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Abstract

Background: Nicotine-containing electronic cigarette (e-cig) use has become widespread. 

However, understanding the biological impact of e-cigs compared to smoking on the lung is 

needed. There are major gaps in knowledge for chronic effects and for an etiology to recent acute 

lung toxicity among vapers leading to death.

Methods: We conducted bronchoscopies in a cross-sectional study of 73 subjects (42 never-

smokers, 15 e-cig users and 16 smokers). Using bronchoalveolar lavage and brushings, we 

examined lung inflammation by cell counts, cytokines, genome-wide gene expression and DNA 

methylation.

Results: There were statistically significant differences among never-smokers, e-cig users, and 

smokers for inflammatory cell counts and cytokines (FDRq<0.1). The e-cig users had values 

intermediate between smokers and never-smokers, with levels for most of the biomarkers more 

similar to never-smokers. For differential gene expression and DNA methylation, e-cig users also 

more like never-smokers; many of these genes corresponded to smoking-related pathways, 

including those for xenobiotic metabolism, aryl hydrocarbon receptor signaling and oxidative 
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stress. Differentially methylated genes were correlated with changes in gene expression, providing 

evidence for biological effects of the methylation associations.

Conclusions: These data indicate that e-cigs are associated with less toxicity than cigarettes for 

smoking-related pathways. What is unknown may be unique effects for e-cigs not measured 

herein, and a comparison of smokers completely switching to e-cigs compared to former-smokers. 

Clinical trials for smokers switching to e-cigs who undergo serial bronchoscopy and larger cross-

sectional studies of former smokers with and without e-cig use, and for e-cigs who relapse back to 

smoking, are needed.
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INTRODUCTION

Electronic cigarettes (e-cigs) are widely used by smokers, former smokers and never-

smoking youth (1). Recent data indicate that e-cig use might be better than nicotine 

replacement therapy for smoking cessation (2,3) but conclusive evidence is yet available on 

the effectiveness of e-cigs and safety for long-term smoking cessation. Also, a systemic 

review study of 38 studies reported that e-cigs were associated with significantly reduced 

smoking cessation (4).

However, possible toxic effects of e-cigs are unclear, and the risk/benefit balance of use is 

different for never-smokers than for smokers. While it is suspected that adverse chronic 

effects of e-cigs are less than continued smoking, there is little direct data for effects in 

target organs, particularly the lung. Importantly, as of November 20 2019, 2,290 cases of 

acute lung injury including 47 deaths from 49 states was identified to be associated with e-

cigarette product use or vaping across the nation (5-8).Many of these cases appear to be 

related to vaping cannabinoid oils (e.g., a different formulation than what is in nicotine e-

cigs), but there are some reported cases in nicotine e-cig users. Thus, studies for the effects 

of nicotine-containing e-cigs are needed, particularly in the target organ such as the human 

lung.

E-cigs delivering nicotine by heating liquids contain flavors, propylene glycol (PG) and 

vegetable glycerin (VG). Although PG and VG are “generally regarded as safe” by the Food 

and Drug Administration (FDA) when used in foods and cosmetic products (https://

www.atsdr.cdc.gov/toxprofiles/tp189-c1.pdf), their safety when inhaled as heated e-aerosols 

is unknown. Concerns revolve around e-aerosol constituents (e.g., volatile organic 

compounds) and in vivo and in vitro effects on inflammation, innate immune function, 

oxidative stress, cytotoxicity and genotoxicity (9,10). In humans, urinary and blood 

carcinogen biomarkers are substantially lower among e-cig users compared to smokers 

(9,11-13), while sputum and exhaled air studies show increased inflammation with e-cig use 

(9,14,15). Changes in lung proteomics, proteases, and gene expression have been shown to 

be associated with e-cig use in subjects undergoing bronchoscopy (16-18). Our research 

group found that there were changes in lung inflammasomes with e-cig use using the same 

study set as reported herein (19). The FDA has deemed regulatory authority over e-cigs, but 
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it currently does not regulate the marketing of e-cigs. To address the need for data regarding 

effects of e-cigs on the lung and to inform policy determination, we conducted a cross-

sectional bronchoscopy study of never-smokers, exclusive e-cig users, and cigarette smokers 

to assess group differences, examining inflammatory infiltrates, cytokines, genome-wide 

DNA methylation and gene expression in the lung. Given the recent epidemic of acute lung 

injury and deaths of some cases may be related to solely nicotine-containing e-cigs, this 

study is of great importance.

METHODS

Participants and Study Design

Healthy adults, age 21-30, willing to undergo bronchoscopy, were recruited from local print 

and television media (details regarding recruitment including inclusion and exclusion criteria 

are in the supplementary methods). While subjects were excluded who reported regular 

marijuana use, urinary carboxy-tetrahydrocannabinol was assessed for later confirmation. 

The bronchoscopy included a bronchoalveolar lavage (BAL) and bronchial epithelial 

brushing of grossly normal airway epithelium from the main bronchus. This study was 

approved by the Ohio State University Institution Review Board (the IRB approval number: 

2015C0088) (ClinicalTrials.gov: NCT02596685).

Carboxy-Tetrahydrocannabinol (THC)

Gas Chromatography-Mass Spectrometry (GC-MS) was used to assess the presence of 

carboxy-Tetrahydrocannabinol by Mayo Clinic Laboratories (https://

www.mayocliniclabs.com/test-catalog/Performance/8898) indicating recent marijuana use.

BAL Cell Counts and Inflammatory Cytokines

Automated cell counts from BAL were obtained by the Countess® Automated Cell Counter 

(Invitrogen, Carlsbad, CA). Differential counting was performed on Diff-Quik stained 

cytospins under light microscopy by a clinical histopathologist blinded to participant 

smoking status. BAL fluid samples were analyzed from supernatant using a V-PLEX Plus 

Proinflam Combo 10 panel that includes tobacco smoking associated proinflammatory 

cytokines (IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α) (Meso 

Scale Discovery, Rockville, MD).

Whole Transcriptome Array and Genome-wide DNA methylation

Total RNA was extracted from the bronchial brushing using an Allprep DNA/RNA kit 

(Qiagen) and assayed for gene expression using the GeneChip® Human Transcriptome 

Array 2.0 (Affymetrix Inc, Santa Clara, CA). The raw data (CEL files) were imported into 

the Partek Genomics Suite™ 6.6 (St. Louis, MO) for log2 transformation and quantile 

normalization. Analysis of covariance (ANOVA) was used to remove potential batch effects.

A subset of subjects (32 out of 72) were analyzed for genome-wide methylation from 

bronchial brushings using the Infinium MethylationEPIC BeadChip (Illumina, San Diego, 

CA), following DNA extraction (Allprep DNA/RNA kit; Qiagen) and bisulfite treatment (EZ 

DNA Methylation kit, Zymo Research, Irvine, CA). Files were imported into Partek and 
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normalized by Subset-quantile Within Array Normalization (20). CpGs were classified by 

genomic location based on the Illumina annotation file. For modeling purposes, M-values 

were derived from Beta-values by logit-transformation. GRCh37/hg19 (Human Genome 

version 19) was used as a reference genome. Excluded probes were in the Y chromosome to 

avoid gender bias, SNP-associated, off-target or had a detection P >0.05 (21,22).

Statistical Analysis

Cells and Cytokines: Non-parametric Mann-Whitney and Kruskal-Wallis tests were used 

to assess differences for cell counts among groups because the data could not be transformed 

to resemble normality. Three subjects with significant red blood cell contamination in their 

BALs were excluded from cell counts analyses. Cytokines were log10 transformed to follow 

Gaussian distributions. One-way ANOVA was used to compare the cytokines for the groups. 

Parametric data were summarized as mean (standard deviation) and non-parametric as 

median (range). Statistical tests were two-sided. False discovery rate (FDR) (23) adjusted 

q<0.1 was considered statistically significant.

Differential DNA methylation and gene expression: ANCOVA adjusted for gender 

was used to compare the three groups. An FDR q<0.1 (corresponding to raw P<6.13E-05 for 

DNA methylation and raw P<7.31E-03 for gene expression) was considered statistically 

significant. To correlate gene expression and DNA methylation, Spearman correlations were 

calculated for pairs of expression (transcripts) with cis methylation (CpG sites located within 

1.5kb upstream or downstream of the corresponding transcripts) in 32 matched samples. For 

identification of patterns in DNA methylation and gene expression, unsupervised analysis 

including unsupervised hierarchical clustering (24) and Principal Component Analysis (25) 

were performed. For heatmaps, the Euclidian distance among groups was calculated by the 

average linkage.

Ingenuity Pathway Analysis (IPA)

Differentially methylated or expressed genes were classified by IPA (Ingenuity® Systems, 

www.ingenuity.com). The IPA comparison analysis tool was used to compare two datasets, 

taking into account the canonical pathway rank according to the calculated p-value across all 

observations and reporting it hierarchically. The score [score= -log10(p-value)] is a measure 

of the probability of finding identified genes in a set of a list of biological functions stored in 

the IPA knowledge base by chance alone.

RESULTS

Characteristics of study subjects

There were 73 participants: 16 current smokers, 15 e-cig users and 42 never-smokers (Table 

1). The average age was 26 (range 21-30) and 47% were women. Smokers averaged 16 

cigs/day (range 10-20) and had smoked for a mean of 6.6 years (range 0.6-13). All but one 

e-cig user (a cartridge-type e-cig) vaped flavored tank system e-cigs. All but three e-cig 

users were former smokers; the others were never-smokers. E-cig users had a mean duration 

of e-cig use of 2.7 years (range: 0.5-4), and their mean years of smoking, when smoking was 

7.5 years (range 1-15). Mean daily use of e-cigs was 163 puffs per day (range 20-600), 
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comparable to other studies (26,27). Demography, smoking/e-cig history, and THC testing 

results of individual e-cig subjects are provided in Supplementary Table 1.

Altered BAL inflammatory cells and cytokines in bronchoalveolar lavage fluids

There were statistically significant overall differences among the three groups for 

inflammatory infiltrates (FDR q<0.1) (Table 2). Compared to never-smokers, smokers had 

higher total cell counts (raw P=0.004), total cell concentrations (raw P=0.0003), macrophage 

cell counts (raw P<0.0001) and neutrophil cell counts (raw P=0.01). Lymphocyte cell counts 

were lower (raw P=0.02). E-cig users’ counts were intermediate between those of smokers 

and never-smokers except for percent of macrophages and neutrophil counts which were the 

same for never-smokers and e-cig users. Median cell concentration for the e-cig users was 

lower than for smokers (306 × 106/L, 434 × 106/L, respectively, raw P=0.05) and higher than 

the never-smokers (238 × 106/L, raw P=0.22). Macrophage counts for e-cig users were lower 

than for smokers (raw P=0.02) and higher than for never-smokers (raw P=0.13).

For all but two of the 10 inflammatory cytokines measured, the e-cig users’ values were 

intermediate between those of the smokers and never-smokers; for the two, the three groups 

did not differ. For five of the cytokines, the differences reached statistical significance, with 

overall significant P-values reaching a threshold for FDR q<0.1 (Table 2). There were 

significant differences (P-values reaching a threshold for FDR q<0.1) between e-cig users 

and never-smokers for IL-1β, IL-6 and IFN-γ and between e-cig users and smokers for 

IL-1β. There was considerable overlap in values for individuals in the groups. Time since 

last cigarette, cigarettes per day when previously smoking, and gender were not significantly 

correlated with cell counts or cytokines.

Differential gene expression and methylation in bronchial epithelial cells

There were 2,452 differentially expressed transcripts (DETs), corresponding to 2,093 unique 

genes across the groups (Supplementary Table 2). Unsupervised principal component 

analysis (PCA) and hierarchical clustering are shown in Figure 1. The first principal 

component accounted for 31.7% of overall variation in gene expression. The expression 

profiles of never-smokers were closely clustered and separated from smokers, while the e-

cig users and never-smokers were more similar to each other. E-cig users’ gene expression 

were intermediate between smokers and never-smokers for 93% of the 2,452 DETs (33% 

expected, P chi-square<0.0001) (Figure 1C; Supplementary Table 1). There were 181 

transcripts that were related specifically to e-cig use (higher or lower than both smokers and 

never-smokers); the top 10 transcripts were MUC5B (4 transcripts), MIC5AC, ZNF445, 
REEP1, ABHK4, LINC00589, and TMPRSS3 (Supplementary Table 2).

A subset of subjects (10 never-smokers, 12 e-cig users, and 10 smokers) were assessed for 

differential DNA methylation (DGM). There were 451 differentially methylated CpGs at 

FDR q<0.1, corresponding to 273 unique genes and including 144 intergenic methylation 

loci (Supplementary Table 3). PCA and hierarchical clustering are shown in Figure 1B. The 

first principal component accounted for 59.6% of the overall variation in methylation. There 

was clustering by group with e-cig users falling between the smokers and never-smokers. Of 

the 451 differentially methylated CpGs, for 97%, the e-cig users were intermediate between 
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smokers and never-smokers (33% expected, P chi-square<0.0001) (Figure 1C). There were 

14 CpGs relating specifically relating to e-cig use (higher or lower than smokers and never-

smokers) (lower levels: RHBDL2, TTC16, ZNF815, and 3 intergenic CpGs; higher levels 

for AMZ1, KRT12, NOX5/MIR548H4 co-localized, NRF1, and 4 intergenic CpGs).

There were no patterns on PCA and heatmap by THC status for all three groups combined, 

and for smokers alone, indicating that the DETs and DGM were shown to be independent of 

THC status (Figure 1).

In IPA, the top 20 common canonical pathways for DETs included smoking and/or lung 

cancer-related pathways such as xenobiotic metabolism signaling, NRF2-mediated oxidative 

stress response, aryl hydrocarbon receptor signaling, PXR/RXR activation, and LPS/IL-1 

mediated inhibition of RXR function (Figure 2). Of the top 20 common canonical pathways 

for DGM, xenobiotic metabolism signaling and colorectal cancer metastasis signaling were 

the most common pathways, followed by HOTAIR Regulatory Pathway and Axonal 

Guidance Signaling.

Correlation of differential gene methylation expression

Among the 111 DGM CpG and DETs, within +/− 1.5 kb, that were statistically significant in 

both assays and present on both platforms, 102 (92%) were significantly correlated at FDR 

q<0.1, corresponding to 56 unique genes; 94 were negative correlations (down regulation) 

and 8 were positive (up regulation) (Figure 3 and Supplementary Table 4). Negatively 

correlated CpGs were more frequently enriched in promoters, while positively correlated 

CpGs were more frequently found in non-promoter enhancers (Figure 3). IPA analysis of the 

56 unique genes showed the greatest enrichment for beta-naphthoflavone (Figure 4A). The 

mechanistic networks for beta-naphthoflavone that are related to smoking included the aryl 

hydrocarbon receptor (AHR), the aryl hydrocarbon receptor nuclear translocator (ARNT), 

and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) (Figure 4A). The DET genes 

regulated by beta-naphthoflavone included 12 genes (ABCC3, AHRR, AKR1B10, 

AKR1C1, ALDH3A1, CYP1B1, GPX2, NQO1, SLC7A11, TIMP3, TNFRSF19, and 

UGT1A1) (Figure 4A-B), where all except one (TNFRSF19) were hypomethylated, with 

highest expression in smokers, lowest in never-smokers, and e-cig users intermediate. The 

most represented disease was cancer, encompassing 51 genes (91%, 51/56), which included 

27 (53%, 27/51) involved in respiratory tumors (Supplementary Table 4).

DISCUSSION

This study is the first to investigate inflammatory biomarkers, gene methylation and gene 

expression among smokers, e-cig users, and never-smokers in lung samples, building upon 

the knowledge of known differences between smokers and never-smokers (9,28,29). E-cigs 

have the potential to foster smoking cessation (2) and substantially reduce exposure to 

combustible tobacco toxicants, but the relative effect on the lung is unclear (9,30). In this 

cross-sectional study, using two methods of lung sampling (BAL for inflammatory cells and 

cytokines, and lung epithelial cell brushings for gene expression and methylation), we found 

that almost all of the biomarkers in the e-cig users were intermediate between current and 

never-smokers, occurring substantially more than by chance alone. These cross-sectional 
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findings suggest that smoking effects on the lung may be at least partially reversible in 

smokers switching to e-cigs, findings which need to be substantiated in longitudinal studies 

including randomized trials. There may be some effects specific to e-cigs; we found 

expression for some genes and DNA methylation of some loci where values for e-cig users 

were higher or lower than both never-smokers’ and non-smokers’ (e.g., MUC5B and other 

important lung proteins). The canonical pathways that differed most among the three groups 

are well-known to be affected by smoking, including xenobiotic metabolism signaling, 

NRF2-mediated oxidative stress response, AHR signaling, PXR/RXR activation, and LPS/

IL-1 mediated inhibition of RXR function (31-33). Importantly, the DGM were correlated 

with DET, corroborating biological impact of the DGM, especially in smoking-related 

pathways.

Inflammation is considered to play an important role in lung carcinogenesis and COPD; it is 

known that inflammatory biomarkers are higher among smokers than never-smokers. 

(29,34-36) The e-cig users in this study had higher inflammatory infiltrates than never-

smokers, and lower than for smokers. Compared to never-smokers, there were significant 

differences for e-cig users for IL-1β, IL-6 and IFN-γ, associated with lung cancer (34-36); 

also for IL-2, IL-6, IL-6 and IFN- γ, associated with COPD (37,38). E-cig users were 

significantly different from smokers for IL-1β.

There were distinct patterns for DNA methylation and gene expression distinguishing 

smokers, e-cig users and never-smokers, where e-cig users’ levels also were intermediate 

between smokers and never-smokers (97% and 92%, respectively versus 33% by chance 

alone). Among the top genes included those known to be affected by smoking such as those 

involved in AHR and ARNT signaling pathways, and CYPs and other xeno-metabolizing 

enzymes (i.e., ALDH3A1 and CYP1B1), increasing DNA damage in a dose-dependent 

manner and associated with lung tumorigenesis in experimental animals and humans 

(39-44). In this study, compared to smokers, e-cig users had lower expression levels of AHR 
and xenobiotic metabolizing enzymes consistent with the a priori hypothesis of lower 

responses with lower carcinogen exposure. Other important cancer and COPD pathways 

lower in expression in e-cig users compared to smokers included the NRF2 oxidative stress 

response pathway, involved in the protection of cells from oxidative stress from cigarette 

smoke (45,46), and a regulator of innate immunity (47). Also found were effects on the PXR 
and the RXR pathways that affect xenobiotic metabolism through cytochrome P450s (48). 

The RXR are nuclear receptors for retinoids that affect the regulation of growth and 

differentiation in normal and tumor cells, including lung cancer and precursors to lung 

cancer (49).

Staudt, et al (2018) measured gene expression in healthy smokers exposed to a nicotine 

containing e-cig use for one day and conducted serial bronchoscopies (one week before and 

on the day of use) (17).They reported differential gene expression for 72 genes after the 

short term e-cig exposure. Among these genes, 11 genes (15%) were also identified in our 

study with similar directions in changes of expression (ATAD2, HCAR3, IP6K3, LYPD3, 

MKI67, MT1X, MT2A, PPP1R16B, RND3, SGK1, and ZBTB16). Separately, Gosh, et al. 

(2018), conducted a proteomic analysis of smokers, e-cig users, and never-smokers, and 

reported changes in CYP1B1 and MUC5AC levels specific to e-cig users (16). Our data 
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somewhat differed; these genes and MUCL1 were intermediate for the e-cig users for gene 

expression, and also we found that MUC5B levels on gene expression were higher than both 

never-smokers and smokers. Further, their group revealed increased neutrophil elastates and 

matrix metalloprotease (MMP) levels as well as activities in e-cig users’ lung, resulting in 

disrupting the protease-antiprotease balance (18). Specifically, they observed higher protein 

levels for MMP-2 and MMP-9 among e-cig users compared to never-smokers. However, our 

study for transcription levels found no statistical differences for both genes, but MMP7 was 

shown to be intermediate between never-smokers and smokers.

There are some limitations that should be considered in the interpretation of these study 

results. While this study focused on critically important measures of biological effects on 

inflammation, gene expression and DNA methylation, there may be other biomarkers of 

exposure and effect which were not included. Additional studies are needed to explore those. 

This study also has small numbers, and while sufficiently powered to demonstrate the 

reported differences for this study, it may be that additional effects would be found with a 

larger study, e.g., gender differences. Further, because use of e-cigs is relatively recent, the 

study participants had used them for a relatively short period of time. These findings may 

not extrapolate to longer use; as use continues in the population, it will be important to 

examine a population with longer exposure. In an observational study such as this one, there 

was no control for the type of e-cig use. There may be differences based on the 

characteristics of the e-cig. In addition, the cross-sectional design precludes any temporal 

assessments of biomarker changes and it is not possible to ascertain causality. Further, study 

participants were volunteers whose characteristics may not be generalizable to the general 

population of smokers and e-cig users, especially those older than 21-30 years. Another 

limitation is that the study results may be affected by unknown confounders, perhaps 

relating to characteristics of the study participants use of cigarettes (e.g., depth in inhalation, 

brand of cigarette) or of e-cigs (e.g., characteristics related to the choice to use e-cigs as well 

as frequency and duration of use). A further limitation of the study is that we did not include 

former smokers who did not use e-cigs. Thus, we do not know if the observed differences 

between smokers and e-cig users reflect smoking cessation by any means or changes specific 

to the e-cigs. Finally, we were limited by the study size; a larger study would allow for 

greater stability of estimates.

This study has important strengths. It is the first to describe inflammatory cells, cytokines, 

gene methylation and with gene expression in current e-cig users, directly examining the 

lung as the target organ. We studied subjects with a narrow age range (21-30) to avoid age-

related effects on lung physiology, and in order to represent typical e-cig users. Further, we 

investigated multiple biomarkers of effect to understand use at the biological and 

mechanistic level, providing a comprehensive description of e-cig use, and demonstrating 

consistency among a large group of biomarkers sampled in different ways from the lung.

There has been a recent and significant epidemic for vapers of cannabinoid oils and nicotine-

containing e-cig users suffering acute lung injury and deaths (https://www.cdc.gov/tobacco/

basic_information/e-cigarettes/severe-lung-disease.html).The reported illnesses and 

pathology differed, where some investigators believe that the etiology is related to altered 

lipid homeostasis (7,50) or analogies to smoking-related damage and chemical insult (5).If 
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the acute lung injury is occurring in nicotine e-cig users (there may be false denials of 

vaping oils or mis-diagnosis), then our data indicate that the latter hypothesis for smoking-

related damage is not correct. However, we have not measured markers of lipid homeostasis 

and other markers of lung integrity such as surfactant, which needs further study.

In summary, we compared lung inflammation, DNA methylation, and gene expression for 

never-smokers, smokers and e-cig users using bronchoscopy. The results were very 

consistent among the various biomarker methods and different lung sampling techniques. E-

cig users were found to be intermediate between smokers and never-smokers for biomarkers 

of inflammation and for gene methylation and expression, including known smoking-related 

pathways. The e-cig levels were more closely related to never-smokers. While these findings 

are cross-sectional and therefore cannot be extrapolated with regards to temporality or 

causality, our findings are consistent with the hypothesis that e-cigs may be less harmful 

than smoking, at least for the smoking-related biomarkers measured herein, and there may 

be some unique effects of e-cigs. The findings are also consistent with the hypothesis that e-

cig use has harmful effects compared to never smoking. The results may also be affected by 

study subjects who modify their tank-based e-cigs. Further studies, including longitudinal 

studies and randomized trials, are needed that also include long-term, never-smoking e-cig 

users and former smokers who quit using methods other than e-cigs. Understanding the 

biological impact of e-cig use, particularly on a target organ such as the lung, is critically 

important because of the high prevalence of use of these devices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IPA Ingenuity Pathway Analysis

DETs differentially expressed transcripts

DGM differential gene methylation

AHR aryl hydrocarbon receptor

ARNT aryl hydrocarbon receptor nuclear translocator

NFE2L2 erythroid-derived 2-like 2
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Figure 1. Unsupervised clustering analysis of gene expression and DNA methylation from 
brushings of lung epithelial cells.
(A) 2,821 differentially expressed transcripts among 42 never-smokers, 14 e-cig users, and 

16 smokers. (B) 517 differentially methylated CpGs among 10 never-smokers, 12 electronic 

cigarette users (e-cig users), and 10 smokers. Principal component analysis (PCA)(left) are 

plotted using the first 3 principal components. Data from never-smokers are shown in blue, 

data from e-cig users are in green, and smokers are in red. Subjects with carboxy-

Tetrahydrocannabinol (THC) positive are indicated by the arrow. Unsupervised hierarchical 

clustering (right) of log2 transformed expression (A, rows) and M-values (B, rows) are 

shown. The blocks on the top of the heatmap represent each sample. The characteristics of 

the subjects including tobacco and THC status were color coded. For log2 transformed 

expression and M-values, red represents higher expression and higher methylation, green 

represents lower expression and lower methylation, respectively. (C) Numbers of 

differentially expressed transcripts or methylated CpGs in comparisons among never-

smokers, e-cig users, and smokers. * Significantly higher number of differential signatures 

than by chance alone
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Figure 2. The common canonical pathways between differentially methylated genes and 
differentially expressed genes from brushings of lung epithelial cells among never-smokers, 
electronic cigarette users, and smokers.
The top 20 common canonical pathways based on the score (−log[p-value]) by Ingenuity 

Pathway Analysis with its annotation are shown with numbers of differentially methylated 

and expressed genes (next to bars). DM Differentially methylated; DE Differentially 

expressed
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Figure 3. The integration scheme between DNA methylation and gene expression from brushings 
of lung epithelial cells.
*Adjusted for gender; 1 Annotated transcripts with gene symbols; 2 Including 273 probes 

associated with genes; 3 32 paired sample analysis; 4 Functional promoters [within 1500 

base pairs (bps) of a transcription start site (TSS) (TSS1500); within 200 bps of a TSS 

(TSS200); 5’ untranslated regions (5’UTR); first exon (1stExon)]
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Figure 4. The IPA’s upstream analysis for significantly correlated genes between DNA 
methylation and gene expression from brushings of lung epithelial cells.
(A) Among significantly correlated 102 pairs identified at FDR q<0.1, 12 unique genes from 

33 pairs are shown to be regulated by beta-naphthoflavone (pink) involving mechanistic 

pathways under AHR, ARNT, and NFE2L2 (white). Thirteen correlated genes were colored. 

A numbers of pairs for each gene were shown in parentheses. The different shapes represent 

the functional classes of proteins (http://ingenuity.force.com/ipa/IPATutorials?

id=kA250000000TN2wCAG). Blue colored genes was confirmed to be negatively 

correlated. A mixed colored gene with red and blue was shown to have both negative and 

positive correlation. (B) The box plots are shown for DNA methylation (top) and gene 

expression (bottom) for never-smokers (blue), e-cig users (green), and smokers (red). If there 

is more than a pair for a gene, the most statistically significant pair is shown. Medians are 

connected by Lines. Raw correlated p-values are indicated on the top of boxes.
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