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Ensemble modeling highlights
importance of understanding
parasite-host behavior in preclinical
antimalarial drug development

Lydia Burgert'2, Matthias Rottmann?2, Sergio Wittlin-2, Nathalie Gobeau?, Andreas Krause*,
Jasper Dingemanse®*, J6rg J. M6hrlel-23 & Melissa A. Penny®%%*

Emerging drug resistance and high-attrition rates in early and late stage drug development necessitate
accelerated development of antimalarial compounds. However, systematic and meaningful translation
of drug efficacy and host-parasite dynamics between preclinical testing stages is missing. We developed
an ensemble of mathematical within-host parasite growth and antimalarial action models, fitted

to extensive data from four antimalarials with different modes of action, to assess host-parasite
interactions in two preclinical drug testing systems of murine parasite P. berghei in mice, and human
parasite P. falciparum in immune-deficient mice. We find properties of the host-parasite system,
namely resource availability, parasite maturation and virulence, drive P. berghei dynamics and drug
efficacy, whereas experimental constraints primarily influence P. falciparum infection and drug efficacy.
Furthermore, uninvestigated parasite behavior such as dormancy influences parasite recrudescence
following non-curative treatment and requires further investigation. Taken together, host-parasite
interactions should be considered for meaningful translation of pharmacodynamic properties between
murine systems and for predicting human efficacious treatment.

Scale-up of vector control and treatment strategies have led to large reductions in Plasmodium falciparum malaria
prevalence and clinical cases over the last decade!. However, malaria remains a major cause of morbidity and
mortality worldwide and recent successes are challenged by emerging resistance against several recommended
first line treatments of artemisinin combination therapy?®. Although the current pipeline for new antimalarials
is healthy; late stage drug attrition in antimalarial development and the need to develop combination therapies
necessitates a continued search for new compounds*. Host-parasite dynamics and their influence on treatment
results are important to consider throughout drug development to understand and interpret observed drug effi-
cacy. Coupled with data, mechanistic modeling and simulation enables exploration of these host-parasite inter-
actions along the preclinical development pathway. Such models facilitate translation from preclinical murine
systems to clinical use, and thus potentially reduce time and costs to develop new antimalarial treatments.

In preclinical antimalarial development stages, murine systems of malaria infection are employed to evaluate
drug pharmacokinetics (PK), drug effects (pharmacodynamics), efficacious exposure, and to inform human dose
prediction. Pharmacodynamic (PD) measures of evaluation include parasite reduction compared to a control
group, index numbers of drug efficacy such as concentrations inhibiting growth or resulting in a certain level of
parasiticidal activity, and parasite recrudescence behavior following non-curative treatment™”’.

Two murine systems are commonly employed to investigate in vivo blood-stage efficacy of orally administered
antimalarials; infection of normal mice with the P. berghei ANKA strain® and infection of immunodeficient NOD
scidIL-2R ¢~/= (SCTD) mice with P. falciparum®"'. The murine malaria parasite P. berghei causes severe, ultimately
deadly malaria in mice while exhibiting similar parasite morphology and developmental characteristics observed
in human malaria infection”2. SCID mice engrafted with human erythrocytes (RBCs) are able to support infec-
tion with P. falciparum, providing the opportunity to investigate the efficacy of compounds against the human
parasite in vivol®!!. The main difference between the two parasite species is the length of the intra-erythrocytic
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life cycle being approximately 24 h for P. berghei and approximately 48 h for P. falciparum’. While the P. berghei
murine system is used to test crude efficacy of blood-stage antimalarial drugs in shorter experiments, murine
infection with P. falciparum is employed in longer experiments investigating the course of infection and parasite
recrudescence behavior. Recently the SCID mouse system has been utilized to facilitate translation of results
between mice and humans’, including testing of drug combinations, and to avoid issues where potentially active
compounds against P. falciparum are not active against P. berghei due to enzymatic differences between the
parasites'>.

Mechanistic mathematical parasite growth models inform the drug development process by combining infor-
mation on within-host behavior of the parasite, the host itself, and the treatment'*!5. Several within-host models
that include descriptions of the asexual blood-stage parasite life cycle and host properties have been developed for
preclinical'®" and clinical development stages'#*°-22. However, modeling is not used to systematically compare
potential consequences of host-parasite interactions in different host-parasite systems and to investigate their
impact on drug treatment outcomes and decisions during antimalarial development. Comparing performance
of models capturing different aspects of biology can indicate importance of those aspects, or point to knowledge
gaps.

We report an ensemble of mechanistic within-host parasite growth and antimalarial action models that are
combined into a modeling workflow that handles data management, model development, parameterization,
and simulation for the analysis of antimalarial drugs in murine experimental systems. The models are based on
previously described parasite characteristics such as erythropoiesis, parasite growth, erythrocyte and parasite
clearance, and changes in parasite characteristics over the course of infection®*. Model selection is based on their
potential relevance for assessing drug efficacy in preclinical antimalarial development. Our ensemble therefore
highlights the diversity of potential parasite-host dynamics and the consequential influence on experimental
insights and drug evaluation in the space of limited data resolution of the parasite life cycle. Parameterization
was conducted using multiple control and treatment experiments of four antimalarials with different modes of
action. We evaluated the models based on their ability to describe laboratory data and to account for the biolog-
ical and experimental background to understand parasite dynamics relevant for treatment effects. The workflow
enables the analysis of in vivo drug efficacy against P. berghei and P. falciparum and thus facilitates comparison
of results between laboratories. To the best of our knowledge, this is the first study to systematically investigate
host-parasite interactions, antimalarial action, and drug effects across murine experimental systems, laboratories,
and drugs from different drug classes. This analysis provides insights into antimalarial efficacy predictions, high-
lights processes of host-parasite interaction relevant to malaria in humans and informs on the advantages and
disadvantages of each preclinical system.

Results

Data. The following drugs, for which data on both murine systems was available, were used for analysis: ACT-
451840%*+-%6, chloroquine (CQ)¥, MMV390048%”?® and OZ439 (INN: artefenomel)**° (Supplementary Table S1).
Data from 43 experiments containing information about P. berghei in Naval Medical Research Institute (NMRI)
mice and 32 experiments containing information about P. falciparum in SCID mice before and after treatment
were analyzed. Each experiment involved 2-5 control mice and 2-10 mice per dose. An overview of the data used
can be found in the Supplementary Table S2. Parasite density data in the form of percentage of infected RBCs was
used for model parameterization. In SCID mice models fand g, hematocrit (percentage of human RBCs) was used
as additional information.

Models of parasite growth. We developed five mathematical models of parasite growth for P. berghei
(models a to e) and four models for P, falciparum in SCID mice (models fto i). Each model captures different levels
of details and assumptions concerning RBC dynamics of the host (NMRI or SCID mice), the influence of the
parasite on RBC dynamics, and parasite growth characteristics (Fig. 1).

A previous within-host model capturing RBC and parasite dynamics'® described by a set of ordinary differen-
tial equations (ODEs) was used as our base model (model a) for our P. berghei and P. falciparum growth models.
This model captures parasite growth as well as RBC dynamics. It assumes constant production v [cells/h] and
decay p [1/h] of healthy RBCs X6, that are infected by merozoites M dependent on the infectivity parameter 3
[cells/mL h]. Infected RBCs Y burst on average after one parasite life cycle 1/a h later and subsequently release r
new merozoites that die with rate § [1/h]. In contrast to'®, for all models a to h, the intra-erythrocytic parasite stage
was split into n age compartments (n = 12, based on stability analysis of the base model structure (Supplementary
Fig. S5)) with a transition rate of oy, = n [1/h] between compartments. Although models b to h can be consid-
ered as expansion of model a (base), we deliberately illustrate them separately to compare model conclusions
regarding influences of parasite-host dynamics on drug efficacy estimates. Therefore, we decided against nested
model building.

In addition to our base model, we accounted for other parasite host interactions for P. berghei, whereby model
b (bystander) included a bystander-death rate ~ [1/h] of uninfected RBCs caused by the reaction of the innate
immune system to parasite growth®'. Compensatory erythropoiesis, caused by anemia through RBC destruction,
was considered in model ¢ (comp. erythr.)***2. Potential changes to parasite properties was examined in model d
(impaired maturation) assuming an increase in parasite densities causes lengthening of the intra-erythrocytic par-
asite life cycle from 24 to 37 h**. Model e (reticulocytes) allowed for an age preference of the parasite by including
immature RBC (reticulocyte) dynamics®'.

In order to adequately represent RBC and parasite dynamics as a consequence of the continued RBC injections,
we extended and adapted model a (base) for P. falciparum growth in SCID mice by including human RBC dynam-
ics in models fto h. To capture base decay rates of mouse and human RBCs, we assumed a constant decay rate X
[1/h] in model f (const. RBC decay) and model h (human RBC) as well as total RBC density-dependent (dd.) decay
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Figure 1. Schematic representations of the mechanistic within-host parasite growth models for P. berghei (a)
and P, falciparum (b), with summary model details (c). The base model by'® is represented in black with model
modifications added in color, for all models erythrocytic parasite stage was split into n age compartments
(n=12). Model a to e for P. berghei mainly capture processes dictated by the host-parasite system such as
reactions of the host to increasing infection in model b (bystander)) and model ¢ (comp. erythr.), changes in
parasite dynamics over the course of infection model d (impaired maturation), and host cell preferences of

the parasite model e (reticulocyte). In turn, model fto h for P. falciparum dynamics are primarily influenced

by the experimental set-up of continued human RBC injections. Whereas model f (const. RBC decay) and g
(dd. RBC decay) additionally explicitly model mouse RBCs, model h (human RBC) only captures human RBC
populations. RBC or parasite transitions are represented with solid lines and influencing processes with colored
dashed lines. (c) Selected index numbers characterizing the growth of parasites in the respective mechanistic
mouse models for the experiment shown in Fig. 3. Anemia is defined as the percentage of RBCs compared to
values prior to infection.

X [1/h] in model g (dd. RBC decay) as a mouse reaction to continued RBC injections'!. Additionally, we imple-
mented parasite density-dependent clearance of RBCs by phagocytes ~ [1/h] to account for infection-induced
dynamics of RBC clearance and splenic/liver clearance ¢ [1/h] in all models fto h. While model fand g included
human and mouse RBC dynamics, model h (human RBC) assumed mouse RBC dynamics to be negligible and
only captured human RBC dynamics. Our last model, empirical model i (exponential), assumed exponential par-
asite growth without explicit host-parasite dynamics and no resource depletion.

For all mechanistic models a to h, we assumed that parasite age was uniformly distributed at time of inocula-
tion and asynchronous parasite growth based on previous descriptions of P. berghei ANKA infections desynchro-
nizing after inoculation®. Data resolution was too low to inform models of synchronous parasite growth in SCID
mice. Since the P. berghei ANKA strain in NMRI mice is very aggressive (fatal within six days) and there is no fully
functioning immune system in SCID mice, the dynamics of the adaptive immune system were not considered in
either mice system.

The mechanistic models a to h used the time of parasite inoculation as a starting point for modeling whereas
time of drug administration (72 h post-infection) was chosen as the start of the exponential growth phase for
model i (exponential) due to data availability. Data was pooled per experiment for all parameter estimations with
an experiment defined as a group of mice having the same control group. No individual parameter estimation
per mouse was conducted. An overview of our modeling workflow, model ODEs and specifications of parameters
estimated or fixed to literature and experimental values are given in the Supplement.

Model fits to data. Models a to h were able to account for changes in experimental setting by using exper-
imental information on parasite inoculation time and amount, and RBC injections, as input to the models.
Additionally, for model fand g, the initial percentage of human RBCs H; was estimated per experiment, while
constrained to value ranges extracted from laboratory protocols.

The differences in experiments are likely a consequence of variation in laboratory procedures, such as thawing
of parasites, age and infection status of the donor mouse, altered parasite virulence due to serial passage of the
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Figure 2. Estimated values of the infectivity parameter 3 by model for both murine experimental systems. Each
symbol represents the value estimated for one experiment. (a) Values estimated for murine P. berghei infection.
Model a (base), ¢ (comp. erythr.) and e (reticulocyte) show similar results whereas higher values were estimated
for model b (bystander) and d (impaired maturation) (b) Estimated (3 —values for infection of humanized mice
with P. falciparum using the mechanistic models f (const. RBC decay), g(dd. RBC decay), and h (human RBC).

(c) Parasite growth rate p,, and parasitemia at start of the exponential growth phase P, (72 h post-infection)
estimated for model i (exponential). The laboratories are denoted by different symbols (not identified here).

parasite, or inoculum size. We therefore assessed the ability of either the infectivity parameter 3 (which effectively
represents differences in parasite fitness and virulence) or the viability of the parasite inoculum w (representing
differences in thawing protocols) to capture differences between experiments. The infectivity parameter 3 was
able to account for observed differences in force of parasite growth between experiments and laboratories. By
comparing 3-values, we found consistent differences between each laboratory and model (Fig. 2). Our estimates
of 3 for P. berghei and P, falciparum range from 6.7 X 107! t0 5.0 X 107'%and 1.2 x 107 t0 1.6 x 10~? cells/mL/h,
respectively. For model i (exponential) an adjustment of base parasitemia P, at treatment start and parasite growth
rate p,, was necessary to capture inter-experimental differences. Estimates of parasite growth rates for model i
range between 0.016 and 0.035 [1/h] (Fig. 2).

Even though the mechanistic parasite growth models a to e for P. berghei and models fto h for P. falciparum
showed similar parasite growth patterns in their respective murine hosts, several distinct characteristics affecting
parasite growth and treatment patterns became apparent in our analysis.

As expected, a steep decline of uninfected RBCs was predicted with increasing parasite load of P. berghei
(Fig. 3). This resulted in anemia, defined as the percentage of RBCs compared to values prior to infection, of up to
10% (Fig. 1). Dependent on model choice, different time courses for total (un)infected parasite populations were
observed (Figs. 1c and 3b) resulting in a range of maximal parasitemia values between 79% and 97%. Continued
human RBC injections prevent the occurrence of anemia during P. falciparum infection. However, if human RBC
injections cease models fto h predicted a steep decrease in human RBCs, also observed in laboratory experiments
(Supplementary Fig. S4), emphasizing the importance of capturing experimental RBC replenishment and clear-
ance mechanisms. Compared with base clearance of mouse RBCs (0.001 [1/h], Supplementary Table S4) we esti-
mated base clearance of human RBCs to be increased by a factor of 10 with model f (const. RBC decay) and model
h (human RBC) estimating X of 0.01 and 0.08 [1/h] and Model g (dd. RBC decay) estimating a maximum base
clearance X ., 0f 0.018 and kx5, of 1.05 x 10! RBCs/mL (Supplementary Table S7). Total RBC counts tracked by
model f (const. RBC decay) and model g (dd. RBC decay) reached a maximum value of 1.2 X 10'° RBCs/mL (model
h; mouse RBCs not considered). The base death rate of RBCs X was estimated to be smaller than the maximum
parasite density-dependent death rate ~,,, for all models.

Drug action models and predicted translation between murine systems. Following our work-
flow detailed in Fig. S1, the parasite growth models were combined with compartmental PK models to investi-
gate drug efficacy. The change in parasite death rate o was chosen as the pharmacological action for PD models
(Supplementary Table S6). Parameters of parasite growth and PK models were fixed to previously estimated values
(Supplementary Tables S7 and S8) for calibration of ECs, E ., and additional parameters describing drug action
models (Supplementary Table S6) against treatment data. We compared ECs, E,,, and the structural PD models
across murine systems and parasite growth models to assess influences of parasite-, host- and drug-interactions
on drug efficacy analysis (Fig. 4, parameter values in Supplementary Table S9) and to investigate potential trans-
lation between murine systems.

A typical fit of parasite growth and drug action models to treatment data of SCID mice is shown in Fig. 5.
As expected, all models predicted decreasing parasite counts following non-curative treatment until an inflec-
tion point after which parasite counts increased again. This inflection point is generally below the lower limit
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Figure 3. Representative fit of the within-host models to data. (a) Data (@) and model predictions (- -) of
infection with P. berghei with an inoculum of 2 x 107 infected RBCs (i.v.) show a steep increase in parasitemia
three days after inoculation. (b) Model output for unobserved total numbers of RBCs show an increase

in infected RBC:s (- -) with a simultaneous decrease in uninfected RBCs (&#x25AC;) resulting in anemia.
However, the total number of human and murine RBC populations differs between model predictions (compare
model b (bystander)), given that the estimated percentage of infected RBCs is compared to observed. Further
differences in models become apparent comparing predicted time of, and total parasite numbers at, peak
parasitemia P, (see Fig. 1c). (c) Infection of SCID mice with P, falciparum through an inoculum of 3.5 x 107
infected RBCs (i.v.). Human RBCs (A) are injected daily until day seven post-infection increasing total human
RBC counts (&#x25AC;). (d) As uninfected RBCs (&#x25AC;) increase the predicted number of mouse RBCs
(e @) decrease due to random clearance of excess RBCs. After RBC injections are ceased, the model predicts a
steep decline in human RBCs. Data (e) and models fto h (- -) show lower values of predicted peak parasitemia
compared to model i.

of quantification (LLOQ) (microscopic detection limit: 0.01% parasitemia) for effective treatment (Fig. 5).
Structural drug action models were compared for each combination of parasite growth model, murine system
and drug (lowest AIC, Supplementary Fig. S2). In P. berghei infection, at least three out of five and in P. falciparum
infection at least three out of four parasite growth models match with respect to the chosen structural PD model
(Fig. 4). All PD models either implement a delayed drug effect through an effect compartment or turnover model,
or delayed clearance of dead parasites.

Although all drugs were active in both mouse systems, no apparent linear relationship was found when com-
paring estimated ECs, E,.,, and parasite clearance half-life values of the four drugs investigated between both
murine experimental systems given chosen model of drug action and associated parameters (Supplementary
Table S9). Parasite clearance half-life was generally lower for treatment of P. berghei.

Recrudescence. For the long-lasting recrudescence experiments conducted with MMV390048 and OZ439
in SCID mice, we were only able to capture recrudescence (occurring more than eight days after last measured
parasitemia above the lower limit of detection) with the exponential growth model i. Although we capture recru-
descence within eight days of last measurement, we were unable to describe recrudescence after this time, with
the mechanistic parasite growth models fto h (Supplementary Fig. S3). Minimum parasite numbers predicted by
the mechanistic growth models remain high, e.g., after dosing with 1 x 50 mg/kg OZ439, total parasite numbers
of 3.3 x 10° parasites (~0.02% parasitemia) are predicted by model f (const. RBC decay). In contrast, model i (expo-
nential) predicts a minimum parasitemia of 0.0003%. This indicates that additional parasite phenomena such as
altered parasite maturation, dormancy, or stochastic extinction might be at play that have not been considered
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Figure 4. Comparison of drug efficacy estimates found for P. berghei in normal mice (a-c) and P. falciparum
in SCID mice (d-f). ECs, [ng/mL], E,,, [1/h] and the clearance half-life [h] are illustrated for each drug and
parasite growth model. The drug action model showing the best fit to data was chosen based on AOFV (AIC),
visual assessment of model fit and biological plausibility for each parasite growth model (with Turnover-model
(Turn), drug action through an effect compartment (Eff) and delayed clearance of dead parasites (Cl)). See
Supplementary Table S9 for parameter values.

in the mechanistic models (Fig. 6: extension sources of variance and uncertainty of the parasite treatment curve
described in* applicable to murine and human infections for antimalarial investigations). The inclusion of these
additional parasite characteristics is also potentially influencing minimum inhibitory concentration (MIC) defi-
nition and estimates (Fig. 6a).

Discussion

By simultaneously capturing parasite growth and treatment, our mechanistic models provided insight into the
influence of interactions between host, parasite, drug, and experimental background in preclinical murine sys-
tems for assessing existing and novel antimalarials. Mechanistic modeling and simulation enabled exploration of
these host-parasite interactions along the preclinical development pathway to understand their potential effect on
compound selection in preclinical models.

In general, we found that host-parasite dynamics and experimental set-up (e.g. in terms human RBC injec-
tions) had an influence on estimated parasite growth measured as parasite invasion rates, clearance and matu-
ration rates, and the availability and replenishment of resources. Explicit inclusion of these mechanisms in our
parasite growth models and subsequent analysis of translation of PD parameters and recrudescence identified
the importance of considering dynamics of the murine system during analysis. The importance of host-parasite
interactions for drug effect imply that careful consideration is needed to define and use appropriate mechanistic
parasite growth models for translating, not only between murine systems, but also to humans and to predict
human-equivalent dose.

We decided against nested parasite growth model building but rather we separately portrayed model predic-
tions and fits and thus compared conclusions drawn in a non-weighted ensemble approach, acknowledging the
different assumptions in each model. Model averaging was forgone to illustrate uncertainty concerning underly-
ing parasite-host interactions over time and their influence on drug efficacy estimates. This was also important
in order to highlight if further mechanistic insights are needed due to limited data per mouse and experiment.

To parameterize our models to all the available experimental data we needed to consider inter-experimental
differences in the infectivity parameter 3. Our estimates of 3 for P. berghei and P. falciparum are similar to those
described in literature®'®. The variations in 3, which effectively represent differences in parasite fitness and viru-
lence, are likely a consequence of differences in laboratory procedures, such as thawing of parasites, age and infec-
tion status of the donor mouse, altered parasite virulence due to serial passage of the parasites and inoculum sizes.

We found properties of the host-parasite system to be the primary influence on undisturbed parasite growth
of P. berghei in NMRI mice. Resource availability, in the form of RBCs, drives untreated parasite growth with
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Figure 5. Representative fits of drug action models in SCID mice infected with P. falciparum at day 0 with an
inoculum of 2 x 107-3.5 x 107 infected RBCs. The models were fitted to data of all administered doses with
model predictions for the respective doses portrayed here. Treatment commenced three days after inoculation
in dosing intervals of 24 hours. Mice were treated with 4 x 30 mg/kg ACT-451840, 4 x 50 mg/kg CQ, 2 x 10 mg/
kg MMV390048 or 2 x 10 mg/kg OZ439. The cessation of human RBC injections in ACT-451840 and CQ
experiments seven days after treatment leads to a decay of human RBCs and therefore also parasitemia 10-15
days after treatment (a,b). The horizontal dashed line represents the lower limit of quantification with 0.01%
parasitemia. n =2 mice for all doses shown.

mice exhibiting up to 90% peak parasitemia and 10% anemia five days post-infection. Similar anemia values
ranging between 10 and 30% have been previously published®*¢. As a consequence of RBC availability, models
a to e predicted a decrease in total parasite densities after reaching peak parasite concentrations (Fig. 3b). Our
analysis estimated that the preference of P. berghei for reticulocytes was less pronounced than found previously™.
This discrepancy could be due to the previous study using a mouse strain that tolerated longer lasting infections,
during which activation of erythropoiesis led to increased reticulocyte numbers. This increase in infection length
could facilitate age preference of parasites to be measurable. The influence of parasite-host interaction, in form
of impaired parasite maturation, was found to be most prominent in advanced infections resulting in later and
higher peak parasitemia. These time dependent parasite characteristics should therefore be considered in exper-
imental design considerations.

In contrast, in the SCID mouse system, parasite growth is primarily influenced by the artificial replacement of
erythropoiesis with injections of mature human RBCs containing negligible numbers of reticulocytes. Therefore,
the analysis of erythropoietic processes and age preferences of the parasite are rendered irrelevant. The impair-
ment of parasite maturation has previously been attributed to host immune mechanisms regulating parasite
growth during early stages of infection®. For this reason, changes in parasite maturation were likely not observed
in immunodeficient ragl ~'~mice* and were therefore not considered in this analysis. To date the occurrence
of this process in human and thus potential clinical implications remains unclear. To gain further insights into
parasite-host dynamics influencing existing experiments, we suggest collecting additional data per experiment
on total (un)infected RBC concentrations, and in SCID experiments on total mouse and human RBC concen-
trations. Resolution of present parasite age-stages could provide insights into parasite maturation dynamics.
Additional in vitro experiments investigating recrudescence patterns after treatment with different drugs could
inform the analysis of potential parasite dynamics below the LLOQ?’. Influences of immunity on the efficacy of
different drugs and recrudescence patterns could be assessed by utilizing chronic infection of mice®. The differ-
ences elucidated between parasite growth patterns in the respective systems of murine malaria infection were also
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Figure 6. Schematics of P. falciparum parasite dynamics in SCID mice after treatment and potential factors
explaining variance and uncertainty. (a) The mechanistic models (orange) presented in this paper assume
parasite growth characteristics remain constant throughout treatment and are therefore not capturing late
recrudescence. This is in contrast to the exponential model (gray) that compensates for late recrudescence by
shifting the curve to low parasite and drug concentrations. Alternative to our mechanistic models, we propose
some hypothetical parasite recrudescence curves (blue and green), that include additional phenomena such

as altered parasite maturation and parasite dormancy offering possible explanations for late recrudescence.

We cannot capture these mechanisms with models without additional data. MIC estimates important for
experimental interpretation and translation to humans are shown by yellow square points and are likely to

be very different given assumptions about parasite growth behavior after treatment. (b) We hypothesize and
extended the sources of variance and uncertainty of the parasite treatment curve described in* to schematically
illustrate parasite phenomena during growth, treatment and recrudescence for antimalarial experiments
(murine and possibly human). These extended phenomena include altered parasite maturation, dormancy, and
stochastic extinction occurring below the lower limit of quantification hindering estimation.

reflected in the analysis of antimalarial action. A comparison of drug efficacy parameters between host-parasite
systems did not allow a direct translation between systems. The variability of the drug action parameters EC5, and
E ..« between murine systems could be caused by previously discussed differences in host-parasite interactions
such as erythropoiesis, the ability to cause chronic infections, the development of anemia and differing para-
site characteristics. Additionally, differences between parasites species on a molecular level are likely influencing
anti-parasitic activities of compounds that are specific inhibitors of enzyme activity such as ACT-451840 and
MMV 390048 (Supplementary Table S1). We conclude that while the absence of erythropoiesis, anemia, and a
functioning immune system described in SCID mice allows for an unperturbed investigation of the sole drug
effect, direct translatability of drug action parameters to humans could be complicated should these processes be
of importance in human infection.

However, in SCID mice underlying clearance of (un)infected RBCs could influence the analysis of drug effi-
cacy data. Our mechanistic SCID models break down overall decrease in parasitemia into clearance mechanisms
induced by experimental set-up, murine experimental system, and drug action. We estimated similar value ranges
in terms of clearance attributable to host-reactions to infection ~,,, (0.055-0.44) (Supplementary Table S7) and
drug action E,, (0.065-0.33) (Supplementary Table S9) across all drugs and drug action models. Commonly
used measures of drug efficacy such as parasite clearance half-life*, summarize all parasite clearance in a single
index number**! when in fact parasite clearance is the net effect of multiple parasite clearance mechanisms?®.
Therefore, the inclusion of delayed removal of parasites affected by the drug into mechanistic parasite growth
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models could prevent potential misinterpretation of parasite clearance half-life estimates. Analysis of more drugs
and routine measurement of (stage-specific) parasite clearance rates would give valuable insight into clearance
mechanisms and prevent misinterpretation of parasite clearance after treatment.

We observed interactions between parasite and host system that resulted in parasite growth characteristics
changing over time and with subsequent influence on observed drug efficacy. Thus, it is important to discuss the
mechanisms of parasite recrudescence below the lower limit of quantification. Simple linear regression analy-
sis showed a statistically significant prediction (p =0.0442 after MMV 390048 and p = 6.8e-5 after OZ439 treat-
ment) of recrudescence times using the slope of the parasite treatment curve, number of drug doses, and dose
(Supplementary Tables S11 and S12). Our results indicate positive correlation between high drug exposure due
to increasing doses and regimens and the time to recrudescence. The low proportion of explained variance (R?)
for MMV 390048 may be caused by the data capturing both, alive and dead parasites due to the clearance model
best describing drug action of MMV390048 in SCID mice (Supplementary Table S9). However, the mechanistic
parasite growth models in SCID mice were not able to capture the range of incidence and times of recrudescence
observed between and within experiments (Supplementary Table S10 and Fig. S3). Although parasite recrudes-
cence generally occurred at later times with increasing doses in our models, time of recrudescence could not be
mechanistically explained. Apart from variability in drug efficacy parameters such as ECy, and E,,,,, additional
pharmacological or parasitic processes such as parasite dormancy*>**, impaired parasite maturation***, altered
parasite clearance*, and additional stochastic effects may be delaying recrudescence (Fig. 6). Previous studies
indicated links between parasite virulence®®, parasite numbers at time of treatment®*¢, and treatment dura-
tion®®4¢ as influencing frequency of recrudescence for different Plasmodium parasites. Overall, these findings
suggest, that the current mechanistic models do not provide additional structural insight to late recrudescence
(Fig. 6).

In comparison to mechanistic growth models, the exponential growth model i was not helpful in providing
insights into mechanistic parasitic behavior and drug action. Parasite growth parameter estimates for model i
(exponential) are based on the exponential growth phase three days after inoculation (as no data is collected
before), whereas the mechanistic models start at time of inoculation (using inoculum size) and therefore account
for potential growth lag phases. Consequentially, the exponential model predicts a biologically implausible instant
switch from drug suppressed growth to exponential growth after non-curative treatment. We found the direct
influence of drug action on the estimated parasite growth parameter p,,, which combines parasite growth and
death, facilitates shifts of predicted recrudescence curves to fit recrudescence data (Fig. 6a). These lacks of mech-
anistic insights in the exponential model warrant caution in drawing conclusions from drug efficacy indices (e.g.
MIC) derived directly from this model to translate to human clinical phases’. In contrast, hypothetical growth
curves including parasite dormancy and altered parasite maturation depicted in Fig. 6 allude to the fact that
changes in growth behavior are not captured in current models and that the MIC might not be a single concentra-
tion but rather a concentration range (dotted lines). Investigations into clinical relevance of recrudescence mech-
anisms in humans might be worthwhile to forecast treatment efficacy in the field*’~*. To date, neither mechanistic
parasite growth models nor exponential growth models have been validated for human dose prediction. Further
understanding of mechanistic background is necessary to understand their respective suitability and appropriate
use cases for model simplification.

Despite our insights, our study comes with several limitations. Data availability and richness varied greatly
between murine systems, experiments and antimalarials (Supplementary Table S2). Data per experiment was
pooled as parasite density and drug concentration measurements and thus also parameter estimation could not
be carried out per individual mouse due to constraints of the parasite-host system and experimental set-up (e.g.
sampling frequency). Although we chose our model assumptions carefully based on current literature they are
still simplifications of a complex system and do not fully capture the complexity of murine malaria infection, (e.g.
synchronized growth of P. falciparum and antimalarial stage specificity).

To date, translation of drug efficacy parameters between experimental murine systems and humans is under-
taken using PD parameters/indices such as parasite clearance estimator (PCE) or MIC. However, we demon-
strated the influence of different mechanistic backgrounds of mouse systems and parasite clearance on drug
efficacy estimates. Our analysis of parasite recrudescence behavior in the models compared to observed data
indicates additional unknown mechanisms influence parasite recrudescence timing and thus highlights potential
pitfalls in using MIC for human-equivalent dose prediction. Further research on the importance of these mech-
anistic insights in humans and translation of PD indices between preclinical and clinical phases using historical
preclinical and clinical data of existing antimalarials could accelerate the drug development process. Given the
current standard of translation and dosing recommendation we conclude that, for now, further analysis of mod-
eling results from both, preclinical experimental systems offers great potential to support optimal treatment of
humans.

Materials and Methods

Data. In vivo efficacy studies of P. berghei ANKA-infection were conducted at Swiss TPH as previously
described”*°. Briefly, NMRI mice were infected with 2 x 107 parasitized RBCs (i.v.), and treatment consisted of
one to four doses (p.0.) commencing 4-72 h after infection. Parasitemia was measured 72 or 96 h after infection.
Study outcomes are reduction in parasites compared to a control group, mouse survival, and mouse cure. In
untreated mice, death usually occurs 6 d after infection.

In vivo efficacy experiments against P. falciparum Pf3D7°%87/N% in NOD L2 e~/-mjjce were conducted at GSK
(GlaxoSmithKline), Swiss TPH and TAD (The Art of Discovery). Mice were engrafted with human RBCs by con-
tinued injections of human blood suspension, and infected with P. falciparum after a hematocrit of 40-75% was
established. Treatment commenced 72 h post-infection. Original experimental outcomes were reduction in para-
sitemia compared to a control group, mouse cure, and parasite-recrudescence behavior. Human blood injections
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were repeated every one to three days to maintain sufficient red blood cell levels and prevent occurrence of ane-
mia throughout each SCID mouse experiment. For both murine systems, cure was defined as having no detect-
able parasites 30 days post-infection'®!'!. The microscopic limit of detection is 0.01%, as a direct consequence of
the total number of erythrocytes monitored for infection (10,000).

In P. berghei experiments, a wide range of doses were commonly tested with one measurement point per
mouse (72 or 96 h after inoculation). In contrast, fewer doses were tested with fewer mice per dose in P. falciparum
experiments. However, parasitemia and hematocrit were measured multiple times (at least once a day on day
three up to day seven post-infection), with experiments lasting up to 32 days. All provided data was compiled into
a database containing experimental data, along with information concerning experimental set-up and laboratory.

The animal experiments performed were approved by the Swiss Cantonal Authorities or by the Diseases of
the Developing World Ethical Committee on Animal Research. The animal studies carried out at GSK were in
accordance with European Directive 2010/63/EU and the GSK Policy on the Care, Welfare and Treatment of
Animals and were accredited by the Association for Assessment and Accreditation of Animal Laboratory Care
for the ones performed at Diseases of the Developing World Laboratory Animal Science facilities. The animal
experiments carried out at the Swiss Tropical and Public Health Institute (Basel, Switzerland) are adhering to local
and national regulations of laboratory animal welfare in Switzerland. Protocols are regularly reviewed and revised
following approval by the local authority (Veterindramt Basel Stadt).

Modeling workflow. We developed a modeling workflow applicable for systematic analysis of antimalar-
ial drugs which spans data handling, model development, parameterization, and simulation. The workflow is
illustrated in Supplementary Fig. S1. In brief, we firstly developed multiple within-host parasite-growth mod-
els for both murine systems based on parasite characteristics described in the literature and via experimental
background and settings (RBC clearance and replenishment in SCID mice). Models were described by ODEs
(Supplementary Table S3) and were parameterized using available untreated parasite growth data with several
parameters extracted from literature (Supplementary Table S4). Secondly, we tested, selected, and parameterized
appropriate PK models to the concentration-time profile for each drug given several tested doses. Thirdly, the
undisturbed parasite growth model and the PK model were combined, and their parameters fixed, to estimate
parameters of drug action using drug treatment data.

All parasite growth and PD modeling, data manipulation, and plotting was performed in R (Version 3.5)*°
using the package IQRtools (Version 0.9.99)°!. Parasite growth- and PD-parameters were estimated via a maxi-
mum likelihood approach on trust region optimization. Multiple estimation starting points were utilized in order
to guarantee identification of the global minimum.

Growth model evaluation was performed using visual comparison of data to model output, and assessment
of biological plausibility of all parameters for all models. Several PD drug action models were fitted for each
drug and murine experimental system to capture direct effect of drug concentration as well as delayed effects
via effect compartment or indirect response models (Supplementary Table S2), and selected by AOVF (AIC)
(Supplementary Fig. S2). Hill coefficients were fixed to values between 1 and 7. The parasite clearance half-life was
estimated from model simulations using the methodology described in*.

Several different PK models with varying number of compartments, absorption and clearance behavior were
tested to identify the PK model best describing each of the four drugs investigated (see Supplementary Table S5).
PK models were fitted to the concentration-time profiles simultaneously using nonlinear mixed-effects modeling
in Monolix 2016R1°% The PK profile of each drug and murine system was chosen by comparing model AIC. Final
PK models and parameter values can be found in the Supplementary Table S8.

Data availability
The datasets analysed during the current study are available from the corresponding author on request and with
permission of Medicines for Malaria Venture and Idorsia Pharmaceuticals Ltd.
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