibodies with insertions

have been described (Kepler et al., 2014; Krause et al., 2011), AR3X is unique for its exceptionally

long CDRH2 insertion, which makes extensive contacts with E2, but does not change the preconfig-

ured mode of AR3X interaction with E2 based on its straight CDRH3 containing a disulfide motif.

Thus the conserved epitope in the HCV E2 front layer, which is recognized by multiple human

bNAbs containing a disulfide motif in their CDRH3s (Figure 5), remains a promising target for line-

age-based immunogen design.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Homo-sapiens)

HEK293-6E National Research
Council of Canada

11565

Cell line
(Homo-sapiens)

Expi293F Thermo Fisher
Scientific

A14527

Cell line
(Homo-sapiens)

Hep3B2.1–7 ATCC HB-8064

Antibody Anti-Human IgG-HRP
(Goat polyclonal)

SouthernBiotech 2040–05 1:4000 dilution

Recombinant
DNA reagent

pTT5 mammalian
expression vector
(used to express
IgGs and Fabs)

National Research
Council of Canada

N/A

Commercial
assay or kit

1-Step Ultra TMB-
ELISA Substrate Solution

Thermo Fisher
Scientific

34028

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Commercial
assay or kit

PEGRx HT Hampton
Research

HR2-086

Commercial
assay or kit

PEG/Ion HT Hampton
Research

HR2-139

Commercial
assay or kit

JCSG-plus HT-96 Molecular
Dimensions

MD1-40

Chemical
compound, drug

Kifunensine Sigma K1140

Software,
algorithm

Pymol Schrödinger, LLC RRID:SCR_000305

Software,
algorithm

Phenix (Adams et al., 2010) https://www.phenix-online.org

Software,
algorithm

Coot (Emsley and Cowtan, 2004) http://www2.mrc-lmb.cam.
ac.uk/personal/pemsley/coot/

Software,
algorithm

PDBePISA (Krissinel and Henrick, 2007) http://www.ebi.ac.uk/pdbe/pisa/

Software,
algorithm

abYsis system http://www.bioinf.org.uk/abysis/

Other Superdex 200
Increase 10/300 GL

GE Healthcare 17517501

Other HisTrap FF column GE Healthcare 17531901

Other HiTrap Protein
A HP column

GE Healthcare 17040301

Other HCV 1b09 strain
E1E2 sequence

GenBank KJ187984.1

Cell lines
HEK293-6E cells were obtained from National Research Council of Canada. Expi293F cells were

obtained from Thermo Fisher Scientific. Hep3B cells were obtained from American Type Culture Col-

lection (ATCC). Hep3B cells were tested for mycoplasma contamination. Neither cell line is among

the list of commonly misidentified cell lines.

IgG expression and purification
Genes encoding the VH and VL domains of the AR3X bNAb called antibody ‘A’ in Supplemental

Table 1 in Law et al. (2008) were synthesized as gBlocks gene fragments (IDT) and cloned into

pTT5-based expression vectors (NRC Biotechnology Research Institute). Reverted unmutated ances-

tor (rua) variants of AR3X and the location of the insertion were inferred with IMGT/V-QUEST using

complete sequences of heavy and light chain variable domains. IgGs were produced in Expi293F

cells (National Research Council of Canada) by co-transfecting appropriate heavy and light chain

plasmids. HiTrap Protein A HP column (GE Healthcare) was used to isolate IgGs from filtered culture

supernatants followed by purification by size exclusion chromatography (SEC) using a Superdex 200

Increase 10/300 GL column (GE Healthcare).

Expression and purification of E2 constructs
For ELISA experiments, His-tagged E2ecto proteins (residues 384–643) were expressed by tran-

siently transfecting Expi293F cells (National Research Council of Canada) and purified from clarified

supernatants using a HisTrap FF column (GE Healthcare) followed by SEC on a Superdex 200

Increase 10/300 GL column (GE Healthcare) to separate monomeric E2ecto proteins from oligomeric

species. For structural studies, the His-tag was removed from an expression vector encoding a strain

1b09 E2 ectodomain.
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Expression and purification of an E2-Fab complex
AR3X Fab-1b09 E2ecto complexes for structural studies were produced in HEK293-6E or Expi293F

cells (National Research Council of Canada) in the presence of 5 mM kifunensine (Sigma) by co-trans-

fecting expression vectors encoding His-tagged Fab and untagged E2ecto to allow isolation of sta-

ble Fab-E2 complexes (Flyak et al., 2018). AR3X-E2 complex was purified from supernatants using

Ni-NTA chromatography on HisTrap HP column (GE Healthcare) followed by SEC on a Superdex 200

Increase 10/300 GL column (GE Healthcare).

Crystallization, data collection and structure determinations
Commercially-available screens (Hampton Research and Molecular Dimensions) were used to screen

initial crystallization conditions by vapor diffusion in sitting drops. AR2X-E2ecto crystals were grown

using 0.2 mL of protein complex in TBS and 0.2 mL of mother liquor (0.25 M ammonium tartrate diba-

sic pH 7.0, 20% PEG 3,350) and cryoprotected in mother liquor supplemented with 20% (w/v) glyc-

erol. X-ray diffraction data from cryopreserved crystals were collected at the Stanford Synchrotron

Radiation Lightsource on beamline 12–2 using a PILATUS 6M detector. Images were processed and

scaled using iMosflm (Battye et al., 2011) and Aimless as implemented in the CCP4 software suite

(Evans and Murshudov, 2013). The AR3X-E2 complex structure was solved by molecular replace-

ment using the AR3C (PDB 4MWF) and 1b09 HCV E2ecto (PDB 6MEI) structures as search models.

The models were refined and validated using Phenix.refine (Adams et al., 2010). Iterative manual

model building and corrections were performed using Coot (Emsley and Cowtan, 2004). Glycans

were initially interpreted and modeled using Fo – Fc maps calculated with model phases contoured

at 2s, followed by 2Fo – Fc simulated annealing composite omit maps generated in Phenix in which

modeled glycans were omitted to remove model bias (Adams et al., 2010). The quality of the final

models was examined using MolProbity (Chen et al., 2010).

Models were superimposed and figures rendered using the PyMOL molecular visualization system

(Version 1.7, Schrödinger, LLC). Buried surface areas (BSAs) were determined using the PDBePISA

web-based interactive tool (Krissinel and Henrick, 2007). Potential hydrogen bonds were assigned

using criteria of a distance of <4.0 Å and an A-D-H angle of >90˚, and the maximum distance

allowed for a van der Waals interaction was 4.0 Å. Rmsd calculations were done in PyMOL following

pairwise Ca alignments without excluding outliers. AR3X residues were numbered according to the

Kabat numbering scheme, and Kabat definitions of CDRs were used throughout the paper

(Kabat and National Institutes of Health (U.S.). Office of the Director, 1991). Values to show the

length distribution of CDRH2 in humans were extracted from the online abYsis system (http://www.

bioinf.org.uk/abysis/) using the Kabat numbering scheme.

ELISA binding analyses
Soluble forms of full-length E2 ectodomains were coated overnight onto 96-well plates (Corning) at

1 mg/mL. Plates were blocked with 1% goat serum and 1% powdered milk in TBST buffer (TBS with

0.05% Tween-20) for 1 hr. Purified IgGs were assayed in duplicate at 4-fold serial dilutions, starting

at 10 mg/mL. IgGs-E2ecto complexes were detected using goat anti-human IgG horseradish peroxi-

dase-conjugated secondary antibody (Southern Biotech, 1:4000 dilution) and 1-Step Ultra TMB-

ELISA substrate (Thermo Fisher Scientific) and reading the optical density read at 450 nm after stop-

ping the reaction with 1M HCl. A non-linear regression analysis was performed on the resulting

curves using Prism version 5 (GraphPad) to calculate EC50 values.

HCVpp production and neutralization assays
HCVpp were produced by lipofectamine-mediated transfection of HCV E1E2 and pNL4-3.Luc.R-E-

plasmids into HEK293T cells as described (Hsu et al., 2003; Logvinoff et al., 2004). A panel of 19

heterologous genotype 1 HCVpp has been described previously (Bailey et al., 2015; Osburn et al.,

2014). Neutralization assays were performed as described (Dowd et al., 2009). Briefly, IgGs were

serially diluted five-fold, starting at a concentration at 100 mg/ml and incubated with HCVpp for one

hour prior to addition to Hep3B hepatoma cells. Luciferase activity was measured after three days

and compared to that of HCVpp in media alone.
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