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Generic predictions of output 
probability based on complexities 
of inputs and outputs
Kamaludin Dingle1,2, Guillermo Valle Pérez2 & Ard A. Louis2*

For a broad class of input-output maps, arguments based on the coding theorem from algorithmic 
information theory (AIT) predict that simple (low Kolmogorov complexity) outputs are exponentially 
more likely to occur upon uniform random sampling of inputs than complex outputs are. Here, we 
derive probability bounds that are based on the complexities of the inputs as well as the outputs, rather 
than just on the complexities of the outputs. The more that outputs deviate from the coding theorem 
bound, the lower the complexity of their inputs. Since the number of low complexity inputs is limited, 
this behaviour leads to an effective lower bound on the probability. Our new bounds are tested for an 
RNA sequence to structure map, a finite state transducer and a perceptron. The success of these new 
methods opens avenues for AIT to be more widely used.

Deep links between physics and theories of computation1,2 are being increasingly exploited to uncover new fun-
damental physics and to provide novel insights into theories of computation. For example, advances in under-
standing quantum entanglement are often expressed in sophisticated information theoretic language, while 
providing new results in computational complexity theory such as polynomial time algorithms for integer fac-
torization3. These connections are typically expressed in terms of Shannon information, with its natural analogy 
with thermodynamic entropy.

There is, however, another branch of information theory, called algorithmic information theory (AIT)4, which 
is concerned with the information content of individual objects. It has been much less applied in physics 
(although notable exceptions occur, see5 for a recent overview). Reasons for this relative lack of attention include 
that AIT’s central concept, the Kolmogorov complexity KU(x) of a string x, defined as the length of the shortest 
program that generates x on an optimal reference universal Turing machine (UTM) U, is formally uncomputable 
due to its link to the famous halting problem of UTMs6 — see7 for technical details. Moreover, many important 
results, such as the invariance theorem which states that for two UTMs U and W, the Kolmogorov complexities 
K x K x( ) ( ) (1)U W = +  are equivalent, hold asymptotically up to (1) terms that are independent of x, but not 
always well understood, and therefore hard to control.

Another reason applications of AIT to many practical problems have been hindered can be understood in 
terms of hierarchies of computing power. For example, one of the oldest such categorisations, the Chomsky 
hierarchy8, ranks automata into four different classes, of which the UTMs are the most powerful, and finite 
state machines (FSMs) are the least. Many key results in AIT are derived by exploiting the power of UTMs. 
Interestingly, if physical processes can be mapped onto UTMs, then certain properties can be shown to be uncom-
putable9,10. However, many problems in physics are fully computable, and therefore lower on the Chomsky hierar-
chy than UTMs. For example, finite Markov processes are equivalent to FSMs, and RNA secondary structure (SS) 
folding algorithms can be recast as context-free grammars, the second level in the hierarchy. Thus, an important 
cluster of questions for applications of AIT revolve around extending its methods to processes lower in compu-
tational power than UTMs.

To explore ways of moving beyond these limitations and towards practical applications, we consider here one 
of the most iconic results of AIT, namely Levin’s coding theorem11 (see also the work of Solomonoff12 who had a 
version of the a priori distribution), which predicts that upon randomly chosen programs (e.g. a binary string 
program constructed by coin flips), the probability PU(x) that a universal Turing machine (UTM) generates out-
put x can be bounded as P x2 ( ) 2K x K x( ) ( ) (1)≤ ≤− − + . Technically, because we require the programs of the Turing 
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machine to be prefix-free, we restrict ourselves to what are called prefix Turing machines. Given this profound 
prediction of a general exponential bias towards simplicity (low Kolmogorov complexity) one might have 
expected widespread study and applications in science and engineering. This has not been the case because the 
theorem unfortunately suffers from the general issues of AIT described above.

Nevertheless, it has recently been shown13,14 that a related exponential bias towards low complexity outputs 
obtains for a range of non-universal input-output maps f: I → O that are lower on the Chomsky hierarchy than 
UTMs.

In particular, an upper bound on the probability P(x) that an output obtains upon uniform random sampling 
of inputs, 

P x( ) 2 (1)aK x b( )≤ − −
∼

 was recently derived13 using a computable approximation K x( )∼  to the Kolmogorov complexity of x, typically 
calculated using lossless compression techniques. Here a and b are constants that are independent of x and which 
can often be determined from some basic information about the map. The so-called simplicity bias bound (1) 
holds for computable maps f where the number of inputs NI is much greater than the number of outputs NO and 
the map f is simple, meaning that asymptotically K f K n K x( ) ( ) ( ) (1)+ +   for a typical output x, where n 
specifies the size of NI, e.g. NI = 2n. It is important to distinguish the map f (which we assume is simple) and the 
initial conditions15, i.e. a program for x (which may or may not be simple).

Equation (1) typically works better for larger NI and NO. Approximating the true Kolmogorov complexity also 
means that the bound shouldn’t work for maps where a significant fraction of outputs have complexities that are 
not qualitatively captured by compression based approximations. For example many pseudo random-number 
generators are designed to produce outputs that appear to be complex when measured by compression or other 
types of Kolmogorov complexity approximations. Yet these outputs must have low K(x) because they are gen-
erated by relatively simple algorithms with short descriptions. Nevertheless, it has been shown that the bound 
(1) works remarkably well for a wide class of input-output maps, ranging from the sequence to RNA secondary 
structure map, to systems of coupled ordinary differential equations, to a stochastic financial trading model, to 
the parameter-function map for several classes of deep neural networks13,16,17.

The simplicity bias bound (1) predicts that high P(x) outputs will be simple, and that complex outputs will 
have a low P(x). But, in sharp contrast to the full AIT coding theorem, it doesn’t have a lower bound, allowing low 
K x( )∼  outputs with low P(x) that are far from the bound. Indeed, this behaviour is generically observed for many 
(non-universal) maps13,16 (see also Fig. 1), but should not be the case for UTMs that obey the full coding theorem. 
Understanding the behaviour of outputs far from the bound should shed light on fundamental differences 
between UTMs and maps with less computational power that are lower on the Chomsky hierarchy, and may open 
up avenues for wider applications of AIT in physics.

Results
With this challenge in mind, we take an approach that contrasts with the traditional coding theorem of AIT or 
with the simplicity bias bound, which only consider the complexity of the outputs. Instead, we derive bounds that 
also take into account the complexity of the inputs that generate a particular output x. While this approach is not 
possible for UTMs, since the halting problem means one cannot enumerate all inputs4, and so averages over input 
complexity cannot be calculated, it can be achieved for non-UTM maps. Among our main results, we show that 
the further outputs are from the simplicity bias bound (1), the lower the complexity of the set of inputs. Since, by 
simple counting arguments, most strings are complex4, the cumulative probability of outputs far from the bound 
is therefore limited. We also show that by combining the complexities of the output with that of the inputs, we can 
obtain better bounds on and estimates of P(x).

Whether such bounds nevertheless have real predictive power needs to be tested empirically. Because 
input based bounds typically need exhaustive sampling, full testing is only possible for smaller systems, which 
restricts us here to maps where finite size effects may still play a role13. We test our bounds on three systems, 
the famous RNA sequence to secondary structure map (which falls into the context-free class in the Chomsky 
hierarchy), here for a relatively small size with length L = 15 sequences, a finite state transducer (FST), a very 
simple input-output map that is lowest on the Chomsky hierarchy8, with length L = 30 binary inputs, and finally 
the parameter-function map16,17 of a perceptron18 with discretized weights to allow complexities of inputs to be 
calculated. The preceptron plays a key role in deep learning neural network architectures19. Nevertheless, as can 
be seen in Fig. 1(a–c) all three maps exhibit simplicity bias predicted by Eq (1), even if they are relatively small. 
In ref. 13, much cleaner simplicity bias behaviour can be observed for larger RNA maps, but these are too big to 
exhaustively sample inputs. Similarly, cleaner simplicity bias behaviour occurs for the undiscretised perceptron17, 
but then it is hard to analyse the complexity of the inputs. Figure 1(a–c) shows that the complexity of the input 
strings that generate each output x decreases for further distances from the simplicity bias bound. This is the kind 
of phenomenon that the we will attempt to explain.

To study input based bounds, consider a map f: I → O between NI inputs and NO outputs that satisfies the 
requirements for simplicity bias13. Let f(p) = x, where p is some input program p ∈ I producing output x ∈ O. For 
simplicity let p ∈ {0, 1}n, so that all inputs have length n and NI = 2n (this restriction can be relaxed later). Define 
f−1(x) to be the set of all the inputs that map to x, so that the probability that x obtains upon sampling inputs 
uniformly at random is 

=
−

P x f x( ) ( )
2 (2)n

1
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Any arbitrary input p can be described using the following (1) procedure13: Assuming f and n are given, first 
enumerate all 2n inputs and map them to outputs using f. The index of a specific input p within the set f −1(x) can 
be described using at most f xlog ( ( ) )2

1−  bits. In other words, this procedure identifies each input by first finding 
the output x it maps to, and then finding its label within the set f −1(x). Given f and n, an output x = f(p) can be 
described using K x f n( , ) (1)+  bits13. Thus, the Kolmogorov complexity of p, given f and n can be bounded as: 

≤ + + .−K p f n K x f n f x( , ) ( , ) log ( ( ) ) (1) (3)2
1 

We note that this bound holds in principle for all p, but that it is tightest for K p x K p f n( ) max { ( , )}pmax ≡  for 
p ∈ f −1(x). More generally, we can expect these bounds to be fairly tight for the maximum complexity K p f n( , )max  
of inputs due to the following argument. First note that 

K p f n f x( , ) log ( ( ) ) (1) (4)max 2
1 ≥ +−

because any set of | f −1(x)| different elements must have strings of at least this complexity. Next, 

≤ +K x f n K p f n( , ) ( , ) (1) (5)

because each p can be used to generate x. Therefore: 

K x f n f x K p f nmax( ( , ), log ( ( ) )) ( , ) (1), (6)2
1

max ≤ +−

so the bound (3) cannot be too weak. In the worst case scenario, where ≈ ≈−K p n f x K x f n( ) log ( ( ) ) ( , )max 2
1 , 

the right hand side of the bound (3) is approximately twice the left hand side (up to additive (1)  terms). It is 
tighter if either K(x| f, n) is small, or if K(x| f, n) is big relative to f xlog ( ( ) )2

1− . As is often the case for AIT predic-
tions, the stronger the constraint/prediction, the more likely it is to be observed in practice, because, for example, 
the (1) terms are less likely to drown out the effects.

Figure 1.  The probability P(x) that a particular output arises upon random sampling of inputs versus output 
complexity K x( )∼  shows clear simplicity bias for: (a) A length L = 15 RNA sequence to SS mapping, (b) An FST, 
sampled over all 230 binary inputs of length 30, and (c) A 7-input perceptron with weights discretised to 3 bits. 
The black solid line is the simplicity bias bound (1) (with a and b fit). For all these maps high complexity outputs 
occur with low probability. The outputs are colour coded by the maximum complexity K p n( )max  of the set of 
inputs mapping to output x. Outputs further from the bound have lower input complexities. (d) length L = 15 
RNA, (e) the FST and (d) the perceptron, show the data plotted for the lower bound (8) (black line) with only 
the intercept fit to the data, the slope is a prediction. The orange line is using Eq (8) with a normalised 
probability for a parameter free predictor. Including the complexity of the input through K p n( )max  reduces the 
spread in the data, and so provides more predictive power than K(x) alone.
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By combining with Eq. (2), the bound (3) can be rewritten in two complementary ways. Firstly, a lower bound 
on P(x) can be derived of the form: 

≥ − − − +P x( ) 2 (7)K x f n n K p f n( , ) [ ( , )] (1)

∀ p ∈ f −1(x) which complements the simplicity bias upper bound (1). This bound is tightest for K p n( )max .
In ref. 13 it was shown that ≤ − +P x( ) 2 K x f n( , ) (1)  by using a similar counting argument to that used above, 

together with a Shannon-Fano-Elias code procedure. Similar results can be found in standard works4,20. A key 
step is to move from the conditional complexity to one that is independent of the map and of n. If f is simple, then 
the explicit dependence on n and f can be removed by noting that since K x K x f n K f K n( ) ( , ) ( ) ( ) (1)≤ + + + , 
and ≤ + K x f n K x( , ) ( ) (1) then ≈ +K x f n K x( , ) ( ) (1) . In Eq. (1) this is further approximated as 
K x f n aK x b( , ) (1) ( )+ ≈ +

∼ , leading to a practically useable upper bound. The same argument can be used 
to remove explicit dependence on n and f for K(p| f, n).

If we define a maximum randomness deficit δ = −x n K p n( ) ( )max max , then this tightest version of bound (7) 
can be written in a simpler form as 

P x( ) 2 (8)aK x b x( ) ( ) (1)max≥ δ− + − +
∼

In Fig. 1(d–f) we plot this lower bound for all three maps studied. Throughout the paper, we use a scaled complex-
ity measure, which ensures that K x( )∼  ranges between ≈0 and ≈n bits, for strings of length n, as expected for 
Kolmogorov complexity. See Methods for more details.

When comparing the data in Fig. 1(d–f) to Fig. 1(a–c), it is clear that including the input complexities reduces 
the spread in the data for RNA and the FST, although for the perceptron model the difference is less pronounced. 
This success suggests using the bound (8) as a predictor ≈ δ− −P x( ) 2 K x f n x( , ) ( )max , with the additional constraint 
that ∑xP(x) = 1 to normalise it. As can be seen in Fig. 1(d–f), this simple procedure works reasonably well, show-
ing that the input complexity provides additional predictive power to estimate P(x) from some very generic prop-
erties of the inputs and outputs.

A second, complimentary way that bound (3) can be expressed is in terms of how far P(x) differs from the 
simplicity bias bound (1): 

− ≤ − +P x P x n K p f n[log ( ( )) log ( ( ))] [ ( , )] (1) (9)2 0 2

where P x( ) 2 2K x f n aK x b
0

( , ) ( )= ≈− − +
∼

 is the upper bound (1) shown in Fig. 1(a–c).
For a random input p, with high probability we expect K p f n n( , ) (1)= + 4. Thus, Eqs. (7) and (9) immedi-

ately imply that large deviations from the simplicity bias bound (1) are only possible with highly non-random 
inputs with a large randomness deficit δ x( )max .

In Fig. 2(a–c) we directly examine bound (9), showing explicitly the prediction that a drop of probability P(x) 
by Δ bits from the simplicity bias bound (1) corresponds to a Δ bit randomness deficit in the set of inputs.

Simple counting arguments can be used to show that the number of non-random inputs is a small fraction of 
the total number of inputs21. For example, for binary strings of length n, with NI = 2n, the number of inputs with 
complexity K  =  n − δ is approximately 2−δNI. If we define a set f( )  of all outputs xi that satisfy 

− ≥ ΔP x P(log ( ( )) log ( ))i x2 0 2 ( )i
, i.e. the set of all outputs for which P xlog ( )2  is at least Δ bits below the simplicity 

bias bound (1), then this counting argument leads to the following cumulative bound: 

Figure 2.  Deviation of P(x) from the simplicity bias upper bound (1) increases with increasing randomness 
deficit δ = −x n K p n( ) ( )max max  for (a) L = 15 RNA, (b) L = 30 FST, (c) perceptron with weights discretised to 4 
bits. For the perceptron, all functions with the same P(x) and K(x) are averaged together to reduce scatter. Points 
are colour coded by output complexity K(x). For the upper bound (9) (black line) we fit the intercept, but the 
slope is a prediction, if we treat it as a normalised probability we obtain the orange line which is a direct 
prediction with no free parameters.
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∑ ≤
∈

−Δ+ +P x( ) 2
(10)x f( )

1 (1)

D

O

which predicts that, upon randomly sampling inputs, most of the probability weight is for outputs with P(x) 
relatively close to the upper bound. There may be many outputs that are far from the bound, but their cumulative 
probability drops off exponentially the further they are from the bound because the number of simple inputs is 
exponentially limited. Note that this argument is for a cumulative probability over all inputs. It does not predict 
that for a given complexity K(x), that the outputs should all be near the bound. In that sense this lower bound is 
not like that of the original coding theorem which holds for any output x. See the Supplementary Information for 
an alternative derivation of this bound.

Bound (10) does not need an exhaustive enumeration to be tested. In Fig. 3 we show this bound for a series 
of different maps, including many maps from13. The cumulative probability weight scales roughly as expected, 
implying that most of the probability weight is relatively close to the bound (at least on a log scale).

What is the physical nature of these low complexity, low probability outputs that occur far from the bound? 
They must arise in one way or another from the lower computational power of these maps, since they don’t occur 
in the full AIT coding theory. Low complexity, low probability outputs correspond to output patterns which are 
simple, but which the given computable map is not good at generating.

In RNA it is easy to construct outputs which are simple but will have low probability. Compare two L = 15 
structures S1 = ((.(.(...).).)). and S2 = .((.((...)).))., which are both symmetric and thus have a relatively low com-
plexity K(S1) = K(S2) = 21.4. Nevertheless they have a significant difference in probability, P(S2)∕P(S1) ≈ 560 
because S1 has several single bonds, which is much harder to make according to the biophysics of RNA. Only 
specially ordered input sequences can make S1, in other words they are simple, with K p n( ) 8 6max = . . By contrast, 
the inputs of S2 are much higher at K p n( ) 21 4max = .  because they need to be constrained less to produce this 
structure. This example illustrates how the system specific details of the RNA map can unfavourably bias away 
from some outputs due to a system specific constraint.

Similar examples of system specific constraint for the FST and perceptron can be found in the SI. We hypothe-
sise that such low complexity, low probability structures highlight specific non-universal aspects of the maps, and 
extra information (in the form of a reduced set of inputs) are needed to generate such structures.

Discussion
In conclusion, it is striking that bounds based simply on the complexity of the inputs and outputs can make pow-
erful and general predictions for such a wide range of systems. Although the arguments used to derive them suffer 
from the well known problems – e.g. the presence of uncomputable Kolmogorov complexities and unknown (1) 
terms – that have led to the general neglect of AIT in the physics literature, the bounds are undoubtably success-
ful. It appears that, just as is found in other areas of physics, these relationships hold well outside of the asymptotic 

Figure 3.  The cumulative probability versus the distance from the bound Δ correlates with the the cumulative 
bound (10) (red line) for (a) L = 15 RNA and (b) L = 30 FST (c) Perceptron. (d) fully connected 2 layer neural 
network from16, (e) coarse-grained ordinary differential equation map from13, which describes a circadian 
rhythm model from40, (f) Ornstein-Uhlenbeck financial model from13, (g) L-systems from13, (h) simple matrix 
map from13. The solid red line is the prediction 2−Δ+1 from Eq. (10), the dashed line denotes 10% cumulative 
probability.
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regime where they can be proven to be correct. This practical success opens up the promise of using such AIT 
based techniques to derive other results for computable maps from across physics.

Many new questions arise. Can it be proven when the (1)  terms are relatively unimportant? Why do our 
rather simple approximations to K(x) work? It would be interesting to find maps where these classical objections 
to the practical use of AIT are important. There may also be connections between our work and finite state com-
plexity22 or minimum description length23 approaches. Progress in these domains should generate new funda-
mental understandings of the physics of information.

Methods
RNA sequence to secondary structure mapping.  RNA is made of a linear sequence of 4 different kinds 
of nucleotides, so that there are NI = 4L possible sequences for any particular length L. A versatile molecule, it 
can store information, as messenger RNA, or else perform catalytic or structural functions. For functional RNA, 
the three-dimensional (3D) structure plays an important role in its function. In spite of decades of research, it 
remains difficult to reliably predict the 3D structure from the sequence alone. However, there are fast and accu-
rate algorithms to calculate the so-called secondary structure (SS) that determines which base binds to which 
base. Given a sequence, these methods typically minimize the Turner model24 for the free-energy of a particular 
bonding pattern. The main contributions in the Turner model are the hydrogen bonding and stacking interac-
tions between the nucleotides, as well as some entropic factors to take into account motifs such as loops. Fast 
algorithms based on dynamic programming allow for rapid calculations of these SS, and so this mapping from 
sequences to SS has been a popular model for many studies in biophysics.

In this context, we view it as an input-output map, from NI input sequences to NO output SS structures. This 
map has been extensively studied (see e.g.25–33) and provided profound insights into the biophysics of folding and 
evolution.

Here we use the popular Vienna package26 to fold sequences to structures, with all parameters set to their 
default values (e.g. the temperature T = 37°C). We folded all NI = 415 ≈ 109 sequences of length 15, into 346 dif-
ferent structures which were the free-energy minimum structures for those sequences. The number of sequences 
mapping to a structure is often called the neutral set size.

The structures can be abstracted in standard dot-bracket notation, where brackets denote bonds, and dots 
denote unbonded pairs. For example, ...((. . . .))..... means that the first three bases are not bonded, the fourth and 
fifth are bonded, the sixth through ninth are unbonded, the tenth base is bonded to the fifth base, the eleventh 
base is bonded to the fourth base, and the final four bases are unbounded.

To estimate the complexity of an RNA SS, we first converted the dot-bracket representation of the structure 
into a binary string x, and then used the complexity estimator described below to estimate its complexity. To 
convert to binary strings, we replaced each dot with the bits 00, each left-bracket with the bits 10, and each 
right-bracket with 01. Thus an RNA SS of length n becomes a bit-string of length 2n. As an example, the following 
n = 15 structure yields the displayed 30-bit string 

.. ... .... →((( ))) 000010101000000001010100000000

Because we are interested in exhaustive calculations, we are limited to rather small RNA sequence lengths. 
This means that finite-size effects may play an important role. In13, we compared the simplicity bias bound (1) 
from the main text to longer sequences where only partial sampling can be achieved, and showed much clearer 
simplicity bias is evident in those systems.

Finite state transducer.  Finite state transducers (FSTs) are a generalization of finite state machines that 
produce an output. They are defined by a finite set of states  , finite input and output alphabets   and , and a 
transition function × → ×S I S OT :  defining, for each state, and input symbol, a next state, and output sym-
bol. One also needs to define a distinguished state, S0 ∈  , which will be the initial state, before any input symbol 
has been read. Given an input sequence of L input symbols, the system visits different states, and simultaneously 
produces an output sequence of L output symbols.

FST form a popular toy system for computable maps. They can express any computable function that requires 
only a finite number of memory, and the number of states in the FSTs offers a good parameter to control the com-
plexity of the map. The class of machines we described above is also known as Mealy machines34. If one restricts 
the transition function to only depend on the current state, one obtains Moore machines35. If one considers 
the input sequence to a Moore machine to be stochastic, it immediately follows that its state sequence follows a 
Markov chain, and its output sequence is a Markov information source. Therefore, FSTs can be used to model 
many stochastic systems in nature and engineering, which can be described by finite-state Markov dynamics.

FSTs lie in the lowest class in the Chomsky hierarchy. However, they appear to be biased towards simple out-
puts in a manner similar to Levin’s coding theorem. In particular, Zenil et al.14 show evidence of this by correlat-
ing the probability of FSTs and UTMs producing particular outputs. More precisely, they sampled random FSTs 
with random inputs, and random UTMs with random inputs, and then compared the empirical frequencies with 
with individual output strings are obtained by both families, after many samples of machines and inputs. For both 
types of machines, simple strings were much more likely to be produced than complex strings.

We use randomly generated FSTs with 5 states. The FSTs are generated by uniformly sampling complete ini-
tially connected DFAs (where every state is reachable from the initial state, and the transition function is defined 
for every input) using the library FAdo36, which uses the algorithm developed by Almeida et al.37. Output symbols 
are then added to each transition independently and with uniform probability. In our experiments, the inputs are 
binary strings and the outputs are binary strings of length L = 30. The outputs for the whole set of 2L input strings 
are computed using the HFST library (https://hfst.github.io/). Not all FSTs show bias, but we have observed that 

https://doi.org/10.1038/s41598-020-61135-7
https://hfst.github.io/


7Scientific Reports |         (2020) 10:4415  | https://doi.org/10.1038/s41598-020-61135-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

all those that show bias show simplicity bias, and have the same behavior as that shown in Fig. 1 for low complex-
ity - low probability outputs.

We can see why some simple outputs will occur with low probability by considering system specific details of 
the FST. For an FST, an output of length n which is n/2 zeros followed by n/2 ones is clearly simple, but we find 
that it has a low probability. We can understand this intuitively as follows. Producing such a string requires the 
"counting” up to n/2 to know when to switch output, and counting requires a memory that grows with n, while 
FSTs have finite memory. We can also prove that, for instance, an FST that only produces such strings (for any n) 
is impossible. The set of possible strings that an FST can produce comprises a regular language, as constructed 
by using the output symbols at each transition as input symbols, giving us a non-deterministic finite automaton. 
Finally, using the pumping lemma38, it is easy to see that this family of strings isn’t a regular language.

Perceptron.  The perceptron18 is the simplest type of artificial neural network. It consists of a single linear 
layer, and a single output neuron with binary activation. Because modern deep neural network architectures are 
typically made of many layers of perceptrons, this simple system is important to study17. In this paper we use per-
ceptrons with Boolean inputs and discretized weights. For inputs x ∈ {0, 1}n, the discretized perceptron uses the 
following parametrized class of functions: 

f x w x b1( ) ( ),w b, = ⋅ +

where w ∈ {−a, a + δ, …, a − δ, a}n and b ∈ { − a, a + δ, …, a − δ, a} are the weight vector and bias term, which 
take values in a discrete lattice with D := 2a/δ + 1 possible values per weight. We used D = 2k, so that each weight 
can be represented by k bits, and a = (2k − 1)/2, so that δ = 1. Note that rescaling all the weights w and the bias b 
by the same fixed constant wouldn’t change the family of functions.

To obtain the results in Fig. 1, for which n = 7, we represented the weights and bias with k = 3 bits. We 
exhausitvely enumerated all 23(7+1) possible values of the weights and vectors, and we counted how many times 
we obtained each possible Boolean function on the Boolean hypercube {0, 1}7. The weight-bias pair was repre-
sented using 3 × (7 + 1) = 24 bits. A pair (w, b) is an input to the parameter-function map of the perceptron. The 
complexity of inputs to this map can therefore be approximated by computing the Lempel-Ziv complexity of the 
24-bit representation of the pair (w, b).

In Fig. 4, we compare the simplicity bias of a perceptron with real-valued weights and bias, sampled from a 
standard Normal distribution, to the simplicity bias of the perceptron with discretized weights. We observe that 
both display similar simplicity bias, although the profile of the upper bound changes slightly.

For the perceptron we can also understand some simple examples of low complexity, low probability outputs. 
For example, the function with all 0s except a 1, for the inputs (1, 0, 0, 0, 0, 0, 0) and (0, 1, 0, 0, 0, 0, 0) has a similar 
complexity to the function which only has 1s at the inputs (1, 0, 0, 0, 0, 0, 0) and (0, 1, 1, 1, 1, 1, 1). However, the latter 
has much lower probability. One can understand this because if we take the dot product of a random weight vector w 
with two different inputs x1 and x2, the results have correlation given x1 ⋅ x2∕(||x1||||x2||). Therefore we expect the input 
(0, 1, 1, 1, 1, 1, 1) to be correlated to more other inputs, than (0, 1, 0, 0, 0, 0, 0), so that the probability of it having a 
different value than the majority of inputs (as is the case for the second function) is expected to be significantly lower.

Figure 4.  Methods: Probability versus complexity ∼K x( ) (measured here as CLZ(x) from Eq. (11) shows 
simplicity bias in the perceptron for (a) full continuous weights and (b) with discretised weights (as in Fig. 1 of 
the main text). Since weights and biases are real-valued in (a) it is not straightforward to measure the 
complexity of the inputs. It is, of course, possible to do so for the discretised weights of (b).
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Methods to estimate complexity ( )K̃ x .  There is a much more extensive discussion of different ways to 
estimate the Kolmogorov complexity in the supplementary information of13 and16. Here we use compression 
based measures, and as in these previous papers, we these are based on the 1976 Lempel Ziv (LZ) algorithm39, but 
with some small changes: 

=






=

... + ...
C x

n x
n N x x N x x

( )
log ( ), 0 or 1
log ( )[ ( ) ( )]/2, otherwise (11)

LZ

n n

w n w n

2

2 1 1

Here Nw(x) is the number of code words found by the LZ algorithm. The reason for distinguishing 0n and 1n is 
merely an artefact of Nw(x) which assigns complexity K = 1 to the string 0 or 1, but complexity 2 to 0n or 1n for 
n ≥ 2, whereas the Kolmogorov complexity of such a trivial string actually scales as nlog ( )2 , as one only needs to 
encode n. In this way we ensure that our CLZ(x) measure not only gives the correct behaviour for complex strings 
in the →∞lim n , but also the correct behaviour for the simplest strings. In addition to the nlog ( )2  correction, taking 
the mean of the complexity of the forward and reversed strings makes the measure more fine-grained, since it 
allows more values for the complexity of a string. Note that CLZ(x) can also be used for strings of larger alphabet 
sizes than just 0/1 binary alphabets.

To directly test the input based measures we typically need fairly small systems, where the LZ based meas-
ure above may show some anomalies (see also the supplementary information of13 for a more detailed descrip-
tion). Thus, for such small systems, or when comparing different types and sizes of objects (e.g. RNA SS and 
RNA sequences) a slightly different scaling may be more appropriate, which not only accounts for the fact that 
CLZ(x) > n for strings of length n, but also the lower complexity limit may not be ~0, which it should be (see 
also the discussion in the supplementary information of13). Hence we use a different rescaling of the complexity 
measure 

K x N C x C x
C x C x

( ) log ( ) ( ) min( ( ))
max( ( )) min( ( )) (12)O

LZ LZ

LZ LZ
2= ⋅

−
−

∼

which will now range between K x N n0 ( ) log ( )O2≤ ≤ =
∼  if for example NO = 2n. For large objects, this different 

scaling will reduce to the simpler one, because C x C xmax( ( )) min( ( ))LZ LZ .
We note that there is nothing fundamental about using LZ to generate approximations to true Kolmogorov 

complexity. Many other approximations could be used, and their merits may depend on the details of the prob-
lems involved. For further discussion of other complexity measures, see for example the supplementary informa-
tion of refs. 13,16.

Data availability
The data that support the findings of this work are available from the corresponding authors upon request.
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