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Identifying the potential side effects of drugs is crucial in clinical trials in the pharmaceutical industry. *e existing side effect
prediction methods mainly focus on the chemical and biological properties of drugs. *is study proposes a method that uses
diverse information such as drug-drug interactions from DrugBank, drug-drug interactions from network, single nucleotide
polymorphisms, and side effect anatomical hierarchy as well as chemical structures, indications, and targets.*e proposedmethod
is based on the assumption that properties used in drug repositioning studies could be utilized to predict side effects because the
phenotypic expression of a side effect is similar to that of the disease. *e prediction results using the proposed method showed a
3.5% improvement in the area under the curve (AUC) over that obtained when only chemical, indication, and target features were
used. *e random forest model delivered outstanding results for all combinations of feature types. Finally, after identifying
candidate side effects of drugs using the proposed method, the following four popular drugs were discussed: (1) dasatinib, (2)
sitagliptin, (3) vorinostat, and (4) clonidine.

1. Introduction

Research and development efforts in the pharmaceutical
industry have been low during the past few decades [1]. Most
drug candidates, owing to their side effects, fail to receive the
approval of the US Food and Drug Administration (FDA)
for their commercialization. Identifying the undesirable off-
target activities of potential drugs, capable of causing side
effects and, in turn, resulting in drug discovery failures, is a
challenge in the drug-development process. While most of
the serious side effects are identified during preclinical and
clinical trials, some of them are reported during the post-
approval monitoring. *e uncertainty about the potential
side effects of new drugs is a concern for not only phar-
maceutical companies but also patients because they pose a
health risk and can even cause death [2].

*e existing computational methods used to predict the
side effects of drugs assume that similar drugs have com-
parable properties in terms of chemical and biological

characteristics, such as their structures and targets. Pauwels
et al. predicted potential drug side effects using a sparse
canonical correlation analysis model based on chemical
structures, whereas Mizutani et al. developed a method
based on chemical structures of drugs and target proteins
[3, 4]. It has been recognized that drugs with similar
chemical structures exhibit comparable biological activities
[5]. *e screening of a significant number of chemical da-
tabases containing the structures of available chemicals is a
pivotal process even in drug design studies that predict the
properties of chemical compounds [6]. It is logical to expect
that common drug targets that trigger similar therapeutic
effects induce similar signaling cascades and, therefore,
similar side effects.

Previous research on side effect prediction was extended
to phenotypic traits after much focus on chemical and bi-
ological properties. Liu et al. integrated drug-phenotypic
information, besides chemical and biological information,
into the features for machine learning and demonstrated
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significant improvements in the prediction results [7].
Zheng et al. utilized therapeutic data in addition to drug
substitutes, chemical structures, and targets. *ese two
studies were based on the idea that drugs with similar
therapeutic effects may have comparable side effects [8].

However, a vast majority of previously conducted studies
did not fully utilize the existing knowledge on drugs. *is
study focuses on the idea that the phenotypic expression of a
side effect can be similar to that of a disease. Furthermore,
because drugs are subject to complex influences such as
metabolic transformations and other pharmacokinetic
transformations while they are metabolized and physio-
logically distributed, their side effects cannot be simply
predicted by their chemical properties [9]. *us, it was
assumed that similarities at a molecular level used in drug
repositioning can be applied to the prediction of side effects;
moreover, various similarity measurements could be helpful
in improving the predictive capabilities of the model. Single
nucleotide polymorphisms (SNPs) and drug-drug interac-
tions (DDIs) that were not used by previous side effect
prediction studies were utilized because both have been used
in drug repositioning studies, where they have demonstrated
outstanding results [10, 11].

*is study proposes a machine learning approach for the
identification of potential drug side effects by leveraging var-
ious information resources on drug and side effect properties,
such as (1) drug-drug interactions from DrugBank (DDIs-D),
(2) drug-drug interactions from network (DDIs-N), (3) SNPs,
(4) chemical structures, (5) indications, (6) targets, and (7) side
effect anatomical hierarchy. A formulated set of seven features
and diverse machine learning algorithms were adopted to
develop a drug-side effect pair. *e results showed that using
new features proposed in this study in addition to chemical,
indication, and target features improved the predictive capa-
bility of the side effect prediction model. Furthermore, opti-
mizing the machine learning model to achieve maximal
prediction performance resulted in the identification of un-
labeled side effects of approved drugs. *e following four
popular drugs are discussed in the study: (1) dasatinib, (2)
sitagliptin, (3) vorinostat, and (4) clonidine.

2. Materials and Methods

In this study, the side effects of drugs were predicted using
diverse properties, such as (1) DDIs-D, (2) DDIs-N, (3)
SNPs, (4) chemical structures, (5) indications, (6) targets,
and (7) side effect anatomical hierarchy. Based on these
properties, similarities used for feature values were calcu-
lated. Next, a dataset was developed in which a drug-side
effect pair was a sample, and feature values were assigned
based on the known associations from the training samples.
Finally, machine learning algorithms were applied to these
datasets, and the evaluation results were obtained.

Figure 1 provides an overview of the system and a brief
description of the method.

2.1. Measuring Similarities. A variety of similarities were
calculated for the following properties: (1) DDIs-D, (2)

DDIs-N, (3) SNPs, (4) chemical structures, (5) indications,
(6) targets, and (7) side effect anatomical hierarchy. *ese
were used to indicate that similar drugs for each feature have
comparable side effects, as shown in Table 1.

2.1.1. Drug-Drug Interaction. DDI relationships were con-
sidered based on the assumption that similar drugs are prone
to exhibit comparable reactions to other drugs [14, 15]. *e
gold standard dataset was acquired from Ryu et al., who
compiled DDIs from DrugBank [16, 17]. *is dataset
comprised 192,284 DDIs with 1,710 different drugs and 86
interaction types. According to Ryu et al., one drug may
“affect” or “be affected by” another drug. Interactions be-
tween two drugs were expressed using the following nota-
tion: (x, y, z), where x represents the other drug within the
interaction, y denotes the interaction type, and z represents
whether the drug “affects” or “is affected by” another drug in
the interaction. For example, if drug A was affected by drug
B with interaction type 1, the relationship is expressed as
(B, 1,←); if drug A affected drug C with interaction type 2,
the relationship is expressed as (C, 2,⟶ ). Accordingly, a
set of elements of drug A was established
(SA � (B, 1,←), (C, 2,⟶ ) . . .{ }). *e same procedure
was repeated for all the drugs. *e DDIs-D similarity was
evaluated considering related drugs and their interaction
types.

Additionally, by considering network characteristics, the
biological functions of DDIs were analyzed. Because pro-
teins interact with other proteins, drug targets in the human
protein interactome were considered. *e human PPI
network was retrieved from STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins); it included
11,754,195 pairs of 10,342 different proteins [18]. For each
drug, the component genes of a target-target network were
obtained using the shortest paths for targets on the PPI
network. Subsequently, the gene ontology terms were ob-
tained. *e drug-drug similarity of DDIs-N was evaluated
using these terms. *e DDIs-N similarity represents the
functional similarity between the two drugs.

2.1.2. Single Nucleotide Polymorphism. It is widely accepted
that two drugs with similar indications (i.e., diseases) are
likely to exhibit comparable side effects. Furthermore, a
previous study demonstrated that similarities in SNPs could
be leveraged to identify drug repositioning [11]. *us, genes
that are affected by SNPs were used to consider the genetic
traits of diseases that were affiliated with two drugs. First,
disease-associated SNPs from the DisGeNET were collected
[19]. Next, the SNPs were mapped to each drug based on
indications. Finally, the SNPs were linked to other genes that
were regulated by SNPs for each drug using data from Fagny
et al. [12]. *ese data contained expression quantitative trait
loci linking SNPs to tissue-specific regulation of gene
transcripts from Genotype-Tissue Expression. *e SNP
similarity was used to show that the more similar the genetic
traits of diseases that were related to two drugs, the more
comparable the side effects.
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2.1.3. Indication. In this section, drug indications from three
different databases were collected to present phenotypic
traits. First, the *erapeutic Target Database (TTD), con-
taining 44,481 associations spanning 1,000 drugs and 1,298
diseases, was used [20]. Second, the Comparative Tox-
icogenomics Database (CTD), consisting of curated and
inferred chemical-disease associations, was used [21].

However, among the curated associations, only those that
exhibited direct evidence of a chemical-disease association
(marked “marker/mechanism” or “therapeutic”) were in-
cluded, and the inferred associations were excluded. As a
result, 150,175 associations, spanning 1,510 drugs and 5,709
diseases, were processed from the CTD. *ird, the repoDB
contained 6,677 associations spanning 1,519 drugs and 1,229
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Figure 1: System overview. (a) To build a set of features for a drug-side effect pair, the maximum similarity was selected for each feature
based on the known associations from the training samples between the side effect and other drugs. (b) At this step, the maximum side effect
anatomical hierarchy similarity was chosen based on the known side effects of the drug from the training samples. (c) By assigning values, as
was done for (a) and (b), datasets for machine learning were created with different combinations of features, and diverse classification
algorithms, including a random forest, XGBoost, logistic regression, and naive Bayesian model, were applied to predict the relationship
between a side effect and a drug. (d) Stacking ensemble learning that incorporated all four classifiers as its base classifiers and used a neural
network as its meta classifier was applied.
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diseases [22]. Finally, this study comprised 197,547 asso-
ciations spanning 2,144 drugs with DrugBank ID and 6,556
diseases with UMLS ID. *e indication similarity was used
to denote the phenotypic traits of drugs.

2.1.4. Targets and Chemical Structures. In this study, 6,076
drug-target associations for 1,366 drugs were obtained from
DrugBank. When drugs were related to the same protein,
they underwent similar biological processes [8]. *us, drugs
that bind to the same target are associated with the same side
effect. *e biological characteristics of the drugs were
considered based on the target similarity.

*e simplified molecular-input line-entry system
(SMILES) refers to simplified chemical structures and
encoded molecular graphs as a human readable string [23].
We obtained the chemical structures of 1,878 drugs in the
SMILES format from PubChem and DrugBank [24].
Chemical properties of drugs play an important role. Fur-
thermore, drugs with similar chemical structures tradi-
tionally exhibit comparable biological activities [5]. *e
Open Babel software was used to evaluate the similarity of all
drug pairs based on the Tanimoto coefficient, which is the
number of bits in common divided by the union of the bits
using drug fingerprints [25].

2.1.5. Jaccard Coefficient. *e Jaccard coefficient was used to
compute the similarities for all the properties mentioned
earlier, except the chemical structures. It is equal to the
number of traits in common divided by the union of the
traits and is expressed as

J DA, Db( 􏼁 �
SA ∩ SB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

SA ∩ SB
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (1)

where SA and SB represent the sets of properties of drug A
and drug B, respectively. Five similarities were obtained using
the Jaccard coefficient for the following properties: (1) DDIs-D,
(2) DDIs-N, (3) SNPs, (4) indications, and (5) targets.

2.1.6. Side Effect Anatomical Hierarchy Similarity. *e “side
effect anatomical hierarchy” similarity was evaluated using
side effect anatomical hierarchy from Wadhaw et al.’s paper

[13]. *ey categorized each side effect manually according to
its anatomical scheme, which is organized at three levels:
organ, subsystem, and system levels, as depicted in Figure 2.
*e “side effect” level considers each side effect as an in-
dependent side effect. *e “organ” level represents organ
classes in which side effects are aggregated based on their
anatomical schema. *e “subsystem” and “system”’ levels
are aggregated in the same way. *eir study implied that
similar side effects are likely to be associated with similar
anatomical levels. *us, we named this as “side effect an-
atomical hierarchy” in our study. Finally, the anatomical
hierarchies of 5,868 side effects were obtained.

Using equation (1), the anatomical hierarchies of side
effects a (SEa) and b (SEb) for each level were calculated.
Sl(SEa, SEb) denotes the similarity of two side effects in a
specific level and l indicates the level.

Sside effect SEa, SEb( 􏼁 �
􏽐

n
l�1 Sl SEa, SEb( 􏼁

n
. (2)

In equation (2), n denotes the total number of levels,
which is 3 in this case. Accordingly, we obtained the ana-
tomical hierarchy similarity Sside effect(SEa, SEb) between two
side effects.

2.2.Assign SimilarityValues for EachDrug-SideEffect Sample.
In the study dataset, a drug-side effect pair is a sample. To
build effective prediction models, only side effects that were
related to at least five drugs were considered. In addition, a
similarity value between the drug in the pair and other drugs
that had the side effect in the pair was required. Positive
samples consisting of the known drug-side effect associa-
tions from SIDER were generated using the drugs and side
effects that met the above condition. In total, 107,878 drug-
side effect associations were collected from the SIDER da-
tabase (reported up to September 2017) [26]. For each drug,
the PubChem compound ID was mapped to the DrugBank
ID using the annotations provided in biodb.jp [27].

Negative samples were randomly generated from the drugs
and side effects used in the positive samples by excluding the
known associations. An identical number of drug-side effect
samples were collected for the negative and positive sets. *en,
a dataset comprising negative and positive sets was built. To

Table 1: Information on features used in this study.

Name Description Source
Drug-drug interactions from DrugBank
(DDIs-D) Change in the efficacy or toxicity of one drug caused by another drug

DrugBank

Drug-drug interactions from network
(DDIs-N) STRING

Single nucleotide polymorphism (SNP) Substitution of a single nucleotide that occurs at a specific position in
the genome Fagny et al. [12]

Target protein Functional biomolecule controlled by drugs DrugBank

Chemical structure A molecule represented by a graph with nodes (atoms) and edges
(bonds)

DrugBank,
PubChem

Indication Use of drugs for treating particular diseases TTD, CTD,
repoDB

Side effect anatomical hierarchy Anatomical characteristic of a side effect Wadhaw et al. [13]
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avoid a negative sample bias, 100 negative sets were extracted
using random sampling with replacement. We performed
hold-out validation instead of cross validation because the
values in each dataset were highly affected by the positive pairs
of the training set. *ese pairs were split into three subsets:
training dataset, validation dataset, and test dataset.*e ratio of
the three sets was 8 :1 :1.

Subsequently, datasets were built using the similarity
values generated in the above step. First, for each drug-side
effect sample, drugs that had known associations with the
side effect in the training set were identified. *en, the
maximum similarity values for each feature were obtained
from the drug and other drugs. In particular, if the drug had
a known association with the side effect in the training set,
the similarity of the drug itself was excluded. *e feature
values for the six types of similarities (viz., DDIs-D, DDIs-N,
SNPs, indications, targets, and chemical structures) were
assigned in the same manner as mentioned above. *is step
is illustrated in Figure 3.

*is procedure was reversed for the side effect ana-
tomical hierarchy feature. First, for a drug-side effect sample,
side effects that were known to be associated with the drug in
the training set were identified. *en, the maximum simi-
larity value between the side effect and other side effects was
obtained. In particular, if the side effect had a known as-
sociation with the drug in the training set, the similarity of
the side effect itself was excluded.

Accordingly, each pair was represented by seven
features.

2.3. Machine Learning. Using datasets constructed in the
above step, four base machine learning algorithms were
applied: random forest (RF), logistic regression (LR),
XGBoost (XGB), and naive Bayesian (NB) [28–31]. In the
machine learning process, a validation dataset was used to
optimize parameters for each algorithm. *e test set was
used to evaluate the prediction model. In addition, stacking
ensemble learning incorporating all these four classifiers as
its base classifiers and using a neural network as its meta
classifier was applied [32,33].

*e stacking ensemble learning is illustrated in Figure 4.
*e training, validation, and test datasets are shown, re-
spectively, in blue, orange, and green colors in the base
models. In the stacking step, the predictions from the val-
idation dataset in the base step become the training dataset
and are shown in orange color.

2.4. Performance Evaluation. In this study, the area under
the curve (AUC), precision, recall, F1 score, and specificity
were evaluated. Each measurement was averaged across 100
validation datasets and test datasets. True positive (TP) and
false positive (FP) indicate the numbers of correctly and
falsely predicted positive drug-side effect pairs. True negative
(TN) and false negative (FN) represent the numbers of
correctly and falsely predicted negative drug-side effect
pairs.

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 − score �
2 × Precision × Recall
Precision + Recall

,

Specificity �
TN

TN + FP
.

(3)

2.5. Confirmation of Drug Candidate Side Effects with FAERS
and MedEffect. *e average AUC was obtained for each
algorithm across validation datasets and test datasets.
Considering all the average AUCs, the RF algorithm, which
exhibited the best results in the validation and test datasets,
was chosen to predict the candidate side effects of drugs, and
a classifier was applied. *e remaining set, which was not
used earlier, was used to predict the candidate associations.

For validation purposes, the drug-side effect associations
were extracted from the FDA Adverse Event Reporting
System (FAERS), which uploads event lists four times a year
(2015.4–2017.9) [34]. FAERS was compiled into 1,829,465
drug-side effect associations for 2,921 drugs and 5,737 side
effects. *e data from Health Canada’s Adverse Drug Re-
action Reporting System (MedEffect) was compiled into
2,466 drug-side effect associations for 55 drugs and 902 side
effects [35]. FAERS and MedEffect are postmarketing sur-
veillance systems.

*ere were two types of associations: (1) the associations
predicted using the method proposed in this study and (2)
the actual associations from FAERS and MedEffect. Two
contingency tables were created for FAERS and MedEffect
with our predictions as depicted in Table 2. Fisher’s exact test
(expressed as equation (4)) was applied to check whether the
candidate predictions from the proposed method signifi-
cantly enhanced the existing side effect databases.

p �
(x + y)!(z + w)!(x + z)!(y + w)!

x!y!z!w!n!
. (4)

In this equation, the cells of the contingency table are
denoted as x, y, z, and w; n represents the grand total and p
represents the probability.

3. Results and Discussion

Compared with the use of only the target, indication, and
chemical properties, the addition of more features improved

Systems

Subsystems

Organs

Side effects

Figure 2: Schema of side effect anatomical hierarchy.
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the capability of predicting the candidate side effects of a
drug. *e similarities between drugs were evaluated using
DDIs from DrugBank (DDIs-D), DDIs from network (DDI-
N), SNPs, indications, and the target and chemical prop-
erties of drugs. In addition, the similarities between side
effects based on side effect anatomical hierarchy were
computed. A maximum of seven features for each drug-side
effect pair were extracted.

For a drug and a side effect to be considered in the
prediction process, a similarity value between that drug and
other drugs that had the same side effect was required.
Furthermore, only side effects associated with at least five
drugs were considered. Accordingly, 638 drugs and 2,117
side effects were used in this study.*e number of pairs used
in each set is presented in Table 3. *e datasets were built by
combining a positive set with negative sets. *e positive set
consisted of known associations from SIDER, whereas the
negative sets were randomly generated from the drugs and
side effects used in the positive set.*e associations included

in the positive set were excluded from the negative sets. In
total, 100 negative sets were randomly generated, and 100
sets were created by combining positive and negative sets.
*en, a set was split into three subsets: training, validation,
and test datasets. *e ratio of these sets was 8 :1 :1, as in-
dicated in Table 3.

3.1. Performance Evaluation. Four machine learning al-
gorithms were adopted: NB, RF, LR, and XGB algo-
rithms. First, the performance was tested for a case in
which only chemical, indication, and target features
(primarily utilized in previous studies) were used. Sub-
sequently, other features were added incrementally. *e
impact of adding features incrementally is illustrated in
Table 4. For each type of feature set, 100 hold-out val-
idation runs were performed, and the resulting AUC
scores were averaged.

In Table 4, the “Base” feature comprised the indications,
targets, and chemical structures commonly used in previous
studies. Next, other features were added to the “Base” fea-
ture, with “+” representing the addition of features. For
example, “Base + SNPs” indicates that the SNP feature was
added to indications, targets, and chemical structures. “SE-
AH” denotes the side effect of the anatomical hierarchy
feature. Accordingly, 16 different feature combinations were
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SimIn the training set
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Figure 3: Assigning values to drug-side effect pairs.
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Table 2: Contingency table.

Predicted actual True False Row total
True x y x+ y
False z w z+w

Column total x+ z y+w n (�x+ y+ z+w)
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created to demonstrate the improved performance with the
inclusion of additional features.

*e results presented in Table 4 indicate that the addition
of features increased the AUCs for all machine learning
algorithms. In the RF model, the AUC increased by ap-
proximately 3.5% when new features were considered along
with chemical, indication, and target features.*us, it can be
concluded that the addition of new features improved the
prediction capability.

Table 5 represents various performance measurements
when all features are used. *e data indicate that the higher
the AUC, the higher the other measurements.

Table 6 illustrates the relative importance of features
when all the features are used. Feature importance signifies
the extent of the contribution made by each feature to the
performance of the model. We used the varImp function of
the caret R package to obtain feature importance [36]. It is
evident that new features introduced into our prediction
method contribute significantly to the improvement in the
overall prediction performance. To elaborate further, we
depicted the feature importance of RF in Figure 5. RF
showed the best results in Table 4.

As shown in Figure 5, the DDI-D and SNP features play a
significant role in the RF model. *erefore, it can be con-
cluded that the incorporation of new features into the
method can substantially improve side effect predictions.

3.2. Candidate Predictions. *e proposed method in this
study yielded the best results when the RF model with all the
features (DDIs-D, DDIs-N, SNPs, side effect anatomical
hierarchy, chemical structures, target, and indication) was

used, as depicted in Table 4. *erefore, the classifier that
yielded the highest AUCs from the RF model was chosen to
predict the candidate side effects of drugs. In the proposed
model, 638 drugs and 2,117 side effects were used. An entire
set was generated that comprised 1,350,646 pairs of drugs
and side effects. *e pairs used in the training, validation,
and test sets were excluded from the entire pairs. *e
remaining 1,197,356 pairs were used to predict candidate
side effects of drugs. Finally, the candidate predictions for

Table 3: Number of pairs that are used in each set.

Number of pairs in the positive set Number of pairs in the negative set Total number of pairs used in the set
Training set 61,316 61,316 122,632
Validation set 7,664 7,664 15,328
Test set 7,665 7,665 15,330

Table 4: Averaged AUCs from our dataset for 100 hold-out validation runs of our machine learning algorithms.

Validation set Test set
Type of feature set RF NB XGB LR RF NB XGB LR
All features 0.9009 0.8713 0.8917 0.8641 0.9018 0.8713 0.8921 0.8642
Base +DDIs-N+ SNPs +DDIs-D 0.8964 0.8575 0.8834 0.8501 0.8973 0.8575 0.8835 0.8501
Base + SE-AH+ SNPs +DDIs-D 0.8961 0.8710 0.8896 0.8655 0.8970 0.8710 0.8896 0.8656
Base + SE-AH+DDIs-N+DDIs-D 0.8947 0.8645 0.8859 0.8550 0.8959 0.8644 0.8863 0.8550
Base + SNPs +DDIs-N+ SE-AH 0.8940 0.8645 0.8868 0.8563 0.8951 0.8644 0.8870 0.8563
Base + SNPs +DDIs-N 0.8905 0.8572 0.8809 0.8519 0.8913 0.8572 0.8809 0.8519
Base +DDIs-D+DDIs-N 0.8901 0.8505 0.8773 0.8400 0.8911 0.8505 0.8773 0.8401
Base + SNPs +DDIs-N 0.8886 0.8496 0.8775 0.8415 0.8897 0.8496 0.8776 0.8414
Base +DDIs-D+ SE-AH 0.8879 0.8641 0.8830 0.8563 0.8890 0.8640 0.8830 0.8563
Base + SE-AH+ SNPs 0.8874 0.8641 0.8840 0.8574 0.8885 0.8690 0.8840 0.8575
Base + SE-AH+DDIs-N 0.8849 0.8540 0.8783 0.8422 0.8863 0.8539 0.8785 0.8421
Base +DDIs-D 0.8812 0.8502 0.8736 0.8432 0.8820 0.8502 0.8736 0.8431
Base + SNPs 0.8798 0.8493 0.8744 0.8440 0.8810 0.8492 0.8744 0.8440
Base +DDIs-N 0.8788 0.8389 0.8681 0.8281 0.8802 0.8389 0.8683 0.8279
Base + SE-AH 0.8761 0.8535 0.8740 0.8430 0.8774 0.8533 0.8741 0.8429
Base 0.8659 0.8385 0.8634 0.8313 0.8673 0.8385 0.8636 0.8310

Table 5: Performance measurements using all features.

Specificity Precision Recall F1
Validation set
RF 0.8113 0.8167 0.8407 0.8285
NB 0.7521 0.7655 0.8245 0.7957
LR 0.7913 0.7934 0.8016 0.7975
XGB 0.8161 0.8169 0.8207 0.8188
Test set
RF 0.8126 0.8178 0.8473 0.8294
NB 0.7514 0.7682 0.8240 0.7951
LR 0.7912 0.7933 0.8014 0.7973
XGB 0.8144 0.7154 0.8196 0.8175

Table 6: Representation of feature importance by ranking.

DDIs-
D SNPs Indication DDIs-

N Target Chemical SE-
AH

RF 1 2 4 6 5 3 7
LR 4 3 5 7 6 2 1
XGB 2 3 5 7 1 4 6
NB 1 2 5 6 4 3 7

BioMed Research International 7



188,568 novel drug-side effect associations were obtained, as
shown in Supplementary Table 1. A drug could have mul-
tiple side effects. *e candidate predictions were compared
with the existing database for known associations to confirm
that the predictions significantly enriched the existing da-
tabases. Fisher’s test using R was performed in accordance
with equation (4) and Table 2, and the results confirmed that
the new predictions significantly enriched FAERS
(p< 2.2e − 16 and odd ratio� 2.104912). *e contingency
table for FAERS and the predictions from the proposed
method are reproduced in Table 7. *e predictions of the
proposed method also significantly enhance MedEffect
(p � 0.001169 and odd ratio� 1.2266). Table 8 shows the
contingency table for MedEffect and the predictions from
the proposed method.

3.3. Comparison with Previous Studies. We compared our
results with those of two previous studies by Zhao et al.
because they too treated a drug-side effect pair as a sample,
like we did in this study [37, 38]. Two other previous studies
used the fingerprint, chemical structure, ATC code, litera-
ture association, and target as features to predict side effects
and applied diverse machine learning algorithms such as RF,
nearest neighbor, dagging, and support vector machine.
Zhao et al. adopted similarity and network embedding for
feature construction, respectively. *ey used RF as their
preferred method.

In this study, we showed the results of RF in comparison
with the results obtained in previous studies [37, 38]. *ey
adopted RF as their final model.

*e stacking model was proposed to highlight its
slightly improved performance compared to RF. In the
stacking ensemble model, we adopted a neural network as a
meta classifier, and four models (RF, NB, XGB, and LR)
were used as base models. *erefore, we compared our
study to previous studies with two proposed methods:
stacking and RF.

As seen in Table 9, the two proposed stacking and RF
methods yielded better results while predicting the side
effects of drugs than the method of Zhao et al. *e results
show significant differences in three measurements (preci-
sion, recall, and F1). Because the F1 score considered both
precision and recall, a good F1 score indicates low false
positives and low false negatives. It means that our model
was less likely to predict false side effects as positive side

effects and actual side effects as negative side effects.
*erefore, the additional features proposed in this study can
bemore effective at ascertaining the side effects of drugs than
only the features suggested in previous studies.

3.4. Case Studies. Of the 188,568 candidate predictions,
12,648 associations were verified by FAERS and 377 asso-
ciations were verified by MedEffect. To evaluate the practical
benefits of the predictive classification models, diverse drugs
were sampled according to the following criteria: (1) a re-
cently approved drug with a target-based rational design, (2)
a drug for long-term administration, whose side effects
required more monitoring, (3) a multitargeted drug showing
several differential indications, and (4) a long-established
drug whose mechanism was imperfectly understood. *ey
were further examined via a comparison with academic
literature and drug discovery material.

First, dasatinib, a small-molecule multikinase inhibitor
used to treat cancer, was selected as a recently approved drug
with a target-based rational drug design [39]. Consequently,
the observational and interventional side effects clinical data
on the drug were relatively abundant, and swift data updates
for indication expansion were expected. Remarkably, among
the 449 predicted side effects of dasatinib, 16 matched the
reported data in MedEffect and 194 matched the reported
data in FAERS. Accordingly, 43% of the predicted side ef-
fects of dasatinib were found in the clinical data. Moreover,
literary evidence was found for some predicted side effects
present in both MedEffect and FAERS. Angioedema is a
serious adverse drug reaction that can be caused by dasatinib

Table 7: Contingency table for FAERS and predictions from
proposed method.

Predictions FAERS True False
True 12,648 7,797
False 41,446 53,780

Table 8: Contingency table for MedEffect and predictions from
proposed method.

Predictions MedEffect True False
True 377 1,145
False 4,089 15,233

Table 9: Comparison with the method of Zhao et al.

AUC Specificity Precision Recall F1
Proposed method
(stacking) 0.9040 0.8104 0.8174 0.8483 0.8325

Proposed method
(RF) 0.9018 0.8126 0.8178 0.8473 0.8294

Zhao et al.
method (2019) 0.8977 0.880 0.760 0.761 0.761

Zhao et al.
method (2018) 0.8492 0.759 0.766 0.791 0.778
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Figure 5: Feature importance of RF.
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[40]. According to a study by Reyes-Habito et al., dasatinib
commonly causes skin reactions, such as pruritus, acne, and
xerosis [41]. A symptom of “blood alkaline phosphatase
increase” can also be caused by dasatinib [42].

Second, sitagliptin, a diabetes therapeutic acting as a
selective dipeptidyl peptidase-4 inhibitor, was chosen as a
good representative of a drug prescribed for long-term care
[43]. Because long-term administration is needed, the side
effect monitoring required here is more than that required
for short-term administration drugs. Furthermore, sita-
gliptin also represents a significant new drug class for
diabetes. It has a clear mechanism of action and a rational
drug design. To develop combination-therapy drugs ap-
plicable to a metabolic syndrome caused by sitagliptin and
other drugs, researchers need to have a comprehensive
understanding of its side effects. Among the 236 predicted
side effects of sitagliptin, 134 matched the data reported in
FAERS; that is, 56% of the sitagliptin predictions were
found in clinical data.

*ird, vorinostat, a multitargeting drug was chosen for
its widely varying indications. It is used to treat diseases
ranging from HIV infection to diverse types of cancers,
including nonsmall-cell lung, ovarian, breast, and pancreatic
cancers. As vorinostat is a target-based anticancer drug, its
side effects are more reasonably traceable than those of other
cytotoxic agents. When considering the risk-to-benefit ratio,
the side effects of anticancer drugs can be insignificant in
comparison with those of other therapeutic drugs. However,
recent cancer treatment tends to consider the quality of life
as well as the survival rate. Among the 151 predicted side
effects of vorinostat, 56 were identified in the FAERS clinical
data and 1 was identified in MedEffect.*erefore, 37% of the
predictions matched the clinically reported side effects in
FAERS, thus proving that the proposed method could be
used to effectively identify new side effects from the com-
plete list of drugs with warning black boxes.

Finally, clonidine was chosen as it has an unclear
mechanism despite being a long-established drug. Although
the available information of its on-target effects was inad-
equate and could not be used to explain its side effects, the
accumulated records of both diverse indications and side
effects were sufficient for comparison with the predictions
from the proposed method. In total, 563 side effects for
clonidine were identified.

To summarize, this study shows that, to a notable extent,
predictions can be found in clinically reported data. How-
ever, some unprecedented side effects suggested by the
predictions of the proposed model will have to be clinically
validated in the near future.

4. Conclusions

In this study, we proposed a method to deduce the candidate
side effects of drugs using the existing knowledge on drugs
and side effects. Unlike previous studies that primarily fo-
cused on the biological, phenotypic, and chemical charac-
teristics of drugs, in this study, we used an array of
information on drugs. *e focal point of this study is that
properties used in drug repositioning studies can be utilized

to predict side effects because the phenotypic expression of a
side effect is similar to that of the disease.

By leveraging a variety of data such as SNPs, DDIs, and
side effect anatomical hierarchy, the benefits of adopting
these data as features were demonstrated; the overall per-
formance was found to be 3.5% better than that obtained by
only the target, chemical, and indication features.

*e limitation of the proposed method is that it could
not identify the candidate side effects of drugs that did not
have similarity values in all features. However, the rapid
growth of potential information on drugs will ensure the
availability of more drugs for further study.
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