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Abstract
Accurate segmentation of the vertebrae from medical images plays an important role in computer-aided diagnoses (CADs). It
provides an initial and early diagnosis of various vertebral abnormalities to doctors and radiologists. Vertebrae segmentation is
very important but difficult task in medical imaging due to low-contrast imaging and noise. It becomes more challenging when
dealing with fractured (osteoporotic) cases. This work is dedicated to address the challenging problem of vertebra segmentation.
In the past, various segmentation techniques of vertebrae have been proposed. Recently, deep learning techniques have been
introduced in biomedical image processing for segmentation and characterization of several abnormalities. These techniques are
becoming popular for segmentation purposes due to their robustness and accuracy. In this paper, we present a novel combination
of traditional region-based level set with deep learning framework in order to predict shape of vertebral bones accurately; thus, it
would be able to handle the fractured cases efficiently. We termed this novel Framework as BFU-Net^ which is a powerful and
practical framework to handle fractured vertebrae segmentation efficiently. The proposed method was successfully evaluated on
two different challenging datasets: (1) 20 CT scans, 15 healthy cases, and 5 fractured cases provided at spine segmentation
challenge CSI 2014; (2) 25 CT image data (both healthy and fractured cases) provided at spine segmentation challenge CSI 2016
or xVertSeg.v1 challenge. We have achieved promising results on our proposed technique especially on fractured cases. Dice
score was found to be 96.4 ± 0.8% without fractured cases and 92.8 ± 1.9% with fractured cases in CSI 2014 dataset (lumber and
thoracic). Similarly, dice score was 95.2 ± 1.9% on 15 CT dataset (with given ground truths) and 95.4 ± 2.1% on total 25 CT
dataset for CSI 2016 datasets (with 10 annotated CT datasets). The proposed technique outperformed other state-of-the-art
techniques and handled the fractured cases for the first time efficiently.

Keywords Vertebral osteoporotic fracture . Vertebrae segmentation . Computer-aided diagnosis . Medical image analysis . Deep
learning

Introduction

The vertebral column has an amazing complex structure
which performs numerous functionalities for the body. It

provides stability, protects the spinal cord, and helps in overall
body movement [1]. It extends from the skull to the pelvis and
comprised of 33 individual bones. Normally human vertebral
column has five curves. Cervical is comprised of two curves,
one is upper cervical curve and other is lower cervical curve.
Thoracic has one concave curve which extends from T2 to
T12. Lumber has a single convex curve, and the last one is
sacral curve. These curves provide balance, absorption, flexi-
bility, and distribution to overall body [2]. The cervical spine
(neck) comprises seven bones (C1–C7). Thoracic spine
(chest) has 12 bones (T1–T12). Lumbar spine (low back) con-
sists of 5 bones (L1–L5). Sacrum and coccyx comprises the
fused part. Figure 1 presents the labeled diagram of vertebral
column.

Various abnormalities are related to human vertebral col-
umn like vertebral scoliosis [3], lumbar canal stenosis, verte-
bra degeneration [4], and osteoporotic vertebral compression
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fractures [5]. Out of these mentioned abnormalities, rapid in-
crease in the ratio of osteoporotic vertebral fracture is an
alarming situation worldwide. According to [6], annually 8.9
million vertebral fractures are caused by osteoporosis, which
can be interpreted as, after every 3 s, a vertebral fracture is
caused by osteoporosis in the world. Other statistics show that
one out of three women and one out of five men above
50 years of age experience vertebral fracture in the world [7].

Osteoporosis is a condition in which bone mass is lowered
and microlevel internal changes occurred in the bone tissues
which make the bone fragile and may lead to fracture [5].
Vertebral osteoporosis is a condition of weakening and
narrowing of vertebral bone due to osteoporosis, which is a
cause of vertebral fracture. Figure 2 demonstrates the fracture
of vertebral bone with arrows.

Vertebral fractures are the most common fracture which
can be seen at early stage. Untreated vertebral fracture can
lead to another fracture and may extend up to hip if remained
untreated [8]. Figure 3 demonstrates percentage comparison
of death cases with various osteoporotic fractures in men and
women in 2010 on the data of around 30 different countries of
the world [9]. All patients were 50 plus in age. It can be seen
that hip fractures were causedmore than vertebral fracture, but
it should be noted that hip fracture is also an extension of
uncured vertebral fracture [8].

With the help of the World Health Organization diagnostic
criteria, future osteoporotic fractured cases were estimated by
[9]. This estimation is drawn in Fig. 4, stratified by 5-year
gaps till 2025. This is an increase rate of osteoporotic fracture
between 60 and 64 years of age with the WHO statistics. This
current situation is no doubt alarming and requires immediate

measures to prevail this disease as it may lead to back pain,
height loss, and various other complications [10].

In order to assist radiologists and clinicians, computer-
aided diagnosis (CAD) provides an initial and important tool
for various medical disorders like vertebral deformities. In
clinical practice, CAD serves as an additional support for the
doctors and radiologists [11]. It increases the efficiency of
overall diagnostic system and saves the decision frommedical
error. The performance of CAD system is very important as it
would directly affect the process of clinical decision making
and the treatment.

CAD for vertebral disorders like osteoporotic fracture is
indeed a challenging task due to complexity in its shape,
low-contrast imaging, noise, and variation in field of views
in radiological scans. Accurate diagnosis of osteoporotic ver-
tebral fractures requires a strong and powerful vertebral seg-
mentation algorithm to make the detection process efficient.

Various radiological scans are acquired like CT, MRI, and
X-ray for the clinical diagnosis [11, 12]. These scan are per-
formed in routine as a key element for the management of the
patients subjected to various abnormalities. However, the pa-
tients subjected to vertebral disorders like osteoporotic verte-
bral fractures also need these radiological scans for their diag-
nosis. The selection of specific radiological scan is dependent
on complexity and severity of patient’s disease. After acquir-
ing the appropriate radiological scan, it would be helpful for
the radiologist to have better visualization of that scan or with
some automatic abnormality detection. In this way, CAD is a
helpful tool in radiological or clinical practice.

Previously, the problem of vertebrae segmentation was ad-
dressed with various traditional imaging techniques. Some of
them are also reviewed in our literature review section.

Fig. 2 Osteoporotic vertebral fractures are shown in a and b with arrows

Fig. 1 Human vertebral column
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Recently, deep learning–based techniques like convolutional
neural networks and recurrent neural networks have proved
state-of-the-art performance in many computer vision and
medical image analysis tasks [11, 12, 26].

Convolutional neural network architectures like U-Net is a
famous encoder-decoder network used for semantic segmen-
tation [13]. It is an efficient framework for the subject seg-
mentation but when dealing with large shape complexity, it
has some limitations. U-Net performance may get worse in
dealing with data of high topological shape variations. So, in
such cases, we require an additional shape predictor to use
with U-Net architecture in order to achieve appropriate seg-
mentation results.

In this paper, the subject problem is addressed with the
addition of region-based variational level set [14] in deep
learning network. Level set–based methods [14] were previ-
ously used for various medical imaging and other segmenta-
tion tasks. These methods work on active contour models [15]
and require an initialization to start the algorithm. Once the
level set is initialized, the curve evolution will start and it will

expend or shrink itself iteratively to approach the desired
curve. Level sets can be further categorized in to two divi-
sions. One is edge-based level sets, which use edge-based
information to follow the aforementioned procedure and per-
form segmentation tasks. Other is region-based level sets (also
called variational level sets), which use region-based approach
instead of finding geometric boundaries to capture the geo-
metric shapes accurately.

We have proposed a novel framework by unification of
traditional region-based (variational) level set with a deep net-
work. We termed the framework as BFU-Net.^ The combina-
tion of region-based level set with deep network provides us
two-way advantage in one system. In this system, initially, the
network is trained on the training dataset and then the
pretrained network is given the input image to predict a prob-
ability output which is fed to the level set. The level set ini-
tializes with this probability output and iteratively updates the
shape till desired. The improved output is then fed to the loss
function which re-updates the weights and trains the network
in a more efficient way. The final trained network is then
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available for testing. The main highlights of our system are as
follows:

& Our work is a bridge between traditional level set method
and current deep learned approach getting two-way
benefits.

& We have formulated curve evolution using region-based
level set under deep learned framework in order to im-
prove the shape-based quality of fractured bone cases in
vertebrae segmentation; thus, we called our network as
FU-Net.

& Region-based deep level set provides high-level shape ac-
curacy required in fractured cases which is not provided
by simple U-Net architecture.

& With best of our knowledge, we are the first one to target
vertebral fractured (osteoporotic) cases of CSI 2014 chal-
lenge with deep learning technique and achieved good
results.

& Our algorithm is robust over multiple challenging
datasets.

& Our overall results outperformed with other state of the
arts, and our framework is baseline for various other med-
ical imaging tasks.

The rest of the paper is organized as: In the BLiterature
Review^ section, literature review is presented for both con-
ventional and deep learning approaches used for vertebrae
segmentation. The BMethodology^ section presents our pro-
posed methodology. The experiments and implementation de-
tails are given in the BExperiments^ section. In the BResults^
section, results are presented along with comparison bench-
marks. Lastly, the BDiscussions and Conclusions^ section
gives the conclusions and discussions on our work followed
by the future directions.

Literature Review

In the past decades, various traditional segmentation tech-
niques were proposed to address vertebra segmentation prob-
lem. For instance, Mahmoudi and Benjelloun et al. [16] per-
formed X-ray vertebrae segmentation by applying conven-
tional machine vision technique to find vertebral bone con-
tours. These contours were used finally to get bone region
segmentation. Klinder et al. [17] developed an automatic
two-scale model-based approach for vertebrae segmentation.
Global model used local vertebrae coordinate system to store
vertebral bones shape and triangulated surface mesh was used
to provide the shape information for local vertebral models.
Fractured vertebrae segmentation was addressed by Roberts
et al. [18] using active appearance model (AAM). The dataset
used was computed radiographs of lumbar vertebrae of frac-
tured cases taken from local hospital. The model was

implemented in parts for different vertebral corners. The re-
sults achieved for fractured cases were satisfactory but not
optimal. Benjelloun et al. [19] segmented cervical X-ray ver-
tebrae using active shape model (ASM). A dual-model and
dual-mode application is presented. The segmentation process
was semiautomatic in which two points were manually creat-
ed and used to initialize ASM search process for the subject
segmentation. Mysling et al. [20] proposed an automatic
framework to avoid manual initialization process of ASM
for vertebral segmentation process.

In addition to these techniques, level set methods were also
used by researchers for the subject segmentation, which are
based on active contour model (ACM) [15]. For instance, Liu
et al. [21] used level set–based method for segmentation of CT
vertebrae images in sagittal, coronal, and axial domain. Hille
et al. [22] used hybrid level set to perform segmentation of
thoracic and lumbar vertebrae in MRI images. Rastgarpour
et al. [23] combined local region-based level set with fuzzy
cluster variation to address the solution of in-homogeneity in
medical images for segmentation.

In contrast with conventional segmentation techniques
which were primarily used for vertebra segmentation, deep
learning techniques have achieved better performance and re-
placed these conventional techniques. For instance,
Sekuboyina et al. [24] performed multiclass segmentation of
lumber region using fully convolutional network (FCN).
Initially, lumbar vertebrae localization is performed using
multilayered perceptron, which performs nonlinear regression
with global context. After localization, segmentation and la-
beling of lumbar vertebrae is performed using FCN. Later,
Sekuboyina et al. [25] implemented 2D FCN for low-
resolution localization of vertebrae and 3D FCN for high-
resolution binary segmentations. Final segmentation map is
obtained with the fusion of both networks. Janssens et al.
[26] developed a framework for localization and segmentation
of lumbar vertebrae using two consecutive fully convolutional
neural networks. Lumbar region is initially localized with the
bounding box, and then, lumbar vertebrae segmentation is
carried out with the labeling of voxels. Lessmann et al. [27]
combined instance memory with fully FCN and analyzed im-
age patches in an iterative way to get vertebrae segmentation.
Lessmann et al. [28] further improved his framework and
evaluated performance on diverse and multimodal datasets.
Lessmann et al. [28] used a memory component and perform
instance segmentation to store information in the memory.
The patches were iteratively analyzed by the network using
that memory. In addition to segmentation, various other tasks
like vertebral visibility prediction and vertebrae labeling were
also performed.

The aforementioned methods discussed are relied on deep
convolutional neural networks for vertebrae segmentation.
However, many of these methods do not have specialty to
handle fractured cases as osteoporotic vertebral fracture is a
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very common abnormality in aged people. The basic differ-
ence of osteoporotic bone to a normal one is the narrowing of
bone which can be handled with an addition of a shape pa-
rameterization term in the learning network of U-Net. For this
purpose, Al Arif et al. [29] worked on segmentation of cervi-
cal X-ray images with an addition of a shape aware term in 2D
convolutional neural network. This shape aware term is added
in pixel-wise loss function during the network training. The
term will take the Euclidean distance of predicted shape with
the reference shape in order to achieve accuracy in segmented
shape of cervical bones. However, this strategy simply finds
the mean shape between predicted and the reference shape and
unable to get high level of shape accuracy which is desired to
get fractured vertebrae segmentation.

As discussed above, shape parameterization is missing in
learning network to extract with high-level topological chang-
es in shapes. For this purpose, level set–based approaches may
be beneficial. Previously, these approaches were used for
high-level shape extraction for various machine vision and
medical imaging tasks [14, 21–23]. These techniques are
based on active contour models [15]. One the difficulties in
these techniques is the initialization, i.e., zero level set. Once
they are initialized, the process of curve evolution starts. In
this way, they iteratively approach the desired shape. The idea
of combining classical level sets in deep learning network was
studied and implemented by [30]. More specific for medical
imaging, Ngo et al. [31] successfully solved the problem of
left ventricle segmentation by combining classical level sets
with deep learning network.

Methodology

We present a vertebral segmentation framework that is robust
towards the complexity of shape, especially for vertebral os-
teoporosis. Themethod is based on the modified version of U-
Net with optimized shape prediction. Our framework FU-Net
is robust over different datasets and variations in vertebral
shapes like in fractured cases. The proposed framework is
presented in Fig. 5. In comparison with existing methods of
literature, our proposedmethod captures the shape of vertebral
bones precisely and efficiently.

Network Architecture

U-Net architecture is a BU^-shaped network comprised of
contraction on the left side and expansion on the right side.
Our segmentation network architecture is inspired by the U-
net architecture [13] with a little bit modifications like we have
kept uniform input and output dimensions (128 × 128) with
the addition of padding in convolutional layers. On left side,
i.e., contraction, our network has total nine convolutional
layers and each follows a batch normalization and rectified

linear unit layer (ReLU). After two consecutive convolutional
layers, pooling layers of size 2 × 2 are used in order to reduce
the dimension of image data on contraction side. The first
pooling layer reduces dimensions to 64 × 64, second reduces
to 32 × 32, and the third reduces to 16 × 16. On the right side,
i.e., expansion, deconvolutional layers of size 2 × 2 are ap-
plied after each two consecutive convolutional layers to in-
crease the image dimensions in an opposite way as applied in
the contracting path. In order to avoid information loss in max
pooling operation, after each expansion, concatenation is done
between data in contracting path and data in expending path
correspondingly. The overall systemwill take a single-channel
input of 128 × 128 size vertebrae patch and vertebrae mask of
same dimension is predicted as two channel output in proba-
bilistic way. Figure 6 demonstrates the segmentation network.

DLS Formulation

In this section, wewill present the traditional level set and then
formulate under the deep network. As described before, vari-
ational or region-based level sets capture the shape of objects
accurately instead of finding their geometric boundaries. For
this purpose, Chan and Vese method [14] is a well-known
traditional method used for image segmentation especially in
medical imaging. Chan and Vese introduced energy functional
as

E m1;m2; ρð Þ ¼ μ∫γP ρð Þdxdyþ v∫γQ ρð Þ ∇ ρð Þj jdxdy

þ ∫γ φ1 I−m1j j2P ρð Þ þ φ2 I−m2j j2 1−P ρð Þð Þ
� �

dxdy

ð1Þ

where BI^ is the input image, m1 and m2 are contours and ρ is
the zero level set for initialization, and γ is the image
domain Ix, y. P (ω) and Q (ω) are the functions of length and
area, respectively, and μ, v,φ1, andφ2 are positive parameters.

The minimization problem is given as

minm1;m2;ρE m1;m2; ρð Þ ð2Þ

Heaviside function and regularization are given in [14].
The expression for inside and outside contours is given as

m1 ¼ ∫γ I x;yP ρtð Þdxdy
∫γP ρtð Þdxdy &m2 ¼ ∫γ Ix;y 1−P ρtð Þð Þdxdy

∫γ 1−P ρtð Þð Þdxdy ð3Þ

The gradient decent of ρ can be found with fixedm1 andm2

as

∂ρt
∂t

¼ Qσ

�
ρ
h
vτ ρt−μ−φ1 I−m1ð Þ2 þ φ2 I−m2ð Þ2

i� �
ð4Þ

Here, curvature τ can be found by τ ρtð Þ ¼ −div ∇ρt
j∇ρt j

� �
:
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The curve will be updated will with the help of following
expression:

ρtþ1 ¼ ρt þ η
ρt
∂t

ð5Þ

In this way, the level set updates itself in time t + 1 from the
previous level set at time t and evolves the contour ρt

∂t with
learning rate η.

Proposed Framework

Figure 5 shows the pipeline of our proposed framework
for vertebrae segmentation. FU-net architecture presented
above has been used as segmentation network. The net-
work takes 128 × 128 size vertebrae patch as an input and
predicts binary patch of same size as an output. Initially,
the network is trained on the ground truths. Then, the
pretrained network gives the input image to produce a
probability output. The probability output of the learned
network is then fed to level set, which further improves
the shape and forward the improved output to the loss
function for weight updating. In this way, segmentation
is performed by deep network with use of an additional
benefit of level set shape predictor.

Region-based level set gives big advantage when
reforming in the deep framework. It helps in refining the
shape of bones iteratively. In Eq. 1, BI^ is the input image,
ρ is the probabilistic predicted output of pretrained net-
work given as zero level set. So, in the training phase,
input images are fed to our pretrained network, the net-
work predicts a probabilistic output. This output predic-
tion is given again as input to level set for initialization as
zero level set. Once level set is initialized, the curve evo-
lution process will start in an iterative way following the
Eqs. 4 and 5. The function ρt evolves the curve in time t
using Eq. 4. Level set updates the shape in iterations
using Eq. 5 till the desired level. At each time increment
t + 1, level set updates itself from previous level set at
time t. Similarly, curve evolution ρt

∂t is done iteratively
over time with a learning rate η. This process will contin-
ue till the desired output is achieved. The iterations were
stopped on experimental basis and fixed for the particular
dataset (average of 100). In this way, the network is
trained again with level set. After this process, the output
of level set is fed to loss function, where weights are
updated in order to train the network properly.

The trained network is then available for testing. In order to
test the trained network, vertebra patch is given at the input
side. Segmented binary masks are available at the output side
from the trained network.

Fig. 5 System diagram of FU-Net
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Experiments

Datasets

We trained and tested our method on two publically available
challenge datasets, CSI 2014 and xVertSeg.v1. The challenge
organizers also provided the reference ground truths (except
for ten cases of xVertSeg.v1), which helped us to compare our
performance with researches on same datasets. Few images of
these datasets are shown in Fig. 7.

The first dataset contains 20 CT scans, 15 healthy
cases, and 5 fractured cases. This dataset has been provid-
ed at spine segmentation challenge (CSI 2014) Workshop
on Computational Spine Imaging held in MICCAI,
International Conference on Medical Image Computing
and Computer Assisted Intervention 2014 (CSI 2014 chal-
lenge) [32]. The dataset was obtained from the medical
center of University of California, Irvine (Orange, CA,
USA). It consists of CT scans that visualize all thoracic
and lumbar regions of vertebral column. The parameters
of scans and reconstructions include 120 kVp, intravenous
contrast and a slice thickness of 0.7 to 1.0 mm. The scans
were taken with high spatial resolution as a single contin-
uous CT data. The challenge organizers also provided
reference segmentations, which were generated in a

semi-automatic way with manual correction. The healthy
data (15 CT scans) contain cases from young individuals
(16–34 years). The fractured cases (5 CT osteoporotic
cohort) were taken from aged persons (59–82 years).
Each of them has at least one vertebral compression frac-
ture in it.

The second dataset comprises 25 CT scans of lumbar ver-
tebrae (both healthy and fractured cases) provided at spine
segmentation challenge (CSI 2016) Workshop on
Computational Spine Imaging held in (MICCAI)
International Conference on Medical Image Computing and
Computer Assisted Intervention 2016 (CSI 2016 or
xVertSeg.v1 challenge) [33]. This dataset is also known as
xVertSeg.v1 challenge. The slice thickness was between 1.0
and1.9 mm, and in-phase resolution of scan reconstruction
was in between 0.29 and 0.80 mm. The data contain high
variations in field of view, vertebral fractures, and deformities.
For the first 15 cases, the challenge organizers provided ref-
erenced ground truths, but for last the 10 cases, reference
ground truths were not available. Therefore, we annotated
the contours with the help of interactive live wire tool [34].
The annotated contours were evaluated from two clinical ex-
perts (the details are mentioned in acknowledgements).
Finally, binary masks were formed from the annotated con-
tours, which were used for referenced segmentation.

Fig. 6 U-Net architecture. a Segmentation network architecture. b Labels
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Evaluation Metrics

We have used dice score (DS) and mean absolute surface
distance (ASD) in order to evaluate our performance and com-
pare with state of the arts. These evaluation metrics are fre-
quently used in recent works [24, 26, 27]. DS is used to mea-
sure the similarity to evaluate segmentation performance. It is
calculated as [11]

Dice score ¼ 2 j Op∩Gtj
jOpj þ jGtj ð6Þ

where Opis the predicted output and Gt is the reference
ground truth; it is calculated on individual vertebrae and
then averaged over all scans. Similarly, mean ASD is av-
erage minimal distance calculated between two bound-
aries. It is calculated as [32]

ASD ¼ 1

Op
∑Op

i¼1j ∂i Op;Og
� ��� ��j ð7Þ

where Op is the output segmentation surface, Ogis the
reference ground truth surface, and ∂i is the minimum
distance between the two surfaces calculated on vertebrae
in a similar fashion as described for DS.

Implementation Details

Figure 5 presents the system diagram, and Fig. 6 presents the
deep network. Our proposed framework was implemented in
Python using Tensorflow on windows desktop system Intel-(R)
i-7 CPU and 1080 GTX graphics card with GPU memory
8 GB. The training time for CSI 2014 dataset was larger than
xVertSeg.v1 datasets due to the coverage of large number of
bones. The network was trained for 500 epochs, and early
convergencewas achieved successfully. Learning rate was used
in decaying with momentum of 0.9. Dropout between two
consecutive convolutional layers was used as 0.2. All experi-
ments were carried out on 2D sagittal slices after augmentation,
as data augmentation is necessary in order to enhance deep
learning system network performance [13]. We augmented
the datasets using various techniques like scaling, rotations
explained in [35] to increase our training datasets above 5000
images. Finally, the arrangement of training and test sets were
prepared with respect to state-of-the-art works in order to com-
pare our segmentation performance with them. While dealing
with the fractured case, we have prepared an arrangement for
better learning of our system on fractured cases.

Our network, i.e., FU-Net, is a modified version of U-Net
with level set combined with the network for better shape
prediction for segmentation. This level set is initialized with
the probability output of segmentation network, and it updates
the shape of vertebral bones iteratively till desired

Fig. 7 Examples of datasets. a
CSI 2014 Data Set. b CSI 2014
Dataset with fractured bone. c
CSI 2016 Dataset with fractures
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segmentation is achieved. The shape is updated iteratively
using ρtþ1 ¼ ρt þ ηρt∂t (Eq. 5). For testing the data from final
trained network, the processing time for the subjects depend
on total slices that varied from 30 to 150 s. The use of level set
with deep learning has a great significance for segmentation of
fractured cases, where the bones vary in shape. However, it
also works well for normal healthy cases of vertebrae segmen-
tation. In order to validate our proposed framework, we have
compared our results with state-of-the-art techniques in the
BResults^ section.

Results

Segmentation Performance

MICCAI CSI 2014 CT dataset is comprised of thoracic
and lumbar vertebrae. For the first 15 scans, it contains all
hea l thy cases and las t f ive conta ins f rac tu red
(osteoporotic) cases. Our algorithm smoothly handled
normal cases. As far as fractured (osteoporotic) cases are
concerned, our algorithm also performed better results.
The last five fractures cases were not yet segmented with
deep learning techniques with previous researchers. We
are the first one to handle them with iterative level set
approach combined with deep network. The DS for 15
CT cases was found to be 96.4 ± 0.8 and for all 20 cases
(included fractured cases) was found to be 92.8 ± 1.9. The
segmentation results are shown in Fig. 8.

The second dataset, i.e., CSI 2016 (xVerSeg.v1) dataset, is
rich in field of views and variations in shape like fractures and
other deformities. This data can be divided in to two catego-
ries. The first one contains 15 CT datasets with reference
segmentations given, and the second one contains 10 CT
datasets without reference segmentations. For the second part,
we have done in-house procedure to get reference segmenta-
tions as described in dataset section. The DS for 15 CT
datasets was found to be 95.2 ± 1.9 and dice score for total
25 CT datasets was 95.4 ± 2.1. The segmentation results show
that DS increased with the increase in training data. The seg-
mentation results of xVertSeg datasets are shown in Fig. 8.

In comparison with other vertebrae segmentation tech-
niques, our proposed level set–based deep learning technique
performed better in accuracy of segmentation results.
Tables 1, 2, 3, 4, and 5 show the detailed comparisons of
our results with the others.

Comparison of Other Methods on MICCAI CSI 2014
Challenge Datasets

As we have taken the use of level set to optimize the shape,
our proposed technique achieved good DS. Table 1 shows the

results of 15 CT datasets of CSI 2014 (healthy cases). The
challenge winner [32] achieved DS 94.7 ± 00%. Lessmann
et al. [27, 28] used instance memory in deep network and
adapted various schemes to get some improvements in DS.
The results are presented in Table 1 which shows that com-
bining level set in deep learning improves the accuracy in
segmentation results.

Least work is done in fractured cases. To the best of
our knowledge, we are the first to handle fractured cases
with deep learning. In order to train the segmentation
network properly for fractured cases, we have divided five
fractured cases in to two categories, i.e., (2 cases + 3
cases). Similarly, healthy cases are also divided in two
categories, i.e., (13 cases + 2 cases). Finally, the former
healthy and fractured cases were combined and used for
training, and later, healthy and fractured cases were com-
bined and used for testing. Table 2 presents the results for
all 20 cases (including fractured cases)

Fig. 8 Segmentation results of our proposed system (a, b). Results of CSI
2014 CT dataset. c Result from fractured case from CSI 2014 dataset
(cropped for better visualization); arrow shows the fractured bone. d
Result of xVertSeg.v1 dataset. e Result of fractured case of xVertSeg.v1
dataset with arrow, pointing the fractured bones
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Comparison of Other Methods on MICCAI CSI 2016
Challenge Datasets

It is difficult to handle CSI 2016 dataset due to large variations
in dataset, but the results were good. In order to compare our
results with state of the arts, we have made three arrangements
of dataset for training and testing; these arrangements are de-
scribed and used in Tables 3, 4, and 5.

Table 3 shows the performance comparison of 15 healthy
cases. In order to compare with Lessmann et al. [28], we have
taken ten cases for training and five cases for testing purpose.
The results show some improvement with use of variational
level set in deep learning.

Janssens et al. [26] used the same dataset and performed
leave three out cross-validation. In each time, 3 out of 15 cases
were randomly chosen for testing and the remaining 12 were
left for training, and this method was repeated for five times.
In order to perform a rough comparison, we have randomly
chosen three cases for testing in a similar fashion and the
remaining 12 were used for the training purpose. The results
are presented in Table 4.

As described in dataset section, reference ground truths
of 10 out of 25 datasets were not given by the challenge
organizers. These datasets are also considered for research
with in-house ground truth formation scheme described
before. The complete 25 scans were used as 15 for train-
ing and 10 for testing. The similar fashion was adapted by
Sekuboyina et al. [24]. The results are presented in
Table 5. A little bit increase in DS and decrease in surface
density were recorded due to the increase of training
dataset in our system.

Discussions and Conclusions

Discussions

This paper presents a novel combination of region-based level
set technique with deep convolutional neural network.
Region-based level set is based on active contour model
which is used to extract region-based information (Vese and
Chan et al. [14]). Region-based level set (Vese and Chan) is a
very popular traditional method used for medical image seg-
mentation. In similar way, convolutional neural networks are
also used in recent years for medical image segmentation. We
have taken the advantage of both techniques in a single
framework.

Segmentation of vertebral fractures from images was
neglected by recent researchers. Fractured cases require
optimized shape prediction which is not provided by sim-
ple convolutional neural network. Level set–based
convolutional neural network can handle these cases in a
better way. Level set once initialized, performs iterations
in a hidden way and improves the shape of bones. This
process iteratively converge the shape of bones till the
desired segmentation.

Figure 9 gives the box and whisker plot on the evalu-
ation set of CSI 2014 dataset including fractured cases.
The plot is drawn on DS per vertebrae at bone level.
Table 2 gives the complete results. It is to be noted that
the segmentation was very tough at upper thoracic and
lower thoracic. This is because the data comprised of aged
persons, and with aging, the bones of upper thoracic start
merging and lose their original shape. Similarly, at lower
thoracic, the plot shows the severe compression fractures
at bones at T10 and T11. The results of lumbar vertebrae
segmentation are more accurate than thoracic vertebrae.

Table 2 Results with comparison of 15 training and 5 testing (including
fractured cases)

Dataset (MICCAI CSI 2014 Challenge) 15
healthy 5 unhealthy (fractured) cases

Dice score
(%)

ASD
(mm)

Challenge winner, J. Yao et al. (2016) [32] 89.7 ± 00 0.64 ± 00

Our proposed technique (FU-Net) 92.8 ± 1.9 0.41 ± 1.8

Table 3 Performance comparison on 15 cases (10 for training and 5 for
testing)

Dataset (xVertSeg.v1 Challenge) 15 cases (10
for training and 5 for testing)

Dice score
(%)

ASD (mm)

Lessmann et al. (2018) [28] 94.6 ± 2.2 0.3 ± 0.2

Our proposed technique (FU-Net) 95.1 ± 1.9 0.32 ± 0.18

Table 4 Performance comparison on 15 cases (12 for training and 3 for
testing)

Dataset (xVertSeg.v1 Challenge) 15 cases
(12 for training and 3 for testing)

Dice score (%) ASD (mm)

Janssens et al. (2018) [26] 95.7 ± 0.8 0.37 ± 0.06

Our proposed technique (FU-Net) 95.2 ± 1.9 0.31 ± 0.18

Table 1 Results with comparison of 10 training and 5 testing cases
(healthy cases)

Dataset (MICCAI CSI 2014 Challenge)
(10 healthy training cases and 5 healthy
testing cases)

Dice score
(%)

ASD (mm)

Challenge winner, J. Yao et al. (2016) [32] 94.7 ± 0.03 0.37 ± 00

Lessmann et al. (2018) [27] 94.8 ± 1.6 0.30 ± 0.1

Lessmann et al. (2018) [28] 96.3 ± 1.3 0.1 ± 0.1

Our proposed technique (FU-Net) 96.4 ± 0.8 0.1 ± 0.05
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As seen from Tables 3, 4, and 5 that the test results are
improved with increase in training data. This shows that the
learning of network is increased with increase in training data.
This has been shown in Fig. 10.

One thing to be noted that Lessmann et al. [28] trained
network on 10 CT data, Janssens et al. [26] trained network
on 12 CT data, and Sekuboyina et al. [24] trained network on
15 CT data, but their dice scores were not increased smoothly

because all of them were using difference techniques for ver-
tebrae segmentation on same dataset.

We have trained and evaluated out framework on two differ-
ent CT datasets. This helped us to check robustness of our pro-
posed method over multiple datasets with variation in field of
view, intensity, and resolutions. We have applied our method on
both datasets without having any modification. The segmenta-
tion is performed smoothly without network overfitting problem

Fig. 9 Box and whisker plot on evaluation set of CSI 2014 dataset (including fractured cases)

Table 5 Performance comparison
of 25 cases (15 for training and 10
for testing)

Dataset (xVertSeg.v1 Challenge) 25 cases
(15 for training and 10 for testing)

Dice score (%) ASD (mm)

Sekuboyina et al. (March 2017) [24] 94.3 ± 2.8 –

Our proposed technique (FU-Net) 95.4 ± 2.1 0.26 ± 0.23

Fig. 10 Mean dice score evaluation on various combinations of training data
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on the dataset. In some cases, our framework may not perform
well but collectively, we have got competitive performance.

Conclusions and Future Directions

This work formulates region-based level set technique
under deep learning framework. This work is also a
bridge to link traditional image processing techniques
with latest deep learning approaches giving two-way ad-
vantage. The framework successfully addresses the prob-
lem of vertebrae segmentation in CT image data. The
region-based level set optimized predicted shape as de-
sired. The shape convergence outperformed especially
when dealing with fractured (osteoporotic) cases. The
results in various ways are assessed and presented which
show that our proposed framework, i.e., FU-Net is com-
petitive over state-of-the-art methods.

In future, we have many directions to extend work in
this domain like multimodal work can be carried out on
X-ray or MRI image datasets. In this way, the perfor-
mance will be evaluated on diverse datasets and it would
be more helpful for diagnosis. In addition to that, the
segmentation results on our dataset were improved with
increase in training data; therefore, training data can be
increased in future to improve the learning of the system.
As we have achieved successful performance on our pro-
posed framework, this framework can be employed in
various other medical imaging tasks to solve the prob-
lems where iterative shape-based approach is required.
Finally, this work may also be extended with unification
of contextual level set in deep network to detect, seg-
ment out, and classify various medical imaging tasks.
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