Table 4.
Averaged AUCs from our dataset for 100 hold-out validation runs of our machine learning algorithms.
Validation set | Test set | |||||||
---|---|---|---|---|---|---|---|---|
Type of feature set | RF | NB | XGB | LR | RF | NB | XGB | LR |
All features | 0.9009 | 0.8713 | 0.8917 | 0.8641 | 0.9018 | 0.8713 | 0.8921 | 0.8642 |
Base + DDIs-N + SNPs + DDIs-D | 0.8964 | 0.8575 | 0.8834 | 0.8501 | 0.8973 | 0.8575 | 0.8835 | 0.8501 |
Base + SE-AH + SNPs + DDIs-D | 0.8961 | 0.8710 | 0.8896 | 0.8655 | 0.8970 | 0.8710 | 0.8896 | 0.8656 |
Base + SE-AH + DDIs-N + DDIs-D | 0.8947 | 0.8645 | 0.8859 | 0.8550 | 0.8959 | 0.8644 | 0.8863 | 0.8550 |
Base + SNPs + DDIs-N + SE-AH | 0.8940 | 0.8645 | 0.8868 | 0.8563 | 0.8951 | 0.8644 | 0.8870 | 0.8563 |
Base + SNPs + DDIs-N | 0.8905 | 0.8572 | 0.8809 | 0.8519 | 0.8913 | 0.8572 | 0.8809 | 0.8519 |
Base + DDIs-D + DDIs-N | 0.8901 | 0.8505 | 0.8773 | 0.8400 | 0.8911 | 0.8505 | 0.8773 | 0.8401 |
Base + SNPs + DDIs-N | 0.8886 | 0.8496 | 0.8775 | 0.8415 | 0.8897 | 0.8496 | 0.8776 | 0.8414 |
Base + DDIs-D + SE-AH | 0.8879 | 0.8641 | 0.8830 | 0.8563 | 0.8890 | 0.8640 | 0.8830 | 0.8563 |
Base + SE-AH + SNPs | 0.8874 | 0.8641 | 0.8840 | 0.8574 | 0.8885 | 0.8690 | 0.8840 | 0.8575 |
Base + SE-AH + DDIs-N | 0.8849 | 0.8540 | 0.8783 | 0.8422 | 0.8863 | 0.8539 | 0.8785 | 0.8421 |
Base + DDIs-D | 0.8812 | 0.8502 | 0.8736 | 0.8432 | 0.8820 | 0.8502 | 0.8736 | 0.8431 |
Base + SNPs | 0.8798 | 0.8493 | 0.8744 | 0.8440 | 0.8810 | 0.8492 | 0.8744 | 0.8440 |
Base + DDIs-N | 0.8788 | 0.8389 | 0.8681 | 0.8281 | 0.8802 | 0.8389 | 0.8683 | 0.8279 |
Base + SE-AH | 0.8761 | 0.8535 | 0.8740 | 0.8430 | 0.8774 | 0.8533 | 0.8741 | 0.8429 |
Base | 0.8659 | 0.8385 | 0.8634 | 0.8313 | 0.8673 | 0.8385 | 0.8636 | 0.8310 |