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Abstract

Transcriptome-wide association study (TWAS) has become popular in integrating a reference 

eQTL dataset with an independent main GWAS dataset to identify (putatively) causal genes, 

shedding mechanistic insights to biological pathways from genetic variants to a GWAS trait 

mediated by gene expression. Statistically TWAS is a (two-sample) 2-stage least squares (2SLS) 

method in the framework of instrumental variables analysis for causal inference: in Stage 1 it uses 

the reference eQTL data to impute a gene’s expression for the main GWAS data, then in Stage 2 it 

tests for association between the imputed gene expression and the GWAS trait; if an association is 

detected in Stage 2, a (putatively) causal relationship between the gene and the GWAS trait is 

claimed. If a non-linear model or a generalized linear model (GLM) is fitted in Stage 2 (e.g. for a 

binary GWAS trait), it is known that using only imputed gene expression, as in standard TWAS, in 

general does not lead to a consistent (i.e. asymptotically unbiased) estimate for the causal effect; 

accordingly, a variation of 2SLS, called two-stage residual inclusion (2SRI), has been proposed to 

yield better estimates (e.g. being consistent under suitable conditions). Our main goal is to 

investigate whether it is necessary or even better to apply 2SRI, instead of the standard 2SLS. In 

addition, due to the use of imputed gene expression (i.e. with measurement errors), it is known that 

in general some correction to the standard error estimate of the causal effect estimate has to be 

applied, while in the standard TWAS no correction is applied. Is this an issue? We also compare 

one-sample 2SLS with two-sample 2SLS (i.e. the standard TWAS). We used the ADNI data and 

simulated data mimicking the ADNI data to address the above questions. At the end, we conclude 

that, in practice with the large sample sizes and small effect sizes of genetic variants, the standard 

TWAS performs well and is recommended.
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1 Introduction

Genome-wide association studies (GWAS) have been successful in identifying thousands of 

trait-associated genetic variants, mostly single nucleotide polymorphisms (SNPs). However, 

since most of the identified trait-associated SNPs are in the non-coding region of the 

genome, there is a lack of mechanistic understanding of how these SNPs influence the traits. 

It is hypothesized that many genetic variants influence complex traits through transcriptional 

regulation (He et al., 2013), which can be used to identify causal genes. For this purpose, 

PrediXcan (Gamazon et al., 2015) and transcription-wide association study (TWAS) (Gusev 

et al., 2016), simply called TWAS from now on, were recently proposed to uncover 

putatively causal genes by integrating a main GWAS dataset with a reference gene 

expression or expression quantitative trait (eQTL) dataset. TWAS has since become popular 

and successful in applications to common diseases like T2D and cancer, and to complex 

traits like BMI, lipids and height, convincingly showing the power of integrating GWAS and 

eQTL data to gain biological insights. Statistically, TWAS applies the (two-sample) two-

stage least squares (2SLS) method for causal inference (Xu, Wu, Wei & Pan, 2017a), closely 

related to Mendelian randomization (MR) (Zhao, Wang, Hemani, Bowden, & Small, 2019). 

Since TWAS is a gene-based method by testing genes one by one, for the purpose of 

presentation we can consider only one gene. In Stage 1, one builds a prediction model for 

the genetic component of the gene’s expression level, called “genetically regulated 

expression (GReX)”, by using only cis-acting genotypes around the gene based on a 

reference eQTL dataset. In stage 2, for a given separate main GWAS dataset, based on the 

genotype of each subject, we can “impute” his/her gene expression (i.e. GReX) using the 

predictive model built in Stage 1. Then we test the association between the imputed gene 

expression and the GWAS trait. If there is an association, then, under suitable modeling 

assumptions (Xu, Wu, Wei, & Pan, 2017; Mancuso et al., 2019; Hu et al., 2019; Wainberg et 

al., 2019), it is claimed that the gene is (putatively) causal to the trait: some causal SNPs 

affect the trait through the mediating effects of the gene’s expression.

As to be reviewed next, if the GWAS trait is quantitative, a linear model is usually used in 

Stage 2 to test the association between the imputed gene expression level and the trait, which 

is exactly 2SLS. However, in practice, a non-linear model (with an additive error term) may 

be used; or, more often, since in many GWAS the trait is not quantitative, e.g. being binary 

as an indicator of a disease status, a generalized linear model (GLM), e.g. a logistic 

regression model, is instead fitted. For such a non-linear model in Stage 2, it is known that 

the usual 2SLS, specifically called Two-Stage Predictor Substitution (2SPS), may not be 

consistent; instead, for a non-linear model with an additive error term, Two-Stage Residual 

Inclusion (2SRI) is consistent and should be applied (Terza, Basu, & Rathouz, 2008; 

MacKenzie, Tosteson, Morden, Stukel & O’Malley, 2014), while for a logistic regression 

model, an equivalent method to 2SRI has been proposed (Palmer et al., 2008, 2011). Hence, 

an important question is whether it is indeed suitable to apply 2SPS for binary traits in Stage 
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2 as in the current practice of TWAS. From now on, we use 2SLS as a generic term covering 

both 2SPS and 2SRI. In addition, TWAS is based on a two-sample 2SLS (2S-2SLS), in 

which two separate and independent datasets are used in Stages 1 and 2 respectively; there is 

a corresponding one-sample 2SLS (1S-2SLS) with the two datasets in the two stages 

collected from the same set of subjects (Angrist & Krueger, 1991). This is convenient with 

two separate eQTL and GWAS datasets. However, in practice, there are situations when both 

eQTL and GWAS are collected on the same set (or largely overlapping sets) of subjects. In 

these situations, should be split the dataset into two non-overlapping subsets before applying 

2S-2SLS, or apply 1S-2SLS to the whole dataset? To answer this question, we need to 

investigate how 1S-2SLS performs in the context of TWAS. We will use both a real dataset 

and simulated data to address these questions.

2 Methods

2.1 The True Models in Instrumental Variables Analysis

The true (causal) model is illustrated with a directed acyclic graph (DAG) in Figure 1, where 

Y, Z and U are the gene, GWAS trait and unobserved confounders respectively, and a 

directed edge solid between U and Z, U and Y, SNPj and Y (for j = 1,…, m) represents a 

direct causal effect. Our goal is to test whether Y has a direct effect on Z, and possibly 

estimate its effect size.

For individual i, i = 1,…, n, with gene expression level Yi, SNPs SNP1,i, …,SNPm,i, and 

binary trait Zi. Let pi be the probability of Zi = 1. Our the true model for Stage 1 is:

Y i = β0 + β1 ⋅ SNP1, i + … + βm ⋅ SNPm, i + Ui, (1)

where, as usual, throughout, we use additive coding for each SNP: SNPj,i = 0,1 or 2 for j = 1,

…, m and i = 1,…, n. The true model for Stage 2 is:

logit pi = α0 + α1 ⋅ Y i + α2 ⋅ Ui (2)

with pi = Pr(Yi = 1). A main challenge is that we do not observe the confounder Ui that is 

correlated with both Xi and Yi.

The above true model is the typical one adopted in the instrumental variables (IVs) analysis 

for causal inference, in which the SNPs are taken as IVs. The focus is statistical inference on 

the causal effect α1. A main benefit is consistent estimation and inference for α1 at the 

expense of three assumptions with IVs, as in MR: 1) the SNPs/IVs are associated with Y; 2) 

the SNPs/IVs are not associated with U; 3) Conditional on Y, the SNPs/IVs are not 

associated with Z. If any of the above three modeling assumptions is violated, biased 

inference for a1 results, as discussed in the context of TWAS (Mancuso et al., 2019; 

Wainberg et al., 2019). Since it is not the focus of this paper while it is quite challenging to 

deal with, we will assume that the three assumptions hold in the following as in standard 

scenarios.
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2.2 One-sample versus Two-sample Approaches

All methods we are going to introduce consist of two stages. If we have both eQTL and 

GWAS data from the same sample of subjects, we have two choice of how to use the data. 

First, we can use the whole sample for both Stages 1 and 2, which is denoted as one-sample 

approach. Alternatively, we can randomly split the whole sample into half-half (or in 

whatever desired ratio), using the first half for Stage 1, and the other half for Stage 2, which 

is denoted as two-sample approach.

Denote I1,I2 ⊆ {1,⋯, n}be the index sets for samples used in Stages 1 and 2 respectively. For 

the one-sample strategy, I1 = I2 = {1,⋯, n}; for the two-sample approach, we have I1 ∩ I2 = 

ø.

2.3 TWAS: Four Methods to Implement It

We implement TWAS in four different ways in Stage 2, depending on whether a LM or 

GLM is fitted to the binary GWAS trait and how to use imputed gene expression, leading to 

four different methods, denoted as GLM 2SPS, GLM 2SRI, LM 2SPS and LM 2SRI. The 

(standard) TWAS corresponds to LM 2SPS. All of these four methods are variants of 2SLS, 

consisting of two stages; they share fitting the same LM in Stage 1, but differ in fitting 

different models in Stage 2.

In Stage 1, we fit a LM by regressing gene expression Y on the SNPs, SNP1, …, SNPm:

Y i = β0 + β1 ⋅ SNP1, i + … + βm ⋅ SNPm, i + εi,  i ∈ I1, (3)

where εi is assumed to be a random noise with mean 0 and independent of the SNPs. We 

obtain the OLS estimates β0, β1, …, βm, and predict (or impute) gene expression Ŷi’s for i ∈ 

I2. We also estimate Ui = Y i − Y i for confounders Ui, i ∈ I2.

In Stage 2, for GLM-2SPS, we fit a logistic regression model using Ŷi:

logit pi = α0 + α1 ⋅ Y i . (4)

In contrast, for GLM-2SRI, we fit a logistic model using both Yi and Ui:

logit pi = α0 + α1 ⋅ Y i + α2 ⋅ U i . (5)

Note the use of Yi, not Ŷi, in the above model, which will not be possible for usual two-

sample scenarios.

As alternatives, we can fit two LMs in Stage 2. The first corresponds to LM-2SPS:

Zi = α0 + α1 ⋅ Y i + ei, (6)

where ei is assumed to be a random noise with mean 0 and independent of the SNPs. The 

second is for LM-2SRI:
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Zi = α0 + α1 ⋅ Y i + α2 ⋅ U i + ei . (7)

For each method, we draw inference on the causal effect α1 after obtaining its estimate α1
and standard error se(α1). For GLM-2SRI and LM-2SPS, there are existing methods for 

correct se(α1) as to be discussed next, while for others we will use the output from standard 

software fitting their corresponding models in Stage 2.

It is noted that, although we have one-sample ADNI data with the availability of the 

genotype, gene expression and GWAS trait (AD) data for each subject, to mimic a two-

sample approach, we split the whole sample of the ADNI data into two non-overlapping 

samples. An advantage of the two-sample approach is the relaxed assumption of the 

availability of the gene expression and the GWAS trait in the two samples respectively, to 

which the two-sample LM-or GLM-2SPS method (as the standard TWAS) can be applied; 

however, the two-sample LM-or GLM-2SRI does require the availability of the gene 

expression data in both samples (but only the availability of the GWAS trait in the second 

sample).

Given the true data generating models (1) and (2), and the working models (3) and (4), 

although the estimation of the causal effect a1 in (2) is not consistent in general, the test for 

whether α1 = 0 is valid and consistent (Dai & Zhang, 2015). Furthermore, we note that 

GLM-2SRI with model (5) is equivalent to the so called “Adjusted IV Estimator” (Palmer, 

Thompson, Tobin, Sheehan & Burton, 2008), also called “Control Function Estimator” 

(Palmer et al., 2011) for binary traits, in which Yi is replaced by Ŷi in (5).

2.4 Corrections for se(α1)

For one-sample GLM 2SRI, we correct the se(α1) with following equation (Terza, 2018):

V c(α) = V (α) + V (α)AV (β )A′V (α) . (8)

Here V (β ) is the original covariance matrix of β‘s in the first stage, and V (α) is the original 

covariance matrix of α‘s in the second stage; throughout, the “original” one means the usual 

covariance matrix directly output from fitting a standard model in Stage 1 or 2. V c(α) is the 

corrected covariance matrix for α. We define:

f*(Z |Y , SNPs; α, β) = f(Z |Y , U = Y − SNPs ⋅ β; α)

= exp α0 + α1 ⋅ Y + α2 ⋅ U Z

1 + exp α0 + α1 ⋅ Y + α2 ⋅ U , (9)

and let fi* = f Zi |Y i, Ui = Y i − SNPsi ⋅ β; α  and Ai
(α, β):

Ai
(α, β) = ∇αlog fi* ⋅ ∇β log fi* ′ . (10)

Then A is calculated as
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A = ∑
i = 1

n
Ai

(α, β ) . (11)

We can notice that the corrected sec(α1) is larger than the original se(α1). Though the 

correction was originally designed for one-sample GLM-2SRI, we will also apply it to two-

sample GLM-2SRI.

For one-sample LM-2SPS, the usual standard error estimate requires the homoskedasticity 

assumption on the error term in a LM; to relax the homoskedasticity and other modeling 

assumptions, a robust or sandwich-type standard error estimator has been proposed 

(Baiocchi, Cheng, & Small, 2014; Imbens & Angrist, 1994; Angrist & Pischke, 2009). We 

use the robust.se() function in R package ivpack to obtain the robust standard error of α1 in 

LM 2SPS (Baiocchi, Cheng, & Small, 2014).

For two-sample LM-2SPS, to account for the statistical uncertainty or estimation error of 

estimating/imputing Yi as Ŷi in Stage 1, we can correct the usual se(α1) by inflating it with a 

factor no smaller than 1 (Inoue, Atsushi & Solon, 2010):

V c(α) = V (α) 1 + α1
2 ⋅ n2

n1
⋅ σ1

2

σ2
2 , (12)

where V (α) is the original covariance matrix of α, n1 and n2 are the sample sizes in Stages 1 

and 2 respectively, and σ1
2 and σ2

2 are the estimated variances for the error terms in the two 

LMs in the two stages respectively.

We thus obtain the corrected standard errors (SEs) for both one-sample and two-sample 

LM-2SPS, and for both one-sample and two-sample GLM-2SRI, which were used in all the 

following reported results unless specified otherwise. For other methods, we are not aware 

of any existing methods to correct their SEs and thus just use the standard/uncorrected SEs 

from the output from fitting their corresponding models in Stage 2.

2.5 ADNI Data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a 60 million, 5-year public 

private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials. The Principal Investigator of this initiative is Michael W. 
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Weiner, MD, VA Medical Center and University of California — San Francisco. ADNI is 

the result of efforts of many co-investigators from a broad range of academic institutions and 

private corporations, and subjects have been recruited from over 50 sites across the U.S. and 

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed 

by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults, 

ages 55 to 90, to participate in the research, consisting of cognitively normal older 

individuals, people with early or late MCI, and people with early AD. The follow up 

duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. 

Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in 

ADNI-2. For up-to-date information, see www.adni-info.org.

For real data analysis and for generating simulated data, we used the data from Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (Shen et al., 2014), including its gene expression, 

whole genome sequencing (WGS) and trait data. After cleaning and merging, we had a 

sample size 712. To mimic a case-control study, we treated 247 Cognitively Normal (CN) 

individual as controls, and the remaining 465 individuals with Alzheimer’s Disease (AD) or 

Mild Cognitive Impairment (MCI) as cases. The expression levels of 17256 genes on the 

autosomes were used. For each gene, we defined its cis-region by expanding 100kb 

upstream and downstream its coding region (i.e. from its TSS and TES) respectively. We 

excluded SNPs with MAF ≤ 0.05 or with missing values. We also pruned the SNPs to ensure 

that any of their pairwise Pearson correlations in absolute values was no more than 0.9. 

Finally, if there were still more than 30 SNPs in the cis-region of the gene, we chose and 

only kept the top 30 SNPs (as IVs) with the largest absolute values of the correlations with 

the gene’s expression level; if there were less than or equal to 30 SNPs, we kept all of them 

as IVs. In this way, we had m ≤ 30 SNPs as IVs so that the ordinary least squares (OLS) 

estimation could be applied in Stage 1.

For some genes, if their expression levels are not associated with their cis-SNPs, then using 

their cis-SNPs to predict their expression levels in Stage 1 would violate the first IV 

assumption, leading to the use of invalid IVs. As alternatives, for each gene we tested the 

association in equation (1) with the null hypothesis H0: β1 = β2 = … = βm = 0. Under H0 

(and the normality assumption for Y), the coefficient of determination R2 follows an F-

distribution with degrees of freedom (m, n − m − 1). Thus, we performed the F-test on each 

gene in Stage 1, and only retained the genes with p-values less than some cut-off (0.05 or 

0.1) before applying the methods.

2.6 Simulation Set-ups

To further study the methods, we conducted simulation studies by using the ADNI data to 

mimic realistic scenarios. We randomly selected gene PSPH on chromosome 7 to study. We 

first fitted a LM in the first stage with 30 SNPs we selected:

Y i = β0 + β1 ⋅ SNP1, i + … + β30 ⋅ SNP30, i + Ui, (13)

for i = 1,…, 712, to obtain β0, β1, …, β30, Ŷ, U and var(U). In the second stage, we first fitted 

a model like GLM 2SRI:
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logit pi = α0
(1) + α1

(1) ⋅ Y i + α2
(1) ⋅ U i, (14)

for i = 1,…, 712, to obtain α0
1 , α1

1 , α2
1  for a non-null model (with a causal effect 

α1
(1) ≠ 0. For a null model, we fitted a logistic regression model with only U:

logit pi = α0
(2) + α2

(2) ⋅ Ui (15)

to obtain α0
(2) and α2

(2). In the following simulation set-ups, we used these estimated 

coefficients to generate simulated data.

In each simulation set-up, we generated simulated data in the following steps.

For i = 1,…, R · 712:

1. Generate Ui’s as i.i.d. Normal(0, var(U));

2. Generate Y i = β0 + β5 ⋅ SNP5, i + β15 ⋅ SNP15, i + β25 ⋅ SNP25, i + Ui;

3. Generate logit(pi). If SY = 0, then logit pi = α0
2 + SU ⋅ α2

2 ⋅ Ui; otherwise, 

logit pi = α0
(1) + SY ⋅ α1

(1) ⋅ Y i + SU ⋅ α2
(1) ⋅ Ui;

4. Generate Zi ~ Bernoulli(pi).

Here R controlled the sample size, SY the effect size of the gene expression Y, and SU the 

effect size of the confounder U. The values of the SNPs were drawn from the ADNI data: 

for i = k + l · 712, k = 1,… 712, and l = 1,…, R − 1, we defined SNPj,i = SNPj,k, meaning 

that we replicated the SNP data R times to possibly increase the sample size. We tried 

various combinations of (R, SY, SU):

R, SY , SU R = 1, 3, 5, 7, 9; SY = 0, 1, 2, 3, 4, 5; SU = 1, 10, 20, 30, 40, 50 .

Note that we chose 3 SNPs as the true IVs: SNP5, SNP15, and SNP25. though we would use 

all 30 SNPs To mimic the real situation with valid IVs unknown, we would select 10 top 

SNPs as IVs from the 30 candidate SNPs as for the real data analysis. Then we fitted the LM 

in the first stage, and applied the four methods from formulas (4), (5), (6), and (7) in the 

second stage. Because we knew both Y and U with simulated data, we also considered the 

ideal (but not practical) Oracle method by fitting the true model (2) in the second stage.

For each simulated dataset, we applied the methods with both one-sample and two-sample 

approaches; for the former, we split a simulated dataset into half/half for the two stages 

respectively. For each simulation set-up, we generated 1000 independent simulated datasets.
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2.7 Data Availability

The ADNI data are available to the approved user on the project web site http://

adni.loni.usc.edu/. Some sample R code and data are available at https://github.com/xue-hr/

twas_methods.

3 Results

3.1 ADNI Data Analysis

We applied the methods to 17256 genes for 712 individuals in ADNI data. For each of the 

four models, we tried both one-sample and two-sample approaches, obtaining the p-values 

for a1 for the 17256 genes, and draw Q-Q plots for these 17256 p-values in Figure 2.

First, it is clear that all four methods with the one-sample approach led to inflated type I 

errors with inflated genomic control factors λ (Devlin & Roeder, 1999), likely due to not 

accounting for SNP selection in Stage 1 with the same sample as that in Stage 2. Among the 

four methods, 1S-GLM-2SPS and 1S-LM-2SRI was most liberal with much inflated type I 

errors, while 1S-GLM-2SRI was conservative at the left tail of the p-value distribution (i.e. 

perhaps over-estimating the more significant/smaller p-values); in contrast, 1S-LM-2SPS 

performed almost ok. Second, while all four methods with the two-sample strategy did not 

yield inflated λ, 2S-LM-2SPS and 2S-GLM-2SRI were too conservative, especially at the 

left tail of the p-value distribution; in contrast, 2S-GLM-2SPS performed almost ideally, 

followed by 2S-LM-2SRI.

We also conducted an F-test for a possible association between each gene’s expression levels 

and its cis-SNPs in Stage 1; we only retained the 9102 (or 10564) genes with a p-value < 

0.05 (or 0.1) before applying the methods. The resulting Q-Q plots (Supplementary 

Materials) show the same patterns as discussed above; in particular, the inflation of the Type 

I error rates by the one-sample approaches was even more evident.

3.2 Simulation Results: Two-sample Approaches

3.2.1 Type I errors—For the null case with no causal effects (i.e. α1 = 0 or SY = 0), the 

empirical Type I error rates at the nominal significance level of 0.05 for the four methods 

and the Oracle are shown in Figure 3 based on 1000 simulations; for comparison, the 

nominal significance level is marked with a gray horizontal line (in each corresponding 

figure). If the confounding is not severe with SU = 1, all the methods performed 

satisfactorily. However, with more severe confounding with SU = 50, first, LM-2SRI 

consistently had inflated Type I error rates, while GLM-2SRI also had an inflated type I 

error for the small sample size (with R = 1), which however disappeared with increasing 

sample sizes. In contrast, GLM-2SPS and LM-2SPS always controlled their Type I error 

rates satisfactorily.

3.2.2 Power—In the presence of causal effects, as shown in Figure 4, with small 

confounding (with SU = 1), all the methods performed similarly. However, with severe 

confounding (with SU = 50), GLM-2SRI was low-powered, while GLM-2SPS and 
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LM-2SPS performed similarly. Note that the high power of LM-2SRI was likely due to its 

inflated Type I error rates.

3.2.3 Biases—We could compare the true causal effect size α1 with its estimate α1 from 

each method to assess the extent of the bias, if any, by each method. Since the true model 

was a GLM in Stage 2, we only compared the GLM-based methods. For a specific 

simulation setting, based on 1000 simulations, we estimated the bias as ∑i = 1
1000 α1

i − α1 /1000, 

where α1
i  was the estimate of the true α1 in the ith simulation. As shown in Figure 5, first, in 

the null case (i.e. SY = 0), with small confounding (i.e. small SU), the three methods 

performed similarly. However, with a large SU, at a small sample size GLM-2SPS and 

GLM-Oracle, but not GLM-2SRI, performed well; as the sample size increases, GLM-2SRI 

became less biased. Second, in the non-null case (i.e. SY ≠ 0), GLM-2SRI was less biased 

than GLM-2SPS in most cases, but not for SU = 50, SY = 5 and R = 1 (i.e. a small sample 

size), in which GLM-2SRI was more biased than GLM-2SPS.

3.2.4 Comparison of the original and corrected standard error estimates—For 

GLM-2SRI and LM-2SPS, we compared their original and corrected standard error 

estimates. Figure 6 shows that, first, with a small SU, the corrected SEs were slightly larger 

than the original SEs, but the difference became much smaller as the sample size R 
increased. On the other hand, under more severe confounding with a larger SU, the corrected 

SEs were always much larger than the original one for GLM-2SRI, regardless of the sample 

size; in comparison, the differences between the two for LM-2SPS were much smaller, and 

tended to disappear as the sample size increased, across all the simulation settings (also see 

Supplementary figures). These results suggest that it is perhaps necessary to use the 

corrected SE for GLM-2SRI, but not so for LM-2SPS (especially for large sample sizes).

3.2.5 Results For Other Settings—We have only shown some representative results 

for the simulation set-ups with SY = 0 or 5, and SU = 1 or 50. The results for other set-ups 

are shown in the Supplementary Materials.

3.3 Simulation Results: One-sample Approaches

We reached similar conclusions on the relative performance of the four methods for the one-

sample case as for the two-sample case shown earlier, except that GLM-2SRI performed 

better and were more in par with GLM-2SPR and LM-2SPR. Again LM-2SRI yielded 

inflated Type I errors. The detailed results are shown in the Supplementary Materials. It is 

noted that the three one-sample approaches performed well was presumably due to our 

“weak” selection of SNPs: we only selected 10 SNPs from 30 candidate SNPs as IVs; if 

more candidate SNPs were included while more or less SNPs were allowed to be selected as 

IVs, the effects of the selection bias would be larger as shown for the real data analysis.

4 Conclusions and Discussion

In summary, presumably due to selection bias, one-sample approaches may lead to inflated 

type I errors and thus are not recommended. Among the two-sample approaches, 

GLM-2SPS, followed by LM-2SPS, performed best; note that these two methods are used as 
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default in practice for TWAS. Two-sample GLM-2SRI performed well if the sample size 

was large enough; otherwise it could be conservative, and even with large biases. In contrast, 

two-sample LM-2SRI did not perform well across all simulations, and should not be used.

Why did 2SPS perform well, even better than 2SRI for non-linear logistic regression model 

in Stage 2 in our study? Does this contradict the general theory of 2SRI? A quick answer to 

the second question is no. In retrospect, the reason for the first question is simple: it is 

related to the currently well accepted practice of applying a linear model to a binary trait in 

GWAS, because a linear model can approximate well the corresponding logistic (or other 

nonlinear) regression model due to the small effect sizes of SNPs (Zhao, Wang, Hemani, 

Bowden & Small, 2019). Furthermore, in 2SRI, with the high correlation between the 

observed gene expression (Yi in our notation) and the residual/estimated confounding 

Ui = Y i − Y i  due to the often low predictivity of a gene’s expression level by its cis-SNPs, 

fitting the Stage-2 model in 2SRI requires a larger sample size for it to perform well. Finally, 

it is not feasible to even apply 2SRI with two separate samples of eQTL and GWAS data, 

because of no observed gene expression levels (Yi’s) in the typical GWAS data.

We also note that in practice of using TWAS, the statistical uncertainty (i.e. estimation error) 

in imputing gene expression in Stage 1 is ignored. Although this uncertainty can be taken 

account using the corrected SE estimator, our numerical study suggested its negligible 

effects. Hence again the usual practice with TWAS of no correction appears to be fine.

We emphasize that our main conclusion (that the standard TWAS performs well) holds only 

under the conditions with the large sample size and small effect sizes of genetic variants on 

complex traits and common diseases. Otherwise, for example, in extensions of TWAS to 

molecular traits or other endophenotypes (Xu, Wu, Wei, Pan & Alzheimer’s Disease 

Neuroimaging Initiative, 2017b; Wu et al., 2018), on which genetic variants (or other IVs) 

may have much larger effect sizes, cautions should be taken: 2SPS as adopted in the 

standard TWAS may not be even consistent for a non-linear model in Stage 2.

There are other limitations with the current study, including the following two important and 

challenging issues. First, instead of OLS estimation, penalized regression methods, such as 

Lasso or elastic net (Zou & Hastie, 2005), or Bayesian methods, are often used in the first 

stage for TWAS in practice (Gamazon et al., 2015; Gusev et al., 2016). The benefits include 

selecting relevant SNPs as valid IVs, avoiding biases of weak IVs, and obtaining better 

estimates to impute gene expression better, which presumably would lead to better inference 

(e.g. more precise estimates and higher power) for the causal parameter in the second stage. 

Some large sample properties, e.g. square-root-n consistency, of such Lasso or post-Lasso 

procedures, have been established for sparse models under suitable conditions (Belloni et al., 

2012). However, for finite (especially small) samples, these methods may not yield imputed 

gene expression leve;s orthogonal to or uncorrelated with the confounders, leading to 

possibly biased inference on the causal parameter with 2SPS in Stage 2. An alternative 

approach is jackknife instrumental variable estimation, which predicts/imputes each 

observation i by fitting a Stage 1 model with other observations after excluding observation 

i, but it is computationally intensive (Angrist, Imbens, & Krueger, 1999; Hansen & Kozbur, 

2014). Furthermore, given the relatively large sample size in TWAS, it is not clear how 
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biased the causal parameter inference would be if no correction is applied. Second, in our 

simulations, we only considered “weak selection” of IVs: we selected 10 SNPs as IVs from 

30 candidate ones containing 3 causal SNPs (i.e. 3 valid IVs), which was expected to select 

at least one valid IV with a high probability while having a relatively small selection bias. 

The more difficult cases with few or no valid IVs, or more practically as in TWAS with a 

larger set of candidate SNPs/IVs, may render it necessary to use penalized regression or 

other more sophisticated methods in Stage 1, introducing some challenges as discussed 

earlier. More work is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
True model.
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Figure 2: 
The ADNI data analysis: Q-Q plots of the obtained p-values of 17256 genes from each 

method versus the expected p-values under the null hypothesis of no association.
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Figure 3: 
Simulations with the two-sample approaches: empirical Type I error rates of various 

methods.
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Figure 4: 
Simulations with the two-sample approaches: empirical power of various methods.
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Figure 5: 
Simulations with the two-sample approaches: biases of various methods.
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Figure 6: 
Simulations with the two-sample approaches: comparison of the original and corrected 

standard error estimates.
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