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The Earth’s surface dynamics provide essential information for guiding environmental and agricultural 
policies. Uncovered and unprotected surfaces experience several undesirable effects, which can affect 
soil ecosystem functions. We developed a technique to identify global bare surface areas and their 
dynamics based on multitemporal remote sensing images to aid the spatiotemporal evaluation of 
anthropic and natural phenomena. The bare Earth’s surface and its changes were recognized by Landsat 
image processing over a time range of 30 years using the Google Earth Engine platform. Two additional 
products were obtained with a similar technique: a) Earth’s bare surface frequency, which represents 
where and how many times a single pixel was detected as bare surface, based on Landsat series, and 
b) Earth’s bare soil tendency, which represents the tendency of bare surface to increase or decrease. 
This technique enabled the retrieval of bare surfaces on 32% of Earth’s total land area and on 95% of 
land when considering only agricultural areas. From a multitemporal perspective, the technique found 
a 2.8% increase in bare surfaces during the period on a global scale. However, the rate of soil exposure 
decreased by ~4.8% in the same period. The increase in bare surfaces shows that agricultural areas are 
increasing worldwide. The decreasing rate of soil exposure indicates that, unlike popular opinion, more 
soils have been covered due to the adoption of conservation agriculture practices, which may reduce 
soil degradation.

Soils are directly related to global issues, such as food supply, water security and climate regulation1–4. Considering 
that soil health is easily disturbed by modifications of physical, chemical and biological conditions, soil manage-
ment must be carefully delineated and constantly monitored5. The high occurrence of bare surfaces in agricultural 
areas may increase soil degradation, influencing soil health and affecting important ecosystem functions6. Surface 
exposure triggers a sequence of events, which may result in soil erosion7, contamination8, desertification9, salin-
ization10, acidification11, compaction12, biodiversity loss13, nutrient depletion14, and loss of soil organic carbon 
(SOC)15. Despite the need to preserve soil ecosystems for future generations, we will still need to feed 9.7 billion 
people by the middle of this century16. To date, the total area of worldwide crop and pasture lands is estimated at 
49 million km2, which represents approximately 30% of the total global land area17. The world’s future demand for 
water, energy and food is closely related to the intensification of agriculture and the preservation of ecosystems.

Sustainable land use requires data-driven policymaking and management strategies, which are currently ham-
pered by the high cost and time-consuming characteristics of soil data acquisition2. The remote sensing (RS) 
technique is an indispensable tool for multitemporal and spatial data acquisition, as it enables the collection of 
soil information at global scales18. Although RS is an important source of information, its use is more frequent in 
the assessment of landscape vegetation cover. Few studies address uncovered surfaces, and mostly are conducted 
at national scales19–21. Therefore, we developed a big-data-mining method to perform a planetary-scale geospatial 
analysis of surfaces. The method can identify the global soil spatial variability and describe the frequency of bare 

Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, GeoCis (Geotechnologies 
in Soil Science Group (https://esalqgeocis.wixsite.com/english), Ave Padua Dias 11, Piracicaba, Sao Paulo, 13418-
900, Brazil. *email: jamdemat@usp.br

OPEN

https://doi.org/10.1038/s41598-020-61408-1
http://orcid.org/0000-0001-5410-5762
http://orcid.org/0000-0002-1628-4154
mailto:jamdemat@usp.br


2Scientific Reports |         (2020) 10:4461  | https://doi.org/10.1038/s41598-020-61408-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

surfaces over time. Temporal changes in bare surfaces have been applied to identify shifts in soil management 
strategies (e.g., till to no-till systems) over the last three decades. Such knowledge and understanding enable users 
to identify highly threatened areas around the globe, and this method can be used to reveal locations where soil 
management conditions have been improved or not.

Results and Disscussion
Earth’s bare surface detected from space.  The monitoring of Earth’s bare surfaces is limited by many 
factors, including highly vegetated landscapes, short exposure time gaps in crop fields and spectral degradation22. 
A single satellite image detects only fragments of bare surfaces, and their measurements are highly influenced by 
external factors, such as surface roughness, moisture levels, and undefined material deposition23,24. Therefore, 
an adequate synoptic view of the surface can be achieved only using multitemporal composite images23. Our 
data mining method seeks to minimize these impacts and provide a reasonable representation of Earth’s bare 
surfaces using efficient soil classification rules and a robust aggregation approach. We generated a product called 
the Synthetic Soil Image (SYSI) using the Geospatial Soil Sensing System (GEOS3)23. The SYSI is the result of the 
aggregation of multiple bare surface (BS) fragments mapped from 1985 to 2015 by Landsat satellites (Fig. 1). The 
SYSI’s capacity to retrieve Earth’s BS is almost twofold when compared to global land cover mappings, such as the 
annual land cover mapping of Moderate Resolution Imaging Spectroradiometer25 (MODIS) and finer resolution 
maps generated using Landsat26. Our product covered 32% of the Earth’s surface (Fig. 1), comprising mostly bare 
lands (approximately 15% when Antarctica and Greenland are included), which is in agreement with the litera-
ture25,26. The remaining 17% is composed of agricultural areas (the value was close to 12.6% in 201727), abandoned 
fields or naturally bare surfaces outside arid regions.

The spectral pattern retrieved from agricultural BS is related, in many cases, to soil surfaces exposed during 
land conversion and soil tillage practices. The spatial-spectral patterns, therefore, may be directly related to soil 
components such as mineralogy, granulometry and carbon28. The analysis of the SYSI true colour composition 
(red: 630–690 nm; green: 520–600 nm; blue: 450–520 nm) reveals many properties based on the colour differences 
(Fig. 1). In terms of soils, brighter locations in the true colour composition are most likely related to higher quartz 
proportions29. When quartz and SOC contents are low and/or moist and iron forms (which absorb energy) are 
proportionally higher, the colour becomes darker29. The extensive detection of bare arid lands, e.g., deserts in 
the north-western United States, South America (Atacama), southern Africa (Kalahari) and northern Africa 
(Sahara), Asia (Gobi) and Australia (West Desert), provides great evidence of SYSI’s potential to retrieve bare 
surfaces (Fig. 1).

The reliability and quality of the image were evaluated by site-specific observations of surface reflectance 
(Fig. 1a–h), which presented topsoil data that contrasted to the common landscape patterns (such as vegetation, 
dry vegetation, water, and snow). The evaluation was performed using a scatter plot of spectral bands, commonly 
termed soil line analysis20. Common landscape patterns have a distinct scattered distribution between the red and 
infrared bands. This difference is associated with the absorption in the visible ranges by pigments and scattering/
reflectance effects of vegetation structures in the infrared bands22, which implies a spread distribution between 
these two bands. Soils, however, have a linear relationship due to the increase in reflectance from visible to infra-
red bands, which is related to the scattering effects of particles and minerals from the surface matrix24. All eval-
uated scatter plots (Fig. 1a–h) presented differences between typical patterns (raw pixels) and soils (bare surface 
pixels), supporting the premise that our data mining system identifies soils in satellite images.

Additionally, the evaluation of spectral signatures can assist in obtaining information about object properties. 
There is a strong relationship between soils and radiant energy, which has been systematically proven at regional 
(United States)30 and global scales (World’s Spectral Library)28 using laboratory spectral datasets. Although 
absorption features of high-resolution spectra are more adequate for identifying soil constituents29, multispectral 
reflectance can still be used to identify main Earth characteristics, such as describing shape and intensity patterns 
of spectral curves (line chart in Fig. 1a–h). The spectral increase from blue to near-infrared can reveal the effects 
of SOC, iron oxides and other opaque minerals22. Spectral curves of temperate zones such as North America 
(Fig. 1a) and the Arctic Desert (Fig. 1b) have a concave shape affected by high amounts of SOC. Conversely, in 
the Sahara Desert (Fig. 1f), the presence of reflective minerals (e.g., quartz) results in a convex spectral shape. 
Other regions have a more linear shape due to mixed effects of soil properties, e.g., in China (Fig. 1g). Iron-rich 
soils from tropical regions, such as those from South America and Australia (Fig. 1e,h), have a higher reflectance 
in the red band.

The soil reflectance could also provide particle size information due to scattering and reflection effects22. Soils 
with low reflectance contain high amounts of opaque minerals or are predominantly formed by finer particles 
(clay: <2 μm and silt: between 2 μm and 50 μm). This effect was observed in North America and the Arctic 
Desert (Fig. 1a,b) and in clayey soils from South America (Fig. 1e), China (Fig. 1g) and Australia (Fig. 1h). The 
medium-textured soils of Europe and Central Asia (Fig. 1c,d) had intermediate reflectance intensity, while the 
quartz-rich surface of the Sahara Desert (Fig. 1f) had the highest intensity. Thus, remotely sensed spectra have 
an intimate relationship with soil attributes and are useful for mapping carbon31, clay32, and cation exchange 
capacity33.

Enhancing global soil resource monitoring by bare surface imaging.  The SYSI dataset not only pro-
vides a representation of BS but can also be related to lithological and pedological variability, carbon-rich pools, 
and biome changes. Lithologic classes (Extended Data Fig. 1a) from the African continent showed a transition 
from sedimentary to metamorphic rocks from north to south34, which were identified using a false colour com-
position (red: 1550–1750 nm, green: 760–900 nm, blue: 630–690 nm), changing from bright magenta to purple 
shades (Extended Data Fig. 1b). Volcanic and unconsolidated materials in South America, West Africa, India, and 
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Central Asia had a strong purple shade (Site 1, Extended Data Fig. 1b). Conversely, sedimentary materials (Site 2; 
Extended Data Fig. 1b) presented a magenta shade, reaching a bright hue over the main deserts.

The Lithological Global Map and the SYSI had a correlation of 0.22, which represents a meaningful value 
when considering the global scale. The spatial resolution of the SYSI (250 m) and the capacity to retrieve spectral 
features from Earth’s surface could be useful for improving lithological maps around the world. An example of 
this potential is shown in Australia (Site 3, Extended Data Fig. 1b), where volcanic rocks appear to be more visible 
than the unconsolidated sediments indicated by the lithological map.

Figure 1.  Earth’s bare surface reflectance. True colour composition (red: 630–690 nm, green: 520–600 nm, blue: 
450–520 nm) at 250 m resolution retrieved through Landsat series observations from 1985 to 2015 (Landsat 
4, 5, 7 and 8 images courtesy of the U.S. Geological Survey). Soil line (red and NIR reflectance) and spectral 
signatures (blue to SWIR2 ranges) constructed from sampling bare (processed) and raw (unprocessed) pixels in 
50 km2 areas at different locations of the world. Raw data were acquired by using Landsat 8 surface reflectance 
median composites from 2017 to 2019: (a) North America; (b) Arctic Desert; (c) Europe; (d) Central Asia; (e) 
South America; (f) Sahara Desert; (g) East Asia; and (h) Australian desert.
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The contrast among lighter and darker surfaces may be related to SOC content35 and, consequently, to some 
of the greatest SOC pools on Earth (Extended Data Fig. 2a,b). The SYSI indicated that dark bare surfaces, such 
as those in southern Russia (Extended Data Fig. 2a), are often related to a higher SOC content (Extended Data 
Fig. 2a), which was confirmed by the negative correlation of −0.35. The same pattern was observed in Asia (site 
1), Central Africa (site 2), North Africa and the Central East (site 3) (Extended Data Fig. 2a).

The SYSI also has great potential for enhancing pedological maps due to the strong connections between 
reflectance from visible to near-infrared and different soil classes36 (Extended Data Fig. 3a,b), which reached 
a correlation of 0.61. Site 1 indicates areas with Regosols, where quartz-rich areas from the Sahara Desert are 
detected in the SYSI. Site 2 presents a transition from Kastaznozems to Chernozems to Solonchaks due to an 
increase in SOC content, which was also observed by a change in shades from bright to dark (Extended Data 
Fig. 3a). A very similar delineation between Gleysols to Kastaznozems and Yemasols was observed at site 3, since 
this region is an area of wetland agriculture (mainly rice). In South America (Extended Data Fig. 4a), areas with 
volcanic rocks are closely related to Ferralsols, displaying a darker red coloration in the true colour composition 
and holding a high amount of SOC content. Regosols and Yermosols in arid regions (rich in quartz) present a 
higher albedo and brighter features (Extended Data Fig. 4a). In southern Brazil, high basaltic extrusions resulted 
in Ferralsols (clayey and iron rich soils), which have a typical dark purple pattern in the false colour composition 
of the SYSI (Extended Data Fig. 4b). Wetland soils (e.g., Gleysols) can also be discriminated in the image, such 
as in Southeast Asia (Extended Data Fig. 4c), where the reduced iron forms combined with the higher moisture 
resulted in a distinct spectral pattern (Extended Data Fig. 4d). A sudden change in tree canopy cover, organic 
carbon content37,38, and pedological classes can be detected in the transition between the Sahara Desert and the 
Sub-Saharan region, where more vegetated areas appear (Extended Data Fig. 4d).

Human-induced changes in land use based on bare surface monitoring: impacts on Earth’s soil 
resources.  The SYSI not only provided crucial data about soils worldwide but also provided temporal evi-
dence of human-induced changes in land use/management (Fig. 2a,b). Most importantly, such data provided a 
complementary perspective in analysing land-use changes. Instead of focusing on average annual spectral pat-
terns, it was possible to emphasize the spatial extent and frequency of Earth’s bare surfaces. Thus, we proposed a 
by-product of the BS image, called hereafter Earth’s bare surface frequency (BSF) (Fig. 2a). This image represents 
where and how many times a single pixel was detected as bare using the Landsat series. The frequency of bare pix-
els is higher in deserts, which was already expected due to the edaphoclimatic conditions of these areas (Fig. 2a). 
In general, the BSF decreased over agricultural areas in South America, Africa, the Australian coast and North 

Figure 2.  Earth’s bare surface analysis from 1985 to 2015. (a) Bare surface frequency (number of times the 
pixel was bare during the period); (b) bare soil tendency (tendency to be bare during the period), which were 
constrained by the MODIS Land Cover Yearly Mapping reference map generated in 201769. (Landsat 4, 5, 7 and 
8 images courtesy of the U.S. Geological Survey).
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America. The BS on the global scale (Fig. 2a,b) provides strong evidence of land disturbance, contributing to the 
discussion of its consequences, such as erosion39 and changes in energy balance/climate/emissivity40,41, temper-
ature42, moisture43, SOC stocks1 and microorganism populations44. In addition, an increase in BSF may promote 
greater weed growth45, which may intensify pesticide use46 and, consequently, groundwater contamination47.

Earth’s bare soil tendency (BST) was calculated between 1985 and 2015 to focus on soil resource use from 
agriculture (Fig. 2b). The SYSI was able to identify 95% of bare soils within agricultural areas around the globe. 
Some studies have reported similar coverage of bare areas on agricultural lands20. The BST could be used to 
enhance our understanding of what has happened to the soils in the last 30 years. In general, the tendency has 
shown a decrease in soil exposure (negative values, Fig. 2b) in most countries. The global trend of exposed surface 
decreased by approximately 4.8%. In the Central eastern United States and southern Canada and some spots in 
Asia (Fig. 3a,b), there was a smooth downward trend in the BST (purple colour). Some spots indicated an upward 
trend in the BST, such as in Central Brazil and Central Africa (Fig. 3c,d). In the Central eastern United States and 
some spots in Europe (Fig. 3a,b), there was a smooth trend in the BST (near zero, Fig. 2b).

An expressive reduction in the BST was observed in the Great Plains in North America (Fig. 3a), which was 
most likely related to the conversion of agricultural areas to pasture (10–26% decline in agricultural lands). On 
the Asian continent, there were many areas with significant changes, such as in northern India and eastern China 
(Fig. 3b). In these locations, the BSF decreased in recent decades. These changes were related to an increase in 
irrigation systems48, which allowed farmers to cultivate throughout the year. In north-eastern China and Central 
Mongolia, there was a higher increase in the BST (0.3% yr−1), which was similar to that observed by Song et 
al.48. According to these authors, such areas exhibited a large decrease in short vegetation and an increase in BS 
related to land degradation. In South America, many areas have undergone changes in recent decades, but one 
of the most significant is the Brazilian agriculture frontier, located near the Amazon biome. This area of south-
ern Amazon forest at the fringe of the Amazon biome experienced deforestation and land-use intensification49 
(Fig. 3c), which caused considerable land degradation. This process was detected by an extremely high increase in 
the BST (0.3% yr−1). On the African continent, most of the areas presented a negative tendency (Fig. 3d).

Although soils are being exposed for agricultural purposes (Figs. 2–4)48,50, management after deforesta-
tion or during crop seasons may have changed due to a decrease in tillage operations. In addition, irrigated 
agricultural areas have adopted conservation practices. Despite these changes, our results agree with those of 
Chrysoulakis et al.51, who stated that albedo changes were consistent with land cover/use changes and were driven 

Figure 3.  Bare soil tendency. Areas with statistical significance in terms of being bare over 35 years were 
evaluated in different regions of the globe. Specific locations in the globe and its relationship with the bare soil 
tendency (BST); (a) United States; (b) Asia; (c) South America; and (d) Africa. (Landsat 4, 5, 7 and 8 images 
courtesy of the U.S. Geological Survey).
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by anthropogenic activities. Indeed, North and South America are making important steps in terms of altering 
soil management practices, with the aim of preserving soil health by increasing the use of no-till systems52.

The situation is also changing in Africa, where the adoption of conservation agriculture (CA) by smallholder 
farmers in eastern and southern Africa and by medium-scale farmers in northern Africa is increasing51. CA in 
Europe, Russia and Ukraine has been expanding constantly over the past decade, and this change was confirmed 
by the decrease in the BSF (Fig. 4). These trends are expected to continue51. The expansion of the CA system 
has been especially significant in South America, where Argentina, Brazil, Paraguay and Uruguay are using this 
system in more than 70% of their total cropland area. South America has 38.7% of the total global area included 
in CA (63.2% of the cropland in the region), and 35% is found in the United States and Canada (28.1% of the 
cropland in the region)51. Similarly, the BSF presented downward trends for all other regions of the globe (Fig. 5a). 
The native vegetation showed a stable trend in the BSF over recent years, which agrees with their intrinsic envi-
ronments (Fig. 5b). Tropical and subtropical areas showed a decrease in the BSF.

Temporal changes in the BSF (Fig. 2) are probably related to patterns previously described in the literature, 
where satellite data have indicated the greening of Earth53,54, with net changes in the leaf area index (LAI) of 5.3 
106 km2 for the period of 2000–2017. Such an increase is caused by direct factors (e.g., human land-use manage-
ment) and indirect factors, such as climate change, CO2 fertilization effects, nitrogen deposition and recovery 
from natural disturbances47. The main drivers of long-term changes are climate change and CO2 fertilization 
effects53. These causes not only affect the LAI but also influence the vegetative development of crops, reducing the 
exposure frequency of BS in croplands. The short-term changes are most likely related to land management prac-
tices. This pattern is clearly observed in China, where ambitious programmes have been implemented to conserve 
and expand forests, with the goal of mitigating land degradation55.

Generally, there is a perception that human activities are exposing soils, leading to degradation56. Our results 
showed that, in general, human activities regarding soil resources are more prone to protect them from degra-
dation. The results are linked with a shift in management, especially no-till practices, with an increase of 1,187% 
from 1993 to 201348, mainly in Brazil, Argentina, Canada, Australia and China52. We also observed that the BST 
decreased in many countries (Fig. 3), such as in Central Asia, Australia, North America and South America. 
Approximately 8% of worldwide crops are under no-till conditions57, and conservation areas increased 1,607% 
between 1973 and 1999, reaching 12.5% of the global cropland in 201652. The increase in no-till practices to sup-
port the decrease in the BST globally is also indicated by the largest extent of CA adoption, mostly in South and 
North America, followed by Australia and New Zealand, Asia, Russia and Ukraine, Europe and Africa52.

Limitations
An important step in the methodology is the definition of thresholds for each spectral index (NDVI and NBR2) to 
discriminate soils from other targets, which usually requires not only expert interpretation of the image but also 
field observations. Due to the scale of this work, broad thresholds were used to produce the SYSI. Adjustments 
to classify bare surfaces at the global level might not fully represent the soil spatial variability at regional or local 
scales. Thus, the coverage and/or frequency of bare surfaces could be increased by adjusting those thresholds 
according to regional or local spectral patterns. Due to climate variations and moisture conditions, even after a 
site-specific adjustment of thresholds and temporal averaging, the soil water content might still influence spectral 
reflectance and soil attribute determination (e.g., clay and SOC contents). If used for spatiotemporal model-
ling, soil predictions derived from the SYSI reflectance should be carefully evaluated before being applied in 
decision-making and planning processes.

Another issue is the different frequencies of imagery acquisition and cloud occurrences at the global extent 
as well as the overlap between scenes that can affect the counting of pixels in the BSF image. Overlapping scenes 

Figure 4.  Temporal Earth’s bare surface patterns for each of the three-year periods from 1985 to 2015 in 
comparison to the worldwide croplands. (Interactive Graph). The global conservation agriculture area (yellow 
line) was adapted from Kassam et al.48 and calculated in terms of the percentages of the total area of cropland in 
the world, i.e., approximately 1.87 billion hectars50.
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result in north-south oriented strips in the BSF, which are especially observed in the northern African continent. 
Such overlapping areas provide little additional information in comparison to fully overlapped images because 
the images are acquired with minimal time difference and therefore are largely under identical environmental and 
weather conditions. To tackle these problems, we have generated three different frequency maps regarding the 
occurrence of 1) total available pixels, 2) cloudless pixels (i.e., flagged as valid for our analysis), and 3) cloudy pix-
els (Extended Data Fig. 5). Thus, we considered the cloudless density of the globe as the total available pixels for a 
given location to calculate the relative frequency of bare surfaces instead of their absolute values. The occurrence 
of cloudy pixels could have hampered the estimates; therefore, the bare surface frequency relied on the number 
of cloudless pixels for its estimation.

Concluding remarks.  Our processing system was able to retrieve and produce a reasonable estimate of 
Earth’s surface reflectance. The bare surface showed its potential for monitoring soil resources at the global scale. 
The SYSI product can assist in the development of public policies and in the assessment of climate alterations, 
land-use changes and soil management changes. The image presented accurate spectral quality, and the spectral 
patterns were representative of the abiotic surface materials. The spatial patterns agreed with global datasets, and 
our results may actually be used to improve them. The global bare surface area increased, while the frequency 
trend decreased due to the high adoption of agricultural conservation systems. The bare surface reflectance and 
frequency have a spatiotemporal representation of soil exposure due to natural or human practices, offering inter-
disciplinary uses such as soil conservation monitoring, soil temperature assessment, precision agriculture, urban 
expansion, and others. The areas with a low BSF can be associated with lands recently converted to agricultural 
uses or those with conservation systems in at least the last three decades. Intensive farming during the same time 
can cause high frequencies of soil exposure. Overall, we observed a negative global tendency of exposed surfaces 
(−0.16% yr−1), corresponding to a reduction in global soil frequency of 4.8% in the last 30 years.

The cloud-based processing environment was efficient by the use of big data, such as the surface reflectance 
collection. The algorithm took approximately two days to process all the images and produce a single representa-
tion of the bare surface for the whole planet. This processing capacity is impressive since the system handles 
thousands of images simultaneously. If we consider a Landsat image with a native spatial resolution of 30 m, 
almost one trillion pixels are needed to cover the full extent of Earth. This processing architecture demonstrates 
the benefits of the availability of open-access satellite images and cloud-based processing systems. This technique 

Figure 5.  Temporal bare surface frequency from 1985 to 2015. These data present the tendency among bare 
surface per continent and biomes during the study period: (a) continents (Interactive Graph); (b) biomes 
(Interactive Graph).
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enables us to observe the Earth in a timely manner, contributing to soil resource analyses and policy-making. The 
users can interactively explore the images by accessing the following link: https://geocis.users.earthengine.app/
view/bare-surfaces. The interface provides graphical visualization, where charts can be generated by clicking a 
location over the bare surface areas.

Methods
Data acquisition and bare surface retrieval.  We used the Google Earth Engine (GEE) cloud platform58 
to acquire surface reflectance and quality assessment bands of Landsat 4 Thematic Mapper (TM), Landsat 5 TM, 
Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) and to 
retrieve global bare surfaces from 1985 to 2015. The dataset consisted of higher-level products from the Tier 1 
collection, which were processed by the LEDAPS and LaSRC algorithms59,60. Once the Landsat bands were posi-
tioned in equivalent spectral regions, with slight differences due to their relative spectral responses, we merged 
the collections by harmonizing the band numbers with a common specific name: blue, green, red, near-infrared 
(NIR), shortwave-infrared 1 (SWIR1), and shortwave-infrared 2 (SWIR2).

The Geospatial Soil Sensing System (GEOS3)23 algorithm was used to flag bare surfaces (BSs) on images and 
aggregate the sparse occurrences into a single multispectral representation by the median value. We considered 
bare surfaces as natural abiotic surfaces (e.g., bare soil, sand and rock outcrops) where natural vegetation was 
absent or almost absent. In this step, the normalized difference vegetation index (NDVI, Eq. 1), normalized burn 
ratio (NBR2, Eq. 2) and visible-to-shortwave-infrared tendency index (VNSIR, Eq. 3) were applied in each single 
image flagging bare surfaces with valid values and other pixel values as not-available (NA) data. Bare surfaces 
were assigned when the NDVI ranged from −0.25 to 0.25, the NBR2 ranged from −0.30 to 0.10, and the VNSIR 
was lower than 0.9. Additionally, clouds, shadows and other problematic pixels were removed from the soil classi-
fication step using the quality assessment band (pixel_qa) and custom cloud masks of each Landsat sensor.
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where Blue, Green, Red, NIR, SWIR1 and SWIR2 are the harmonized spectral bands from Landsat 4 TM, 5 TM, 
7 ETM+ and 8 OLI, respectively.

The BS frequency (BSF) was calculated by dividing the number of pixels flagged as bare surface by the number 
of the same pixels had valid information, i.e., without clouds, shadows or inconsistent values, which were masked 
using the quality bands. We calculated the BSF for two different time intervals: total (from 1985 to 2015) and 
every 3 years starting from 1985. The GEOS3 algorithm was implemented in GEE using the JavaScript API. The 
processing workflow used Landsat products with a native spatial resolution (30 m), and the final global products 
were resampled and stored at 250 m (Fig. 1).

Data analysis.  Quality assessment.  We checked the quality of the BS image using the spectral signature and 
soil line concept20,23. The BS spectral signature has a constant ascendant pattern from the blue to SWIR1 bands due 
to the absorption of organic matter and iron oxides in the visible range and a strong reflectance of some minerals 
(such as quartz) in the near and shortwave-infrared28,61. The soil line evaluates the linear relationship (scatterplot) 
between the red and NIR bands using the slope and offset parameters of the adjusted line62. In such cases, the BS 
has an adjustment near the 1:1 trend line, while vegetation and other land covers have a scattered distribution18. 
For this step, we sampled bare surface pixels inside a 50 km2 square using GEE at eight different positions around 
the world (Fig. 1a–h). Additionally, a median composite (from 2017 to 2019) from the Landsat 8 surface reflec-
tance catalogue was used to compare the bare surface trend with the natural landscape patterns.

Statistical correlation between BS image and global maps.  Statistical analysis was implemented to quantitatively 
establish the relationship between the SYSI and the global maps of soil carbon, lithology, and soil classes63. For 
this task, we resampled the global maps and the SYSI to a standard reference grid with a 0.5° pixel resolution. The 
categorical maps were upscaled using the nearest neighbour method, while maps with continuous information 
were resampled using the bilinear algorithm. This processing was performed to transform each pixel location (720 
× 360 pixels in total) into tabular data for statistical analysis. For the SYSI map, principal component analysis was 
also performed to combine all the variability of the SYSI bands into single uncorrelated principal components. 
The first principal component, which explained at least 90% of the variance, was used to determine the strength 
of association with the global maps.

Two different association methods were implemented considering the continuous and categorical aspects of 
the maps. The association between the first principal component of the SYSI and the global soil carbon map (both 
continuous variables) was obtained using Pearson’s correlation analysis. When evaluating the association between 
the SYSI and the lithological or soil class global maps, one-way analysis of variance (ANOVA) was used. The sta-
tistical correlation from ANOVA was calculated using the square root of the ratio between the sum of squares of 
the model (categorical levels) and the total sum of squares (sum of model with residuals sum of squares)64.
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Temporal analysis.  Temporal analysis was performed using the bare surface frequency calculated for each three 
years from 1985 to 2015. A square grid of 0.1° × 0.1° was created for the global extent (from 180 °W to 180°E 
and from 70 ° S to 70 ° N), and the three-year frequency of 250 m was reduced by the mean statistics to the extent 
of 0.1° × 0.1°. For each grid cell, we performed a time series analysis using the Mann-Kendall test (MK)64,65. 
The method defines whether a variable changes consistently over time, revealing an increasing or decreasing 
trend. The test allows a trend evaluation in normally and non-normally distributed data, which makes it a robust 
method66. The MK test starts by applying an indicator function (sgn) on the difference between all possible pairs 
of measurements (Eq. 4). The value measured at time (j(xj)) is subtracted from the values previously observed (xi), 
considering that time (j > i). Then, these differences are used to define Kendall’s statistics (S) (Eq. 5).

sgn( )
1 for 0

0 for 0
1 for 0 (4)
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where n is the length of the dataset. Based on S, the variance V(S) (Eq. 6) and the normalized test statistics Z 
(Eq. 7) are calculated.

Area calculation.  The calculation of area was conducted in GEE by reducing the number of pixels inside each 
country polygon delimited by the large-scale international boundary polygons (simplified) dataset56. For this 
step, a water mask generated by Hansen et al.67 was used to mask out both oceans and surface water within conti-
nents. We counted the total number of pixels (250 m) inside the country boundary as well as the number of bare 
surface pixels. With the two counts, we calculated the relative area of bare surfaces and the absolute area from 
the product with the official land area of each country68. Additionally, we considered the Moderate Resolution 
Imaging Spectroradiometer (MODIS) Land Cover Type Early product from 2017 to conduct additional analyses 
considering different land-use and land cover types, as defined by the Annual International Geosphere-Biosphere 
Program (IGBP) classification25.

Data availability
The dataset generated during the current study is available in Google’s Earth Engine App provided in the link: 
https://geocis.users.earthengine.app/view/bare-surfaces.

Code availability
The code to generate the final product of the bare surface image is available from the corresponding author upon 
reasonable request for the following reasons: a) the script/code creates a proxy from which our research group is 
working on the development of new products that will be published in the near future.

Received: 4 July 2019; Accepted: 21 February 2020;
Published: xx xx xxxx

References
	 1.	 Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 (2004).
	 2.	 Mcbratney, A., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).
	 3.	 Montanarella, L. et al. World’s soils are under threat. Soil 2, 79–82 (2016).
	 4.	 Sykes, A. J. et al. Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas 

removal technology. Glob. Chang. Biol. 00, 1–24 (2019).
	 5.	 Gaffney, J. et al. Science-based intensive agriculture: Sustainability, food security, and the role of technology. Glob. Food Sec. 23, 

236–244 (2019).
	 6.	 Schulte, R. P. O. et al. Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale. Front. Environ. Sci. 

3, 81 (2015).
	 7.	 Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).
	 8.	 Balseiro-Romero, M. & Baveye, P. Book Review: Soil Pollution: A Hidden Danger Beneath our Feet. Front. Environ. Sci. 6, 1–4 

(2018).
	 9.	 D’Orico, P., Rosa, L., Bhattachan, A. & Okin, G. S. Desertification and Land Degradation. In Dryland Ecohydrology 573–602 

(Springer International Publishing, 2019).
	10.	 Daliakopoulos, I. N. et al. The threat of soil salinity: A European scale review. Sci. Total Environ. 573, 727–739 (2016).
	11.	 Meng, C. et al. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 14 (2019).
	12.	 Kumar, V. et al. A Review of Soil Compaction- Concerns, Causes and Alleviation. Int. J. Plant Soil Sci. 22, 1–9 (2018).

https://doi.org/10.1038/s41598-020-61408-1
https://geocis.users.earthengine.app/view/bare-surfaces


1 0Scientific Reports |         (2020) 10:4461  | https://doi.org/10.1038/s41598-020-61408-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

	13.	 Mujtar, V. E., Muñoz, N., Cormick, B. P., Pulleman, M. & Tittonelli, P. Role and management of soil biodiversity for food security 
and nutrition; where do we stand? Glob. Food Sec. 20, 132–144 (2019).

	14.	 Kim, K. & Bevis, L. Soil Fertility and Poverty in Developing Countries. Choices 34, 1–8 (2019).
	15.	 Sanderman, J. & Hengl, T. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. 114, 9575–9580 (2018).
	16.	 Godfray, H. C. J. et al. Food Security: The Challenge of Feeding 9 Billion People. Science (80-.). 327, 812–818 (2010).
	17.	 Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science (80-.). 362, 1–7 (2018).
	18.	 Mulder, V. L., De Bruin, S., Schaepman, M. E. & Mayr, T. R. The use of remote sensing in soil and terrain mapping — A review. 

Geoderma 162, 1–19 (2011).
	19.	 Rogge, D. et al. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with 

Landsat imagery (1984–2014). Remote Sens. Environ. 205, 1–17 (2018).
	20.	 Diek, S. et al. Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 9, 1245 (2017).
	21.	 Roberts, D., Wilford, J. & Ghattas, O. Exposed soil and mineral map of the Australian continent revealing the land at its barest. Nat. 

Commun. 10, 5297 (2019).
	22.	 Ustin, S. L., Roberts, D. A., Gamon, J. A., Asner, G. P. & Green, R. O. Using Imaging Spectroscopy to Study Ecosystem Processes and 

Properties. Bioscience 54, 523–534 (2004).
	23.	 Demattê, J. A. M., Fongaro, C. T., Rizzo, R. & Safanelli, J. L. Geospatial Soil Sensing System (GEOS3): A powerful data mining 

procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 212, 161–175 (2018).
	24.	 Ben-Dor, E. et al. Using Imaging Spectroscopy to study soil properties. Remote Sens. Environ. 113, S38–S55 (2009).
	25.	 Friedl, M. et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83, 287–302 (2002).
	26.	 Gong, P. et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ 

data. Int. J. Remote Sens. 34, 2607–2654 (2013).
	27.	 Congalton, R. G. et al. Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-

support Analysis Data (GFSAD) @ 30-m: Cropland Extent Validation (GFSAD30VAL). (2017).
	28.	 Viscarra Rossel, R. A. et al. A global spectral library to characterize the world’s soil. Earth-Science Rev. 155, 198–230 (2016).
	29.	 Stenberg, B., Rossel, R. A. V., Mouazenc, A. M. & Wetterlindd, J. Visible and near infrared spectroscopy in soil science. In Advances 

in AgronomyAgronomy (ed. Sparks, D. L.) 163–215 (Academic Press, 2010).
	30.	 Stoner, E. K. & Baumgardner, M. E. Characteristic variations in reflectance of surface soils (1982).
	31.	 Chen, F. et al. Mapping soil organic carbon concentration for multiple field with image similarity analysis. Soil Sci. Soc. Am. J. 72, 

186–193 (2008).
	32.	 Lagacherie, P. et al. Combining Vis–NIR hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties 

in a Mediterranean area (Cap-Bon, Tunisia). Geoderma 209–210, 168–176 (2013).
	33.	 Ghaemi, M., Astaraei, A. R., Sanaeinejad, S. H. & Zare, H. Using satellite data for soil cation exchange capacity studies. Int. 

Agrophysics 27, 409–417 (2013).
	34.	 Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth 

surface. Geochemistry, Geophys. Geosystems 13, 1–37 (2012).
	35.	 Bhunia, G. S., Kumar Shit, P. & Pourghasemi, H. R. Soil organic carbon mapping using remote sensing techniques and multivariate 

regression model. Geocarto Int. 34, 215–226 (2019).
	36.	 Zeng, R., Zhang, G.-L., Li, D.-C., Rossiter, D. G. & Zhao, Y.-G. How well can VNIR spectroscopy distinguish soil classes? Biosyst. 

Eng. 152, 117–125 (2016).
	37.	 SoilGrids — global gridded soil information. ISRIC (2019).
	38.	 Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).
	39.	 Yang, D., Kanae, S., Oki, T., Koike, T. & Musiake, K. Global potential soil erosion with reference to land use and climate changes. 

Hydrol. Process. 17, 2913–2928 (2003).
	40.	 Cierniewski, J. et al. Shortwave Radiation Affected by Agricultural Practices. Remote Sens 10, 419 (2018).
	41.	 Stark, S. C. et al. Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy 

balance after vegetation change. Landsc. Ecol. 31, 181–194 (2016).
	42.	 Sayão, V., Demattê, J., Bedin, L., Nanni, M. & Rizzo, R. Satellite land surface temperature and reflectance related with soil attibutes. 

Geoderma 325, 125–140 (2018).
	43.	 Qu, B. I. et al. Effect of various mulches on soil physico-Chemical properties and tree growth (Sophora japonica) in urban tree pits. 

PLoS One 14, e0210777 (2019).
	44.	 Kheyrodin, H. & Ghazvinian, K. Effect of Climate Change on Soil Global Microorganisms. An Int. J. Life Sci. Chem. 29 (2012).
	45.	 Alignier, A., Petit, S. & Bohan, D. A. Relative effects of local management and landscape heterogeneity on weed richness, density, 

biomass and seed rain at the country-wide level, Great Britain. Agric. Ecosyst. Environ. 246, 12–20 (2017).
	46.	 FAO. FAOSTAT Database. Food and Agriculture Organization of The United Nations (2019). Available at, http://www.fao.org/faostat/

en/#home. (Accessed: 23rd May 2019).
	47.	 Ahmad, M. et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19–33 (2014).
	48.	 Kassam, A., Friedrich, T., Derpsch, R. & Kienzle, J. Overview of the Worldwide Spread of Conservation Agriculture. Field Actions 

Science Reports 8 (2015).
	49.	 Garrett, R. D. et al. Intensification in agriculture-forest frontiers: Land use responses to development and conservation policies in 

Brazil. Glob. Environ. Chang. 53, 233–243 (2018).
	50.	 USGS. New Map of Worldwide Croplands Supports Food and Water Security. (2017). Available at, https://www.usgs.gov/news/new-

map-worldwide-croplands-supports-food-and-water-security. (Accessed: 23rd May 2019).
	51.	 Chrysoulakis, N., Mitraka, Z. & Gorelick, N. Exploiting satellite observations for global surface albedo trends monitoring. Theor. 

Appl. Climatol. 1–9, https://doi.org/10.1007/s00704-018-2663-6 (2018).
	52.	 Friedrich, T., Derpsch, R. & Kassam, A. Overview of the Global Spread of Conservation Agriculture. Field Actions Science Reports 

(Institut Veolia Environnement, 2012).
	53.	 Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the 

globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).
	54.	 Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–795 (2016).
	55.	 Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. 

Ecol. Indic. 61, 404–412 (2016).
	56.	 Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
	57.	 Gattinger, A., Jawtusch, J., Muller, A. & Mader, P. No-till agriculture – a climate smart solution? (2011).
	58.	 Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
	59.	 USGS. LANDSAT 4-7 SURFACE REFLECTANCE (LEDAPS) PRODUCT GUIDE. (2018).
	60.	 USGS. LANDSAT 8 SURFACE REFLECTANCE CODE (LASRC) PRODUCT GUIDE (2018).
	61.	 Hunt, G. R. & Ashley, R. P. Spectra of altered rocks in the visible and near infrared. Econ. Geol. 74, 1613–1629 (1979).
	62.	 Baret, F., Jacquemoud, S. & Hanocq, J. F. About the soil line concept in remote sensing. Advances in Space Research 13 (1993).
	63.	 FAO-UNESCO. Soil Map of the World at 1:5000000 scale (1974).
	64.	 Mann, H. B. Nonparametric Tests Against Trend. Econometrica 13, 245 (1945).
	65.	 Kendall, M. G. Rank correlation methods. (1948).

https://doi.org/10.1038/s41598-020-61408-1
http://www.fao.org/faostat/en/#home
http://www.fao.org/faostat/en/#home
https://www.usgs.gov/news/new-map-worldwide-croplands-supports-food-and-water-security
https://www.usgs.gov/news/new-map-worldwide-croplands-supports-food-and-water-security
https://doi.org/10.1007/s00704-018-2663-6


1 1Scientific Reports |         (2020) 10:4461  | https://doi.org/10.1038/s41598-020-61408-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

	66.	 Yue, S., Pilon, P. & Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological 
series. J. Hydrol. 259, 254–271 (2002).

	67.	 Hansen, M. C. et al. Determination of deforestation rates of the world’s humid tropical forests. Science (80-.). 297, 999–1002 (2002).
	68.	 CIA. The World Factbook - Central Intelligence Agency. (2019). Available at, https://www.cia.gov/library/publications/the-world-

factbook/. (Accessed: 23rd May 2019).
	69.	 Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product, https://doi.

org/10.5067/MODIS/MCD12Q1 (2018).

Acknowledgements
This study was funded by the São Paulo Research Foundation (FAPESP), process number 2014 / 22262-0, with 
the collaboration of the Geotechnologies in Soil Science (GeoSS, https://esalqgeocis.wixsite.com/english). We 
also thank the National Council for Scientific and Technological Development (CNPq), the Coordination for the 
Improvement of Higher Education Personnel (CAPES) and the National Scholarship Program (BECAL - PY) for 
granting the scholarships.

Author contributions
J.A.M.D. designed, coordinated and wrote the paper; J.L.S., R.R.P. and R.R. generated the computational code, 
performed the statistical analysis and wrote the paper; N.E.Q.S., W.S.M., B.R.B. and A.C.D. wrote the paper; 
D.F.U.S., F.A.O.M., A.F.S.P., A.B.S., N.V.S., C.M.N., D.C.M., H.B., L.G.N., M.T.A.A., M.E.B.R., J.S.V., L.G.Q., 
B.C.G., V.M.S. and C.J.L. contributed equally to processing the global images and the detection of uncertainties 
to be solved.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-61408-1.
Correspondence and requests for materials should be addressed to J.A.M.D.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-61408-1
https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/
https://doi.org/10.5067/MODIS/MCD12Q1
https://doi.org/10.5067/MODIS/MCD12Q1
https://esalqgeocis.wixsite.com/english
https://doi.org/10.1038/s41598-020-61408-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring

	Results and Disscussion

	Earth’s bare surface detected from space. 
	Enhancing global soil resource monitoring by bare surface imaging. 
	Human-induced changes in land use based on bare surface monitoring: impacts on Earth’s soil resources. 

	Limitations

	Concluding remarks. 

	Methods

	Data acquisition and bare surface retrieval. 
	Data analysis. 
	Quality assessment. 
	Statistical correlation between BS image and global maps. 
	Temporal analysis. 
	Area calculation. 


	Acknowledgements

	Figure 1 Earth’s bare surface reflectance.
	Figure 2 Earth’s bare surface analysis from 1985 to 2015.
	Figure 3 Bare soil tendency.
	Figure 4 Temporal Earth’s bare surface patterns for each of the three-year periods from 1985 to 2015 in comparison to the worldwide croplands.
	Figure 5 Temporal bare surface frequency from 1985 to 2015.




