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Abstract
Speckle noise reduction algorithms are extensively used in the field of ultrasound image analysis with the aim of improving
image quality and diagnostic accuracy. However, significant speckle filtering induces blurring, and this requires the enhancement
of features and fine details. We propose a novel framework for both multiplicative noise suppression and robust contrast
enhancement and demonstrate its effectiveness using a wide range of clinical ultrasound scans. Our approach to noise suppres-
sion uses a novel algorithm based on a convolutional neural network that is first trained on synthetically modeled ultrasound
images and then applied on real ultrasound videos. The feature improvement stage uses an improved contrast-limited adaptive
histogram equalization (CLAHE) method for enhancing texture features, contrast, resolvable details, and image structures to
which the human visual system is sensitive in ultrasound video frames. The proposed CLAHE algorithm also considers an
automatic system for evaluating the grid size using entropy, and three different target distribution functions (uniform, Rayleigh,
and exponential), and interpolation techniques (B-spline, cubic, and Lanczos-3). An extensive comparative study has been
performed to find the most suitable distribution and interpolation techniques and also the optimal clip limit for ultrasound video
feature enhancement after speckle suppression. Subjective assessments by four radiologists and experimental validation using
three quality metrics clearly indicate that the proposed framework generates superior performance compared with other well-
established methods. The processing pipeline reduces speckle effectively while preserving essential information and enhancing
the overall visual quality and therefore could find immediate applications in real-time ultrasound video segmentation and
classification algorithms.

Keywords Ultrasound feature enhancement . Ultrasound despeckling . Contrast-limited adaptive histogram equalization . Image
entropy . Image quality analysis

Introduction

Ultrasound imaging is the preferred diagnostic scanning tech-
nique for identifying abnormalities in human organs and

tissues as it is generally easily available, non-invasive, and
free of any type of harmful radiations [1]. However, ultra-
sound images have very low contrast and are corrupted by
speckle noise. Most ultrasound image processing and analysis
algorithms therefore focus on reducing speckle content, en-
hancing features for better structure visibility and improved
clinical interpretation, and segmenting clinically relevant fea-
tures such as lesions, tumors, and calcification [2–6].

Speckle artifacts affect the contrast and clarity of fine details
and edges making it difficult to detect small and low-contrast
anatomical features in the human body [7, 8]. As speckle reduc-
tion is performed on ultrasound images, it induces blurringwhich
is again an important factor to consider when evaluating the
quality of the processed images. As the distribution of speckle
content varies across frames of an ultrasound video sequence,
processing several frames of a video sequence allows us to get a
better characterization of speckle noise present in the images. The
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image contrast also varies in consecutive frames depending on
the physical movement of anatomical parts and the acquisition
model used. Several studies have been reported over the recent
past for the filtering of Gaussian additive noise from natural
video sequences [9, 10], but not much work has been addressed
on real medical ultrasound video despeckling. A research group
[11–13] has performed an extensive comparative analysis of var-
ious well-established filtering techniques for ultrasound video
frame processing using scans of common carotid arteries
(CCA). Their study focused on only one kind of ultrasound video
sequence and did not consider feature enhancement after the
despeckling stage. It is important to include a feature enhance-
ment step, as filtering may induce blurring of certain features in
output frames that are clinically relevant. The main contribution
of our study is that it has used videos of several anatomical
structures for proving the efficacy of the developed methods. A
speckle reduction filter for ultrasound video communication sys-
tem was also proposed in [14]. This study has shown the poten-
tial of the despeckling filter prior to the compression and trans-
mission of ultrasound videos, without compromising the clinical
quality. They have compared threewell-established filtering tech-
niques that are linear, median, and speckle reducing anisotropic
diffusion filtering and demonstrated that linear filtering is a suit-
able approach for the presented application. In [15], a fast spatial
and spatiotemporal filtering method for multiplicative noise sup-
pression was proposed specifically for ultrasound images and
videos. Our work extends the process of despeckling with the
addition of a feature enhancement step.

The main contribution of our work in the area of speckle
filtering is that it proves the feasibility and effectiveness of
using powerful convolutional neural network–based speckle
removal techniques that have been previously used in the field
of synthetic aperture radar imaging system [16]. In order to
adopt the above technique to the domain of ultrasound video
analysis, we use a completely novel approach of training the
network using both noise-free and noisy versions of syntheti-
cally modeled ultrasound images, and applying the trained
network on real ultrasound image frames. Extensive quality
analysis of synthetic images has been carried out to ensure that
their intensity and texture characteristics match with real ultra-
sound images, to justify their use in the training phase. The
feasibility of the above approach was further verified by sub-
jective evaluation of the quality of the speckle-reduced real
ultrasound frames.

Histogram equalization methods [17] have been widely used
in the field of image processing for improving both contrast and
structure visibility. These methods make use of the overall inten-
sity distribution in the image as characterized by the normalized
cumulative histogram. Ultrasound images generally have a
skewed histogram due to the presence of large areas of low
intensity, and this results in a cumulative distribution function
that maps a small intensity range to a very large area, and corre-
spondingly non-uniform contrast stretching. Adaptive histogram

equalization (AHE) methods try to overcome this problem by
performing histogram equalization on small image tiles (contex-
tual regions) [18]. These methods, however, do not work well
with ultrasound images as they tend to amplify speckle noise
present in homogeneous regions of the images. Contrast-
limited adaptive histogram equalization (CLAHE) is a good
contrast enhancement technique specifically for ultrasound im-
ages as they always contain speckle noise and low-intensity
regions of very low contrast and resolvable details [19].
Several parameters of CLAHE affect the levels of feature en-
hancement in a given image frame. An important parameter is
the tile size which has a direct impact on both computational
complexity and output quality. Another important factor
governing the outputs of the CLAHE algorithm is the distribu-
tion function that specifies the desired shape of the clipped his-
togramwithin each image tile. The clip limit specifies a threshold
to which the histogram of an image tile is clipped to prevent
over-amplification of noise and contrast in nearly uniform re-
gions. The CLAHE also uses an interpolation algorithm to com-
pute the intensity value at a pixel using the transform functions of
up to four neighboring tiles that are located closest to the pixel.
CLAHE has been successfully used to enhance several types of
medical images such as Computer Tomography,MR, and retinal
images [20, 21]. To the authors’ knowledge, no work has been
previously reported on a detailed analysis of the CLAHEmethod
for ultrasound video contrast enhancement, taking into the ef-
fects of parametric variations on the quality of the output. This
paper proposes a quantitative algorithm for automatically finding
the tile size and clip limit used by CLAHE, based on the ran-
domness (entropy) of the input frames and the quality of the
output images. Three different types of distribution functions,
viz., uniform, Rayleigh, and exponential, and also three different
interpolation techniques, viz., bilinear, cubic, and Lanczos-3
[22–24], are used in the experimental analysis to compare the
quality of the generated contrast-enhanced ultrasound frames.
The main contributions of this paper in feature enhancement
using the CLAHE can be summarized as follows:

1. The paper shows that the performance of the CLAHE
algorithm could be significantly improved by using a
pre-processing phase for speckle noise removal.

2. The algorithm discussed in this paper uses ultrasound vid-
eo sequences instead of single image frames for obtaining
improved results in both speckle noise reduction and fea-
ture enhancement.

3. The optimal clip limit for the CLAHE algorithm is auto-
matically determined using the quality metrics evaluated
from output frames.

4. The size of the image tiles (contextual regions) is deter-
mined automatically using a global entropy function.

5. The paper looks at three different types of distribution
functions for the shapes of the target histograms in image
tiles and performs a comparative analysis.
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6. The paper shows that the interpolation scheme used by the
CLAHE algorithm also plays a vital role and gives a com-
parative analysis of the experimental results using three
types of interpolation algorithms.

This paper is organized as follows: The “Introduction” sec-
tion discusses the problems associated with and applications
of ultrasound video/image analysis algorithms, and in partic-
ular, the CLAHE algorithm for feature enhancement, and out-
lines the important aspects of the proposed solution. The
“Overview of the Proposed Framework” section gives an
overview of the processing stages of the proposed framework
for despeckling and feature enhancement of medical ultraso-
nography videos. The “Contrast-Limited Adaptive Histogram
Equalization” section details the methodology and system
model used for the proposed CLAHE method. The sections
“Image Quality Measures” and “Comparative Analysis” pres-
ent the quantitative evaluations and the results of the compar-
ative analysis among various methods. “Discussion,
Conclusion, and Future Work” section gives a summary of
the work presented in the paper and outlines future directions.

Overview of the Proposed Framework

The two main stages of the proposed processing pipeline are a
convolutional neural network (CNN) and a contrast-limited
adaptive histogram equalization (CLAHE) method as shown
in Fig.1.

The first stage filters speckle noise from input frames and
feeds them to the second stage that uses CLAHE for feature
enhancement. The CNN uses ultrasound videos converted
into frames as input. This process uses three convolutional
layers including a batch normalization layer (BN) in the
network configuration as shown in Table 1. At the CNN
initialization step, image features are mapped as values of

a single gray-level channel along image rows and columns.
The features learned in the first CNN layer (L1) followed by
ReLU are mapped to the second CNN layer (L2) followed
by a ReLU. The third layer (L3) includes CNN batch nor-
malization (BN) followed by tanh activation function to ob-
tain learned features from the second layer which is used to
eliminate detected speckle noise by dividing original input
frames by the estimated speckle region [16, 25]. The net-
work architecture was trained on 600-gray-level (8 bit) syn-
thetic ultrasound images of size 256 × 256 pixels. The syn-
thetic images were produced using an ultrasound image for-
mation modeling algorithm proposed in one of our recently
published papers [26]. The modeling algorithm generates
synthetic images that closely resemble the intensity and tex-
ture characteristics of real ultrasound images, and at the
same time, allows us to add speckle noise in a controlled
manner. For our analysis, the standard deviation of speckle
content varied through a wide range of values, from σ = 0.3
to σ = 5.0. The performance of the network was evaluated
by comparing the predicted noise-free images with the actual
noise-free synthetic images by utilizing auto-correlation
functions, before adopting the network for speckle suppres-
sion of real ultrasound scans. The implementation of the
proposed CNN architecture was carried out using the
MatConNet toolbox [27]. No pre-processing step was used
for modifying the intensity values of input images. All of the
experiments were conducted on a Windows machine with
3.40 GHz, 4 cores processor, 16GB RAM, and GeForce
GTX 960 graphics card.

Fig. 1 The processing stages of the proposed pipeline for speckle reduction and feature enhancement

Table 1 CNN configuration for speckle removal

Layer Filter size #Filters

L1 Conv + ReLU 3 × 3 × 1 64

L2 Conv + ReLU 3 × 3 × 64 64

L3 Conv + BN + tanh 3 × 3 × 64 1
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The real ultrasound video scans used in our analysis were
obtained from www.ultrasound-images.com [28] with
permission to use them in our research work. We have used
six different types of video scans , i.e., breast cancer (480 ×
640), uterine fibroids (312 × 460), transvaginal ovary (623 ×
372), ovarian cyst (612 × 576), heart (532 × 432), and chest
pleural effusion (640 × 480), each consisting 50 frames; all
frames are of 8 bits, at the testing phase of trained model.
After despeckling of ultrasound frames, we enhance features
using the contrast-limited adaptive histogram equalization
method which is the primary focus of this paper and discussed
in the following sections.

The design of a two-stage processing pipeline as given in
Fig. 1 is based on our experimental analysis of the CLAHE
method that showed that it alone is not adequate for effective
speckle filtering and enhancement. Figure 2 presents some
results of contrast enhancement using the CLAHE based on
Rayleigh distribution and Lanczos-3 interpolation to show
why contrast enhancement is not recommended before speck-
le filtering. The output images presented in the second column
of Fig. 2 clearly indicate that the CLAHEmethod overempha-
sizes the contrast of features present in the image and also
amplifies speckle noise. The proposed framework performs
speckle filtering followed by selective feature enhancement
on local regions to improve the overall contrast and to elimi-
nate the blurring problem in ultrasound videos. Experimental
results using this approach and quality evaluations showing its
effectiveness are presented in detail in the later sections of this
paper.

Contrast-Limited Adaptive Histogram
Equalization

The CLAHE method subdivides the image into a number of
tiles. We estimate the tile size s using the global entropy of the
input frame. For a greyscale image with 256 gray levels, the
entropy E is defined as.

E ¼ −∑255
k¼0pk log2 pkð Þ ð1Þ

where pk is the probability associatedwith gray level k. We use
an exponential decay function of the type

s ¼ M−Emaxð Þ e−λE þ Emax ð2Þ

to compute the tile size s based on the entropy value E for a
given image of size M. The maximum entropy Emax for
gray-level images is 8. The graph in Fig. 3, generated for
the input image size M = 256 pixels and λ = 0.7, shows an
example of the variation of tile sizes with entropy. When
the entropy is in the maximum, the function gives a tile
size of 8 × 8 pixels. For a very small entropy value 1 cor-
responding to a nearly uniform intensity distribution, we
obtain a tile size that is half the size of the input image.
Most ultrasound images have an entropy value within the
shaded region of the graph in Fig. 3, where the tile size
ranges from 8 × 8 pixels to 16 × 16 pixels.

We used three different types of target histogram distribution
functions and three types of interpolations of transformation
functions to analyze the performance of the CLAHE algorithm

Fig. 2 Examples of original input
ultrasound video frames (first
column) and contract enhanced
frame before speckle filtering
(second column)
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on ultrasound videos. The distribution function specifies the
shape of the target histogram of the contrast-enhanced image
within each tile. Finally, the transform functions of neighboring
small regions are combined using interpolation to eliminate any
kind of induced artifacts [29, 30]. This paper considers three
different types of distribution functions that are uniform,
Rayleigh, and exponential. The conventional method of the
CLAHE uses bilinear interpolation techniques for combining
the transformation functions computed for neighboring regions.
In our approach, we use three different interpolation systems,
viz., bilinear, cubic, and Lanczos-3, individually to perform an
extensive comparative analysis. The main aim of this evaluation
is to find the best suitable combination for enhancing the con-
trast of ultrasound images/videos. The computational steps in
the CLAHE method are listed below.

The above steps result in the enhancement of fine details in
ultrasound frames as shown in Figs. 5, 6, and 7 and also in the
subsequent sections.

It is important to choose the right value for the clip limit so
that the enhancement of features across all frames is consistent
and acceptable. If the clip limit is too high, it will cause

contrast variation to oversaturate or if too low, will lead to
an image with a flat histogram. An initial clip limit value of
0.01 has been experimentally determined and used for all nine
combinations and all types of videos for the ultrasound anal-
ysis. As seen in Fig. 4, when the clip limit is increased from
0.01, the overall quality of the images showed a reduction as
measured by metrics such as the structural similarity index
metric (SSIM) and universal quality index (UQI) presented
in the “Image Quality Measures” section.

As seen in Fig. 4, the initial clip limit provides nearly unity
value for the SSIM metric for all three distribution functions.
Similar results were obtained with other quality metrics (EPI,
UQI) and interpolation functions used in our experimental
analysis. In Fig. 5, we provide the outputs generated using
three different values of clip limits 0.02, 0.04, and 0.08, and
we see that all three images have larger than the desired levels
of contrast enhancement, in comparison with the output for
clip limit value 0.01. The SSIM, EPI, and UQI values indicat-
ed in Fig. 5 also show that the overall quality of the images
measured using their structure, edges, and visual information
gradually reduce as the clip limit is increased.

In Fig. 6, the first column represents the original ultrasound
input frames of six different anatomical structures. The second
column shows the speckle-filtered output generated using
three-layer convolutional neural network model. The third
column shows the output of the CLAHE algorithm based on
the Rayleigh distribution and Lanzczos-3 interpolation. The
outputs obtained by the processing pipeline have improved
features, contrast, and resolvable details. Further, the speckle
content has been suppressed significantly, and blurring is also
reduced. Thus, the processing pipeline has the capabilities to
address speckle noise issues and also perform acceptable
levels of feature enhancement. Figure 7 shows the results
using the remaining two distributions in combination with
Lanczos-3 interpolation.

Figure 7 shows a comparison of outputs obtained from the
CLAHE method based on uniform and exponential distribu-
tions and Lanzcos-3 interpolation. The outputs generated by
using uniform distribution provide improved results except for
the chest pleural effusion frames. This analysis demonstrates
that we need the right combination of the distribution function
and interpolation technique for obtaining the desired levels of
feature enhancement in ultrasound videos/images. Out of all
three distribution functions used in this study (Figs. 6 and 7),
Rayleigh distribution in combination with Lanczos-3 interpo-
lation gave better results as compared with the uniform and
exponential distribution functions. A comparative analysis
using bilinear and cubic interpolations is given below.

From Fig. 8, it is clearly seen that the output frames gener-
ated by the bilinear interpolation with all three distribution
functions provided contrast-enhanced results. However, ac-
cording to subject matter experts, bilinear interpolation pro-
vided over-contrast-enhanced frames which are not found to

Fig. 3 A sample graph showing the variation of tile size with the entropy
of the input image

Processing steps in the CLAHE algorithm

1. Read the CNN-filtered image frame.
2. Divide images into a number of contextual regions using tile size

evaluated using Eq. (2).
1. For each sub-region, calculate the uniform, Rayleigh, and exponential

distribution function individually to get the desired histogram shape.
2. For each sub-frame, compute the histogram and the highest peak value.

Initialize the clip limit using quantitative measures of image quality.
3. For each gray level bin in the histogram, if histogram bin > clip limit

level, then clip the histogram bin.
4. Compute the transformation functions for each tile and use the selected

interpolation method to combine the transform functions to get the new
intensity value at each pixel position.

J Digit Imaging (2020) 33:273–285 277



be suitable for diagnostic analysis. As seen in Fig. 8, cubic
interpolation (second column) generated relatively a lower
degree of contrast enhancement. Among the distribution func-
tions used with cubic interpolation, Rayleigh and exponential
distribution functions gave better results.

Subjective Analysis of Ultrasound Videos

The framework for ultrasound video speckle reduction by
CNN and feature enhancement using contrast-limited adap-
tive histogram equalization allows us to improve the overall
visual quality of the video frames. It is important to perform
a rigorous evaluation of the quality of the images to deter-
mine how feature enhancement after speckle filtering im-
proves the diagnostic quality. In this section, the qualitative
comparative analysis performed by four radiologists is de-
noted by R1, R2, R3, and R4 as provided in Table 2. The
proposed work considered a wide range of human anatom-
ical ultrasound video scans, i. e., breast cancer, uterine fi-
broids, transvaginal ovary, ovarian cyst, heart, and chest
pleural effusion scan, to show the effectiveness of enhance-
ment after filtering. In this subjective study, we have consid-
ered a total of 30 frames, 5 from each type of ultrasound

scans. Nine combinations of each pair of input and output
frames generated by the CLAHE system was reviewed ran-
domly and independently by four subject matter experts and
the mean scores for each of the six test cases are given on a
five-point scale based on their subjective preference as
shown in Table 2. The reviewers considered diverse image
quality aspects during scrutiny of frames, such as the
amount of speckle elimination, homogeneity, blurriness,
structural information preservation, resolvable details, fea-
ture enhancement, and usefulness for the better diagnosis.

Table 2 indicates that the four subject matter experts who
performed the evaluation have given a higher score to features
improved by the CLAHE method when used in combination
with Rayleigh distribution with Lanczos-3 interpolation. The
outputs obtained using a combination of uniform distribution
and bilinear interpolation were given the highest scores than
other combinations of distribution functions and interpolation
techniques. Those outputs do not show an over-amplification
of contrasts of features. Besides subjective analysis, this paper
gives equal importance to the quantitative evaluation of the
output images in order to again validate the effectiveness of
the chosen CLAHE combination (Rayleigh distribution and
Lanczos-3 interpolation) and to compare with subjective
evaluations.

Fig. 4 Variations of output image quality as measured by SSIM (a) and UQI (b), with the clip limit used by the CLAHE algorithm for three different
target distribution functions

Fig. 5 Sample outputs showing the effect of variation of clip limit. 0.01 (a), 0.02 (b), 0.04 (c), and 0.08 (d)
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Fig. 6 Original ultrasound input
frames (left side) before speckle
filtering, speckle-filtered frames
(center), and speckle-filtered fea-
ture enhanced frames using
CLAHE with a combination of
Rayleigh distribution and
Lanczos-3 interpolation (right
side)
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Fig. 7 Speckle-filtered feature
enhanced ultrasound frames using
CLAHE with a combination of
uniform distribution and Lanczos-
3 interpolation (left column) and
exponential distribution and
Lanczos-3 interpolation (right
column)
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Image Quality Measures

A complete analysis of interpolation and distribution func-
tions used within CLAHE will help to select the best possible
combination that improves the overall contrast and features of
real ultrasound video frames. To evaluate the performance of
the enhancement techniques, the quality of the feature-
enhanced output frames are compared with input frames in
terms of their capabilities in preserving the edge information,
contrast, and structure details present in each ultrasound video
frame. Here, we have considered three quality metrics that are
structural similarity index (SSIM), edge preservation index
(EPI), and universal quality index (UQI); the details of which

are provided below [13]. In this analysis, we have used
speckle-suppressed ultrasound video frames of uterine fi-
broids, the breast, and the ovary in order to perform a com-
parative assessment among three different types of the distri-
bution functions and interpolation techniques. We have used
15 videos in each type of video scans and each video has 50
frames. Here, we have evaluated the quality metrics for the
individual frames of each video and the mean value is present-
ed in Tables 3, 4, and 5.

A. Peak signal to noise ratio (PSNR)

The peak signal to noise ratio measures how closely the
filtered image resembles the original reference image. It is
used to measure the quality of the filtered images and is mea-
sured in decibels.

PSNR ¼ 10log10
v2

MSE

� �
ð3Þ

MSE ¼ 1

M � N
∑M

x¼1∑
N
y¼1 no x; yð Þ−nr x; yð Þð Þ2 ð4Þ

Fig. 8 Speckle-filtered feature
enhanced ultrasound frames using
the CLAHE algorithm using each
of the three distribution functions.
The first column shows the
outputs with bilinear interpolation
and the second column with cubic
interpolation

Table 2 Mean subjective evaluation score by four subject matter
experts over six different kinds of ultrasound video datasets

Interpolation/
distribution

Uniform Rayleigh Exponential

Bilinear 4.75 4.5 4

Cubic 4 4.5 4.65

Lanczos-3 4 4.75 3.5
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where no(x, y) and nr(x, y) are the output and reference images,
MSE is the mean square error, and v is the maximum possible
intensity value in the input image of size M ×N pixels.

B. Structural similarity index metric (SSIM)

The structural similarity index metric is defined based on
the human visual system (HVS). The SSIM between two im-
ages is given by

SSIM ¼ 2μoμr þ 2:55ð Þ σor þ 7:65ð Þ
μo

2 þ μr
2 þ 2:55ð Þ σo

2 þ σr2 þ 7:65ð Þ –1 < SSIM < 1 ð5Þ

where μo and μr are the mean of output image and refer-
ence image (or input image), respectively, σo and σr are the
standard deviation of the output and reference images, and
σor is the covariance.

C. Edge preservation index (EPI)

The EPI measure is used to ensure that the resultant image
after CLAHE obtained through the proposed pipeline pre-
serves edges. If the edges are preserved well during
despeckling and enhancement processes, then EPI will have
a value close to unity. The edge preservation index metric
between two images is given as

EPI ¼ ∑M−1
x¼1 ∑

N−1
y¼1 Δnr x; yð Þ−Δnr 0

� �
Δno x; yð Þ−Δno 0
� �

∑M−1
x¼1 ∑

N−1
y¼1 Δnr x; yð Þ−Δnr 0ð Þ2 Δno x; yð Þ−Δno 0ð Þ2 ð6Þ

where Δnr(x, y) and Δno(x, y) represent the edge images of
reference image nr(x, y) and denoised output images no(x, y).
Δnr′and Δno′are the mean intensities of Δnr and Δno , respec-
tively. Δnr(x, y) and Δno(x, y) are the high-pass-filtered ver-
sions of images nr(x, y) and no(x, y), obtained using a 3 × 3
pixel standard approximation of the Laplacian operator.

D. Universal quality index (UQI)

Universal quality index is used to measure image distor-
tions between two images by combining three factors: contrast
distortions, luminance distortions, and loss of correlation. The
UQI can be estimated using the equation given below.

UQI ¼ ξ:τ :c −1 < UQI < 1

ξ ¼ σor

σoσr
; τ ¼ 2μ0μr

μo
2 þ μr

2
; c ¼ 2σoσr

σ2
o þ σ2

r

ð7Þ

where ξ is the correlation coefficient that measures the cor-
relation between original image and noise filtered image, τ
measures the similarity of mean luminance between the two
images, and c refers to contrast similarity of the images.

Tables 3, 4, and 5 give a comparative analysis of the ob-
jective quality assessments of the output images using all pos-
sible combinations of distribution and interpolation functions
based on the three metrics presented above. In this paper, we
have presented an analysis of nine combinations using three
different distributions and interpolation techniques to find the
best possible technique for the ultrasound video frame en-
hancement based on quantitative measures. All three image
quality measures used in this study (SSIM, EPI, and UQI)
yielded values close to unity when we compared speckle-
reduced input images with the corresponding feature-
enhanced output images. The speckle suppression by CNN
and feature enhancement in ultrasound frames using
CLAHE based on Rayleigh distribution and Lanczos-3 show
better results for quality evaluation in terms of preserving
structure and edges.

The subjective analysis and experimental demonstration
using quality metrics together clearly show that the modified
CLAHE using combination of Rayleigh distribution and
Lanczos-3 interpolation with clip limit 0.01 and tile size ob-
tained using the entropy measure provide impressive results
by effectively reducing speckle noise, addressing the blurring
issue, and enhancing the required features of ultrasound
videos/images.

Comparative Analysis

In this section, we present a comparative analysis of the pro-
posed method with various related state-of-the-art work in the

Table 3 SSIM for ultrasound video frames

Interpolation/
distribution

Uniform Rayleigh Exponential

Bilinear 0.9499 0.9799 0.9764

Cubic 0.8978 0.9256 0.9153

Lanczos-3 0.8965 0.9970 0.9467

Table 4 EPI for ultrasound video frames

Interpolation/
Distribution

Uniform Rayleigh Exponential

Bilinear 0.9678 0.9567 0.8967

Cubic 0.8899 0.9467 0.9368

Lanczos-3 0.9596 0.9891 0.9738

Table 5 UQI for ultrasound video frames

Interpolation/
distribution

Uniform Rayleigh Exponential

Bilinear 0.9368 0.9568 0.9332

Cubic 0.9122 0.9467 0.9565

Lanczos-3 0.9669 0.9807 0.9567
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area of ultrasound video/image analysis. The idea to perform
the comparative analysis with the filters mentioned below
(Figs. 9 and 10) as most of the filters are used for the ultra-
sound video despeckling purposes so far in the literature re-
view and speckle anisotropic diffusion filtering (SRAD) con-
sidered as the best approach among all filtering techniques
developed so far for the speckle content suppression. Here,
the despeckling and CLAHE feature enhancement using a
combination of Rayleigh distribution and Lanczos-3 interpo-
lation method compared with speckle-reducing anisotropic
diffusion filtering (SRAD), Perona and Malik anisotropic dif-
fusion method (PMAD), ADF, Frost filtering, wavelet method
(WT), Wiener filter, and Gamma MAP [12–14]. Here, we
have considered two image quality metrics SSIM and
PSNR, and the study was performed on real ultrasound video
frames of uterine fibroids and breast mass scans with a reso-
lution of 480 × 640 and 312 × 460 of 8 bits.

The main motivation for using well-established filtering
techniques for comparative analysis is that these methods are
frequently used for ultrasound post-processing image analy-
sis. Figures 9 and 10 indicate that the proposed system has
yielded significantly higher values for quality metrics com-
pared with the well-established filtering techniques developed
for the speckle suppression and feature preservation. The pro-
posed system has the capability to reduce speckle significantly
as shown by a PSNR value higher than 45 dB, and to preserve
structural similarity as shown by a SSIM value near to unity.
The SRAD filter also showed better results compared with the

other filtering techniques used in this study. Wavelet filtering
also demonstrated good and comparable results to the pro-
posed system in terms of preserving the structural content of
the output frames as SSIM value is found to be sufficiently
high.

The asymptomatic computational complexity is compared
with the well-established filtering techniques mentioned in the
“Comparative Analysis” section and presented in Fig. 11. The
computational complexity is presented with respect to the size
of frame used as input of the filtering methods. Figure 11a
clearly indicates the time complexity is high for ADF and
Wiener filter compared with the other methods used in the
comparative analysis. The computational complexity of the
proposed system is improved compared with the ADF,
Wiener, and Gamma filters. The proposed system is taking
more time compared with the SRAD, PMAD, and wavelet
filters, since it has computationally complex stages for both
filtering and feature enhancement. The PMAD has shown
lower complexity compared with other methods; however, it
generated images with comparatively lower visual quality
(Figs. 9 and 10). The wavelet filter has also shown similar
time complexity but noise reduction performance is not com-
parable with the SRAD and proposed method. Figure 11a
shows that, in general, there is a trade-off between time com-
plexity and visual quality of the processed images or videos.
In terms of visual quality, time elapsed, and usefulness of the
output images, SRAD and the proposed system performed
well.

Fig. 9 PSNR and SSIM values for the outputs of the uterine fibroid scans

Fig. 10 PSNR and SSIM values for the outputs of the breast mass scans
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The analysis of computational complexity has been also
presented with respect to variations in filter window size/
mask size from 3 × 3 to 9 × 9, in Fig. 11b. For this comparative
analysis, Frost, wavelet, Wiener, Gamma, and median filters
are used to assess the effectiveness of the methods relative to
the proposed system. The analysis shows that the time com-
plexity varies approximately linearly with an increase in win-
dow size.

Discussion, Conclusion, and Future work

This paper has presented a complete framework for speckle
noise removal and contrast enhancement of ultrasound videos.
The primary design requirements were to minimize blurring
caused by speckle filtering algorithms and to prevent over-
amplification of noise and contrast by feature enhancement
algorithms. The processing pipeline used a novel CNN-
based method for speckle noise removal and then the features
were enhanced using an improved CLAHE algorithm. Three
different types of distribution functions that are uniform,
Rayleigh, and exponential were considered in combination
with three different types of the interpolation techniques that
are bilinear, cubic, and Lanczos-3, for comparative evaluation.
The CLAHE method also utilized the entropy of the image to
determine the number of contextual regions used in the sub-
division step. The optimum clip limit was found using a quan-
titative analysis of the output image quality. The presented
work has shown improved results compared with the other
filtering methods in terms of the output image frame’s visual
quality and structural content preservation. The main limita-
tion of the system is that it has more time cost compared with
other filtering techniques (e.g., SRAD, PMAD, wavelet, and
Frost) used in the study, being a sequential system that con-
sidered both despeckling and feature enhancement. The sig-
nificant outcome of the system is that it provided sufficient
speckle suppression with improved features as required for
classification or segmentation algorithms.

In this research work, we have conducted an extensive
quantitative analysis of the proposed algorithm using image
quality metrics, and also qualitative evaluation by subject mat-
ter experts considering a wide range of image attributes to
ascertain their usefulness in clinical applications. The experi-
mental analysis conducted indicates CLAHE based on the
Rayleigh distribution and Lanczos-3 interpolation technique
improved features with the desired quality, for all types of
ultrasound videos used in this study.

Future work is directed towards the development of a fea-
ture enhancement process within a filtering method to reduce
computational complexity and improve overall efficiency.
The proposed system could also be extended to an ultrasound
video classification framework. For the classification of ultra-
sound videos, deep neural architecture will be considered and
comparative study will be performed with other supervised
learning techniques.
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