Table 4.
Performance comparison with existing methodologies
| Publication year | Method | Accuracy | Sensitivity | Specificity |
|---|---|---|---|---|
| 2004 | Niemeijer [18] | 0.9417 | 0.6898 | 0.9696 |
| 2006 | Soares [28] | 0.9446 | 0.7230 | 0.9762 |
| 2012 | Fraz [29] | 0.948 | 0.7406 | 0.9807 |
| 2014 | Cheng [30] | 0.9474 | 0.7252 | 0.9798 |
| 2016 | Aslani [31] | 0.9513 | 0.7545 | 0.9801 |
| 2018 | Shahid [32] | 0.958 | 0.730 | 0.9793 |
| 2018 | Soomro [33] | 0.953 | 0.752 | 0.976 |
| 2018 | Biswal [34] | 0.9541 | 0.71 | 0.97 |
| 2018 | Wang [35] | 0.9541 | 0.7648 | 0.9817 |
| DNN-based methods | ||||
| 2016 | Li [36] | 0.9527 | 0.7569 | 0.9816 |
| 2016 | Liskowski [37] | 0.9515 | 0.752 | 0.9806 |
| 2018 | Oliveira [38] | 0.9576 | 0.8039 | 0.9804 |
| 2018 | Jiang [39] | 0.9624 | 0.754 | 0.9825 |
| 2018 | Yan [40] | 0.9542 | 0.7653 | 0.9818 |
| 2018 | Hu [41] | 0.9533 | 0.7772 | 0.9793 |
| 2019 | Proposed method (RGB) | 0.954 | 0.8188 | 0.964 |
| Proposed method (enhanced green channel) | 0.9594 | 0.7287 | 0.9818 | |
| Proposed method (morphological operation) | 0.9637 | 0.8653 | 0.9725 | |
| Proposed method (local normalization) | 0.9531 | 0.8172 | 0.9624 | |
Values in italics specify the maximum values