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Whole slide images reflect DNA methylation patterns
of human tumors
Hong Zheng 1, Alexandre Momeni1, Pierre-Louis Cedoz1, Hannes Vogel2 and Olivier Gevaert1,3*

DNA methylation is an important epigenetic mechanism regulating gene expression and its role in carcinogenesis has been
extensively studied. High-throughput DNA methylation assays have been used broadly in cancer research. Histopathology images
are commonly obtained in cancer treatment, given that tissue sampling remains the clinical gold-standard for diagnosis. In this
work, we investigate the interaction between cancer histopathology images and DNA methylation profiles to provide a better
understanding of tumor pathobiology at the epigenetic level. We demonstrate that classical machine learning algorithms can
associate the DNA methylation profiles of cancer samples with morphometric features extracted from whole slide images.
Furthermore, grouping the genes into methylation clusters greatly improves the performance of the models. The well-predicted
genes are enriched in key pathways in carcinogenesis including hypoxia in glioma and angiogenesis in renal cell carcinoma. Our
results provide new insights into the link between histopathological and molecular data.
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INTRODUCTION
DNA methylation is an important epigenetic mechanism regulat-
ing various biological processes. DNA hyper-methylation and
hypo-methylation are important mechanisms that deregulate
gene expression in a wide range of cancers. Aberrant DNA
methylation is one of the most common and well-studied
molecular alterations in cancer and DNA methylation changes
have emerged as important biomarkers and epigenetic drivers of
cancer.1–5 High-throughput DNA methylation assays are being
used more frequently in cancer research, generating vast amounts
of genome-wide DNA methylation measurements. For example,
the Cancer Genome Atlas (TCGA) project generated a rich source
of epigenomic data for cancers of various organs,6 including the
profiling of DNA methylation using microarray technology in over
10,000 samples. Several approaches have been developed to
profile DNA methylation pattern in cancers and identify differen-
tially methylated genes from DNA methylation profiling assays.
For example, we have developed MethylMix, a beta mixture
model-based method that identifies DNA methylation driver
genes in cancer.7–10 MethylMix integrates DNA methylation and
gene expression data from normal and disease samples and
identifies differentially methylated genes that are also predicative
of gene expression levels. The main output of MethylMix are the
“Differential Methylation” values or DM-values, defined as the
difference between an abnormal methylation state (e.g., hyper-
methylated or hypo-methylated) and the normal methylation
state. MethylMix has been used to identify methylation driver
genes and reveal cancer subtypes across heterogeneous samples.
For example, in head and neck cancer, we discovered five distinct
DNA methylation subtypes identified by DM values differing from
previously reported gene expression subtypes. These DNA
methylation subtypes better segregate with etiological subgroups
defined by HPV status and smoking in head and neck cancer.11 A
similar hypo-methylated subtype defined by NSD1 inactivation
was also identified across squamous cell carcinoma.12 Further-
more, proteomic data can also be leveraged in the MethylMix

analytical framework to further narrows down the candidate
methylation driver genes in cancer.13

DNA methylation holds great promise as biomarkers in cancer,
however, generating DNA methylation data of cancer patients has
yet to become common clinical practice, since the performance of
DNA methylation biomarkers varies across diseases and remains
to be evaluated and improved, which is an active area of research.
Besides, the turnaround time for results may take several weeks,
delaying important therapeutic decisions. In contrast, whenever a
patient is suspected to have cancer, whole slide images are often
available from tissue sections, which provide a wealth of
information about the tissue architecture and cell composition.
Additionally, the adoption of digital pathology has led to great
advances in the storage of whole slide images and subsequently
has spurred the field of automated computational analysis of
these images. For example, the C-Path (Computational Patholo-
gist) system was developed to quantify a rich feature set from
whole slide images of breast cancer epithelium and stroma. These
features were then used to construct a prognostic model which
predicted overall survival and identified features of prognostic
relevance. An new finding from this study was that the features
that were the best predictors of patient survival were not from the
cancer itself but were from the adjacent stromal tissue.14 Another
study combined histology images of tissue biopsies and genomic
biomarkers to predict the survival of glioma patients using
convolutional neural networks.15 Furthermore, to address the
large technical and biological variations that are always present in
a large cohort, several algorithms such as spatial pyramid
matching (SPM) were proposed to constructed morphometric
context from nuclear morphometric statistics of various locations
and scales.16

Although molecular information such as DNA methylation and
histology information from whole slide images can potentially be
used in clinical practice, more research and evaluation needs to be
performed to address any clinical utility and methodological
difficulties. In addition, more insight into the relationship between
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molecular and imaging features are necessary to integrate them
for clinical decision support. Therefore, we aim to understand
whether and how DNA methylation patterns are reflected in
whole slide images. We apply classical machine learning
techniques to predict DNA methylation patterns of cancer patients
using morphometric features extracted from whole slide images.
We show results in two different cancer sites, glioma and renal cell
carcinoma (RCC).
Gliomas are a heterogeneous group of tumors of the central

nervous system, which are thought to derive from neuroglial stem
or progenitor cells and are responsible for the majority of deaths
from primary brain tumors. They are classified histologically into
astrocytic, oligodendroglial, or ependymal tumors. Based on
different degrees of malignancy, gliomas are assigned World
Health Organization (WHO) grades, including grades II and III
lower-grade gliomas (LGG), and glioblastomas (GBM), the highest-
grade gliomas. GBM is distinguished histopathologically from LGG
by the presence of necrosis or microvascular proliferation.17–19

Gliomas demonstrate high variability in phenotype, genotype,
epigenotype, clinical course, therapeutic response, and outcome.
This heterogeneity is in part attributed to the diverse genetic and
epigenetic alterations that occur early in tumorigenesis. Enormous
progress in genomic, transcriptomic, and epigenetic profiling has
resulted in new concepts of classifying and treating gliomas.18,19

The WHO has recently placed new emphasis on the integration of
both histopathological and molecular data for the classification of

gliomas to improve disease understanding and to guide
personalized therapies.20

Next, RCC are derived from renal tubular epithelial cells and
encompasses a large heterogeneous group of cancers, represent-
ing more than ten molecular and histopathological subtypes and
accounting for more than 90% of cancers detected in the kidney.
RCC are traditionally divided on the basis of morphological
features into clear cell, papillary, chromophobe, collecting duct,
and unclassified renal cell carcinoma. The clear cell subtype of RCC
is the most common subtype.21–23

Here, we present the results of DNA methylation prediction in
glioma and RCC samples based on morphometric features
extracted from whole slide images (Fig. 1). The performance of
the model is greatly improved using gene clustering. Top
biological pathways are identified through gene set enrichment
analysis. Our results underline the potential of using whole slide
images to predict DNA methylation states, providing new insights
into the link between histopathological features and molecular
data.

RESULTS
Morphometric features predict gene methylation states of glioma
patients
First, we used MethylMix on a glioma cohort of 342 samples to
identify differential methylated genes serving as the most
important epigenomic biomarkers for glioma. This resulted in
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Fig. 1 Representation of the machine learning pipeline to predict DNA methylation states from whole slide images. The predictors are the
morphometric features extracted from the whole slide images. The labels are the differential methylation (DM) values computed from DNA
methylation data using MethylMix.
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Fig. 2 Gene-level methylation prediction for the glioma samples. a The distribution of five evaluation metrics for each machine learning
model is shown by the violin plot. b The receiver operating characteristics (ROC) curve and precision-recall (PR) curve for two genes whose
methylation states are well-predicted by morphometric features in the glioma samples. AUC area under the curve.
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Fig. 3 Cluster-level methylation prediction for the glioma samples. a Heat map of the hierarchical clustering visualization of the glioma
samples. The column corresponds to the genes and the row corresponds to the patients. Cluster assignments of the genes are shown in the
bottom annotation panel, from three clusters (hc3) to seven clusters (hc7). b The receiver operating characteristics (ROC) curve and precision-
recall (PR) curve of the prediction tasks of five clusters (hc5) and the distribution of the corresponding evaluation metrics by violin plots.
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927 genes reported by Methylmix as differentially methylated and
predictive of matched gene expression data. Out of the six models
we tested, all classifiers have an average area under the curve
(AUC) score above 0.7, except for the naïve Bayes classifier, which
was excluded from subsequent analysis (Fig. 2a). The average AUC
and F1 score across all genes in the remaining five models are 0.74
and 0.64, respectively. Out of the 927 genes, eight of them (CDK4,
COL5A1, CPA4, CSTB, MMP7, MYCBP, PPIC, TMEM59) have an
average AUC and F1 score higher than 0.8 under all the machine
learning models (Fig. 2b).
Cyclin Dependent Kinase 4 (CDK4), a member of the Ser/Thr

protein kinase family, is a key player in cell cycle progression (G1
to S phase) and is implicated in the tumorigenesis of a variety of
cancers. It is also the focus of cancer therapeutic research and
development.24,25 It is among the most frequently altered genes in
gliomas.26 MYC binding protein (MYCBP) encodes a protein that
binds to the oncogenic protein C-MYC. It is normally found in the
cytoplasm, but it translocates to the nucleus during S phase of the
cell cycle. Overexpression of this gene was shown to promote
invasion and migration in gastric cancer.27 Both genes are
involved in the cell cycle progression and the methylation states
of them are well-predicted by morphometric features in the
glioma samples. Both CDK4 and MYCBP have an AUC score over
0.94 and F1 score over 0.84 under logistic regression, support
vector machines, and neural network models.
Transmembrane Protein 59 (TMEM59), also known as dendritic

cell factor 1 (DCF1), was involved in the differentiation of neural
stem cells. Over-expression of this protein has been found to
promote apoptosis in a glioma cell line.28 MMP7 (matrix
metallopeptidase 7) belongs to the matrix metalloproteinase
family that are involved in the expansion and invasion of gliomas
via extracellular matrix degradation.29,30 The methylation states of
them are also well-predicted by morphometric features in the
glioma samples. TMEM59 has an AUC over 0.91 and F1 score over
0.82 under all models. MMP7 has an AUC of 0.92 and F1 score of
0.85 under the support vector machines model.

Gene clustering using DM-values improves model performance
Next, we clustered the DM-values of all MethylMix genes into
methylation clusters, so that genes with similar DNA methylation
status are grouped together. We chose five clusters from the
hierarchical clustering results based on visual inspection of the
clustering results (Fig. 3a) and the Silhouette score analysis

(Supplementary Fig. 1). The cluster-level methylation states were
summarized from the DM-values of the genes in the cluster and
discretized by an optimal threshold determined using a Gaussian
mixture model.
Next, we predicted the cluster-level DNA methylation states

with morphometric features. Grouping genes into clusters was
shown to considerably improve the performance of the models,
compared to single gene-level prediction (Fig. 3b). Except for
cluster 2, all other clusters have an AUC and F1 score larger
than 0.8.

Fewer genes and clusters can be predicted by morphometric
features for RCC
Next, we tested whether DNA methylation patterns can be predict
in RCC. Similar as for the glioma cohort, we first used MethylMix
on 326 RCC samples where both molecular data and morpho-
metric features are available. After applying MethylMix, 366 genes
were identified as differentially methylated in the RCC cohort. The
overall AUC and F1 score are lower compared to the glioma cohort
(Fig. 4a). The average AUC score across all genes for the five
models is 0.58.
Out of the 366 genes, five of them (DAK, ITPRIP, LCP1, TM4SF19,

TMEM200A) have an average AUC and F1 score higher than 0.6
under all the models (Fig. 4b). LCP1 (Lymphocyte Cytosolic Protein
1) is one of the two ubiquitous plastin isoforms identifed in
human. LCP1, the L isoform has been found in many types of
malignant human cells of non-hemopoietic origin. It is identified
as one of the three biomarkers that identify early stage kidney
cancer.31 LCP1 has an AUC over 0.7 and F1 score over 0.65 under
logistic regression and support vector machines models.
Similar as for the glioma cohort, gene clustering of the DM

values improves the model performance (Fig. 5). The average AUC
and F1 score for three clusters (cluster 2, 3, and 4) in hierarchical
clustering (number of clusters were set at 5) exceed 0.66 and 0.54,
respectively.

Gene set enrichment analysis
For the glioma set, we divided the genes into two groups, 321
genes with AUC and F1 scores above 0.7 (GoodPredSet) in at least
4 models, and 45 genes with AUC and F1 score less than 0.6 in all
the models tested (BadPredSet). We performed gene set enrich-
ment analysis using the Hallmark gene sets from the Molecular
Signatures Database.32 The GoodPredSet genes are enriched in
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Fig. 4 Gene-level prediction in the RCC samples. a The distribution of five evaluation metrics for each machine learning model is shown by
the violin plot. b The receiver operating characteristics (ROC) curve and precision-recall (PR) curve for two genes whose methylation states are
well-predicted by morphometric features in the RCC samples. AUC area under the curve.
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Fig. 5 Cluster-level prediction in the RCC samples. a Heat map of the hierarchical clustering visualization of the RCC samples. The column
corresponds to the genes and the row corresponds to the patients. Cluster assignments of the genes are shown in the bottom annotation
panel, from three clusters (hc3) to seven clusters (hc7). b The receiver operating characteristics (ROC) curve and precision-recall (PR) curve of
the prediction tasks of five clusters (hc5) and the distribution of the corresponding evaluation metrics by violin plots.
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apoptosis and hypoxia pathway, while none of these pathways is
enriched in the BadPredSet genes (Table 1). Hypoxia is a condition
in which an organism or a cell is deprived of adequate
oxygenation. It constitutes a major concern for glioma patients,
since it promotes cancer cell invasion into the healthy brain tissue
in order to evade this adverse microenvironment.33 Exposure to
hypoxia was shown to change in cell morphology and enhanced
invasive capacity of glioblastoma cells.34

For KIRC, we also divided the genes into two groups, one group
consisting of genes from cluster 2, 3, and 4 (GoodPredSet), and the
other group from the remaining two clusters (BadPredSet). The
GoodPredSet genes are enriched in the angiogenesis process
while the BadPredSet genes are not (Table 1). Angiogenesis, an
important factor for cancer development and progression, can
change the morphometry of cells. Both morphological aspects
such as vascular density and patterns as well as biological aspects
such as expression of angiogenic factors have been correlated
with cancer outcome.35

Feature importance analysis
Since DNA methylation is associated with clinical features
especially age, we compared the performance of the models
using only clinical features (age, sex, and stage), versus using both
clinical and morphometric features (Fig. 6). Adding morphometric
features greatly improves the model performance compared to
clinical features alone, for both cancer types.
The importance of each feature in the logistic regression model

was ranked and the top 25% most important features were
plotted in Fig. 7. The most important and recurrent features,
including “nucleus max curvature s1 interquartile range”, “nucleus
major axis interquartile range”, “nucleus minor axis interquartile
range”, and “nucleus area robust skewness”, were found in both
the glioma and RCC cohorts, which suggests that these features
are relevant to the task of predicting the DNA methylation states.

DISCUSSION
In this study we demonstrated that DNA methylation states of
genes in cancer can be predicted by morphometric features from
whole slide images of tumor samples. We applied MethylMix, a
tool to identify methylation driver genes in cancer and also infer
the methylation state of a gene: hyper, hypo, or normal
methylation. We have previously shown that this discrete
representation of the methylation data has better performance
and essentially denoises the raw methylation data.8 The output of
MethylMix is not restricted to genes, but includes single CpGs or
clusters of CpG sites, depending on the hierarchical clustering of
single CpG sites within and near the genes. We tested several
classical machine learning models in two example cancer data
sets, glioma and RCC. In glioma samples, the models achieved an
average AUC and F1 score of 0.74 and 0.64, respectively, for the
methylation driver genes identified by MethylMix analysis. The
performance can be further improved if the genes are clustered
into distinct methylation groups. In RCC samples, the performance
of the models was not as good as in glioma samples and fewer
genes can be predicted by morphometric features. This could be
partly explained by the different heterogeneous levels of the
tumor samples included in the two different cohorts. Nevertheless,
several genes can still be well-predicted, including the gene, LCP1,
which is a biomarker for identifying early stage RCC.31 The
different performance of DNA methylation prediction task can also
reflect the nature of different cancers, that in glioma samples, the
DNA methylation state affects the cell morphology to a greater
extent.
Epigenomic mechanisms such as DNA methylation and histone

modifications are crucial for gene expression and regulation.
They are involved in numerous cellular processes such as
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differentiation, development, and tumorigenesis.1,2 High-
throughput DNA methylation assays have been used broadly in
cancer research, generating vast amounts of genome-wide DNA
methylation measurements. However, array-based and
sequencing-based genome-wide DNA methylation profiling
assays can be expensive, require long turnaround time, and often
can only provide an average measurement of the tissue samples.
Thus, our study provides a rationale of associating DNA
methylation states of key genes in cancer samples with the more
accessible whole-slide images in clinical settings.
Integration of medical or tissue images with molecular data has

been emphasized in biomedical research. For example, we
constructed a multimodal neural network-based model to predict
the survival of patients for 20 different cancer types using clinical
data, mRNA expression data, microRNA expression data, and
histopathology whole slide images.36 A recent study reported a
deep learning model applied to whole slide images from lung
cancer samples can classify lung tissues into adenocarcinoma,
squamous cell carcinoma, and normal lung tissues. Furthermore,
six of the most commonly mutated genes in lung cancers, STK11,
EGFR, FAT1, SETBP1, KRAS, and TP53 can be predicted from the
images.37 Apart from the prediction of patient outcome, molecular
features of cancer cells can also be reflected from digital images.
Microsatellite instability (MSI) status of colon cancer can be
predicted via radiomic analysis of computed tomography (CT)
images, which adds specificity to clinical assessment and could
contribute to personalized treatment selection.38 Another study
applied deep residual learning to predict MSI directly from
histology images of gastrointestinal cancers.39

Our study further extends the area of computational analysis of
whole slide images to DNA methylation prediction. We show that
morphometric information from whole slide images of tumor
samples can be used to predict DNA methylation states of genes
and gene clusters, which can provide insights into the underlying
molecular basis of tumorigenesis. The well-predicted genes are
enriched in key cancer pathways including hypoxia and cell cycle
regulation in gliomas, and the angiogenesis process in RCC
samples. Out of the well-predicted genes, CDK4, MMP7, MYCBP,
and TMEM59 in gliomas and LCP1 in RCC have been implicated in
multiple cancer types. The other well-predicted genes, including
COL5A1, CPA4, CSTB, and PPIC in gliomas and DAK, ITPRIP, TM4SF19,

TMEM200A in RCC have not been studied thoroughly in cancer
and their roles in cancer worth further investigating.
The different results between glioma and RCC may be due to

the fact that the tissue of origin of the two cancer sites is very
different and that DNA methylation pattern is affected by tissue of
origin to a great extent.40 Besides, the number of MethylMix genes
identified for both cancer sites is very different. Since only 366
genes are identified by MethylMix in RCC, compared to 927 in
glioma, we speculate that glioma are more epigenomically
heterogeneous than RCC, further explaining why the results differ
between the two cancers.
We hypothesize that DNA methylation can be reflected by

whole slide images and that DNA methylation affects cellular
morphology in several ways. Firstly, DNA methylation is shown to
reflect the spatial organization of chromatin in different cell.41

Another study showed that CpG methylation significantly altered
local DNA shape.42 DNA methylation is closely linked with the
occupancy patterns of an important genome regulator, CTCF,
which binds to insulator regions in genomic DNA and plays a
fundamental role in controlling higher order chromatin structure
and gene expression.43 To decipher whether CTCF binding plays a
role in the link between DNA methylation and cell morphological
changes, more comprehensive DNA methylation datasets includ-
ing noncoding regions such as bisulfite sequencing together with
image data are needed to expand our work. DNA methylation also
reflects cell identity,40 therefore it follows that DNA methylation
changes could correspond to different cell type mixes and thus
show in the morphometric features from whole slide imaging.
More importantly, DNA methylation changes in key driver genes
in cancer will lead to deregulation of these genes that result in
transcriptomic and proteomic alterations.13 These changes will
subsequently influence important cellular processes including cell-
cycle regulation, metabolism, and angiogenesis, which may cause
morphological changes that are substantial enough to be
reflected in whole slide images.
Our work has the following implications. First of all, we showed

that DNA methylation states of cancer genes and morphometric
features from whole slide images of tumor samples are associated.
If in practice only one type of data is available, it is possible to
make predictions about the other. Secondly, if both molecular and
imaging information are available for building models for clinical
decision support, it is important to take into consideration the
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Fig. 6 Morphometric features greatly improves gene methylation prediction compared to clinical features. The violin plot shows the
comparison of model performance using clinical features only, versus using both morphometric and clinical features.
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Fig. 7 Feature importance analysis in the glioma and RCC samples. The top 25% most influential features in the logistical regression models
are shown for the glioma samples (a) and RCC samples (b). For each cancer datasets, the well-predicted genes (the left side of the heat map)
and the gene clusters (the right side of the heat map) are included in the analysis. Four of the most important features that are found in both
the glioma and RCC samples are labeled with an asterisk.
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association between the features from the two data types. Lastly,
our results also reveal several key genes whose DNA methylation
state are well-predicted by morphometric features in glioma and
RCC. Further investigation of these genes might unravel new
mechanisms in cancer development. The limitation of this study is
that only limited cancer samples from two cancer sites are
evaluated. Although we have utilized several strategies to avoid
overfitting, whether the approach can be generalized to more
cancer cases or other cancer sites remains to be investigated.
Including other cancer types will further provide insights between
DNA methylation and whole slide images, which will be addressed
in future studies. We have chosen two cancer sites, glioma and
renal cell carcinoma, that are very different in terms of their tissue
of origin to show this broad applicability.
In summary, our results underline the potential of associations

between tumor tissue as visualized on whole slide images with
underlying DNA methylation states, providing new insights and
understanding of how tumors develop at multiple scales.

METHODS
DNA methylation analysis
We obtained the Infinium Human Methylation 450K DNA methylation data
from National Cancer Institute (NCI) Genomic Data Commons (GDC). A
total of 932 patients from the TCGA glioma cohort and 519 patients from
the clear cell renal cell carcinoma cohort were included in the analysis.
Next, we used MethylMix to identify DNA methylation driver genes in

cancer that are differentially methylated compared to normal samples and
are also transcriptionally predictive.7–9 The output of MethylMix consists of
a matrix of differential methylation (DM) values, which represent three
classes: hyper-methylated, hypo-methylated, and normally-methylated,
corresponding to positive, negative, and zero DM-values, respectively. The
majority of the genes in the data sets present two different methylation
states across the patients. We filtered out the genes in which one
methylation state dominates more than 90% of the patients to avoid data
imbalance. We also excluded the genes that present only one or more than
two methylation states to focus solely on binary classification and deploy
uniform evaluation strategies.
Next, given our data sets include multiple genes, we used clustering

algorithms to group genes according to their methylation states. In
particular, we applied hierarchical clustering and assessed the clustering
quality using visual heat map inspection and the silhouette score metric.44

Once the genes have been assigned to the clusters, we calculated the
clusters’ DM-values as the average DM-value of the genes within each
cluster. Finally, we discretized the clusters’ DM-values via a Gaussian
mixture model which determines an optimal discriminative threshold
between high and low methylation states of DM-value clusters.

Histopathology image data analysis
The whole slide images of cancer samples were obtained from the GDC
data portal. We used the morphometric features extracted from the glioma
and RCC samples with the computational methods described in the ref. 16

We keep the samples where both DNA methyaltion data and morpho-
metric features are available. The features characterizing the cellular
composition and heterogeneity of the histopathology images include
standard cellular morphometric features and higher-level contextual
summarization features. For each patient, 35 cellular morphometric
features (Supplementary Table 1) and eight contextual features were
extracted from their histopathology slides. The morphometric features
were further summarized into mean, median, standard deviation,
skewness, kurtosis, and interquartile range values.

Multivariate modeling
A total of 342 patients from the glioma cohort and 326 patients from the
RCC cohort, where both molecular and morphometric data are available,
were included in the analysis. We applied machine learning models to
predict the aforementioned DM-values using the morphometric features
extracted from histopathology images. For each gene or gene cluster, a
model is trained to predict the DM-value representing the methylation
state using the morphometric features (Fig. 1). This process can be viewed
as a multitask and multivariate classification problem where each task

represents a gene or a gene cluster and each variable represents a
morphometric feature. In the following sections, either the genes or the
gene clusters are referred to as tasks. We generated 30 sets of training/
testing data sets. For each set, we divided the data set into a training set
(75%) and a testing set (25%). Several binary classifiers were then fitted on
the training set and the best parameters are selected using a 5-fold cross-
validation procedure. Due to the high dimensionality of the feature space
and the relatively low number of samples, the models were regularized to
avoid overfitting. The regularization parameters were also optimized
through the 5-fold cross-validation procedure. We applied the following
models using Python’s Scikit-learn package:45 Logistic Regression with
lasso regularization,46 Random Forest,47 where the number of trees is
optimized, Support Vector Machines48 where the kernel type (“linear” or
“rbf”) and the regularization constant are optimized, Adaboost, where the
learning rate and the number of estimators are optimized, Naive Bayes,
and a two-layer Fully-Connected Neural Network with the learning rate as
hyper-parameters.

Model evaluation
We first evaluated every task-specific binary classifier using the following
metrics: accuracy, precision, recall, F1-score, receiver operating character-
istics curve, AUC score, and precision-recall curves. The scores across 30
training/testing data sets were summarized and averaged for each task. In
the case of logistic regression, we also performed feature importance
analysis to rank the influence of every morphometric features on the
prediction task.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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