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Summary

Soils provide a heterogeneous environment varying in
space and time; consequently, the biodiversity of soil
microorganisms also differs spatially and temporally.
For soil microbes tightly associated with plant roots,
such as arbuscular mycorrhizal fungi (AMF), the diver-
sity of plant partners and seasonal variability in tro-
phic exchanges between the symbionts introduce
additional heterogeneity. To clarify the impact of such
heterogeneity, we investigated spatiotemporal varia-
tion in AMF diversity on a plot scale (10 × 10 m) in a
grassland managed at low intensity in southwest
Germany. AMF diversity was determined using 18S

rDNA pyrosequencing analysis of 360 soil samples
taken at six time points within a year. We observed
high AMF alpha- and beta-diversity across the plot
and at all investigated time points. Relationships were
detected between spatiotemporal variation in AMF
OTU richness and plant species richness, root bio-
mass, minimal changes in soil texture and pH. The
plot was characterized by high AMF turnover rates
with a positive spatiotemporal relationship for AMF
beta-diversity. However, environmental variables
explained only �20% of the variation in AMF communi-
ties. This indicates that the observed spatiotemporal
richness and community variability of AMF was largely
independent of the abiotic environment, but related to
plant properties and the cooccurring microbiome.

Introduction

Understanding spatial and temporal patterns in species
diversity is one of the fundamental goals of biodiversity
research (Gaston and Spicer, 2013). Soil microbial commu-
nities exhibit spatial patterns at scales from sub-millimetre
to hundreds of metres, determined by heterogeneous envi-
ronmental conditions at respective scale-dependencies
(Grundmann et al., 2001; Ettema and Wardle, 2002; Nunan
et al., 2003; Bahram et al., 2015). Simultaneously, dynamic
variations in abiotic soil conditions lead to fluctuating soil
microbial abundances and functions over time, documented
in agricultural (Kandeler and Böhm, 1996; Kandeler
et al., 1999), tundra (Björk et al., 2008) and forest eco-
systems (Görres et al., 1998; Nacke et al., 2016). More-
over, plant growth and development or changes in
vegetation within a year are able to shift soil microbial
communities (Chaparro et al., 2014; Nacke et al., 2016).
This is especially relevant for obligate biotrophic plant
mutualists such as arbuscular mycorrhizal fungi (AMF;
Smith and Read, 2008).

Recent studies have aimed to identify general patterns
of and major influences on AMF community composition.
Some findings have included, for instance, high impacts
of land-use intensity (Bouffaud et al., 2017), soil proper-
ties (Kivlin et al., 2011; Lekberg et al., 2012), plant com-
munity composition (van der Heijden et al., 1998; König
et al., 2010; Neuenkamp et al., 2018) and/or host-plant
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identity (Sanders, 2003). Since AMF are obligate root
mutualists, most studies have focused on fungus-plant-
relationships. Conflicting results have been observed,
however, regarding the interactions between plant com-
munity composition and AMF communities, ranging from
enhanced (Wu et al., 2007; Hiiesalu et al., 2014) to
reduced plant diversity in the presence of AMF
(Antoninka et al., 2011) to no relationship between plant
and AMF diversity (Öpik et al., 2008). These contradic-
tory findings may be related in part to study scales
(Hempel, 2018), since different environmental forces
work at different scales (Chase, 2014); this also applies
to AMF (Vályi et al., 2016).
According to ecological theory, niche-related

(environmental/deterministic; MacArthur and Wilson,
1967) and neutral (stochastic; Hubbell, 2001) processes
in particular shape community composition and habitat
colonization. However, these processes appear to have
different strengths at various scales: niche-related effects
are more common at larger (e.g., regional or global)
scales, while neutral processes operate mainly at small
spatial scales (Chase, 2014). Many studies have been
conducted at broad geographical scales (Öpik et al.,
2006; Hazard et al., 2013; Davison et al., 2015; Bouffaud
et al., 2016, 2017), but to date little is known about rich-
ness and occurrence patterns of AMF at or within
plot scales (≤ 50 m × 50 m) in grassland ecosystems
(Lekberg et al., 2012; Horn et al., 2014). One advantage
of such small-scale study designs is the focus on envi-
ronmental conditions and variations in plant communities
within a specific habitat, thereby excluding overriding
effects of large-scale heterogeneity at the landscape
level (Berner et al., 2011; Regan et al., 2017). Thus, fun-
damental influences on AMF communities can be studied
at such plot or subplot scales, ranging from centimetre to
metre. Repeating such sampling scales at one plot adds
information on temporal autocorrelations (Tobler, 1970),
providing an opportunity to investigate spatial hot spots
and temporal hot moments simultaneously.
To understand temporal influences and to identify hot

moments (Kuzyakov and Blagodatskaya, 2015) in chang-
ing AMF communities (Dumbrell et al., 2011), a study
would need to cover the entire vegetation period by sam-
pling soils at several time points. To date, few of the stud-
ies focused on temporal variation have sampled AMF
communities more than twice during the growing season
(Bainard et al., 2014; Liu et al., 2014). Repeated sam-
pling is necessary, however, to account for seasonal vari-
ations in plant cover, which is likely coupled with
changes in soil moisture, temperature and nutrient fluxes
(e.g. phosphate and nitrate), and thus reflected in
dynamic soil microbial communities (Bardgett et al.,
2005). Even though a direct connection between AMF
diversity, its abundance, and changes in plant diversity is

not always apparent: Dumbrell et al. (2011) showed that
during spring and summer, when plant growth is strong,
environmental conditions and AMF distribution patterns
are not constant. However, even fewer studies have
investigated both spatial and temporal variations in AMF
communities (Davison et al., 2012; Koorem et al., 2014;
Barnes et al., 2016), and these studies have mainly been
done on forest sites. Davison et al. (2012) found sea-
sonal differences in AMF richness as well as distance
decay in community similarity at three 10 m × 10 m forest
plots sampled four times within one year, while Koorem
et al. (2014) confirmed the seasonal variability in AMF by
fatty acid analyses at small spatial scales
(1.05 m × 1.05 m) sampled twice during one summer.
Combining spatial and temporal sampling also makes it
possible to quantify the beta-diversity of AMF communi-
ties, which describes how species composition changes
over spatial scales and over time. However, analyses of
beta-diversity have only rarely included microorganisms
(e.g. Gossner et al., 2016).

Within the research platform ‘Biodiversity Exploratories’
(Fischer et al., 2010) the project SCALEMIC Experiment
established a spatiotemporal sampling design in a low
land-use intensity grassland at the plot scale
(10 m × 10 m) and assigned six sampling dates from
spring to autumn in one vegetation season. Through an
interdisciplinary approach, it was previously clarified that
plant growth changes plot-scale spatial heterogeneity of
soil microorganisms during the vegetation period, and
elucidated driving forces behind this observed microbial
heterogeneity (Regan et al., 2014). We linked existing
measures of seasonal and spatial changes in plant diver-
sity, abiotic soil properties and general microbial commu-
nity composition (Regan et al., 2014, 2015, 2017; Klaus
et al., 2016) to AMF diversity and community patterns.
Using high-throughput sequencing technology, this study
aimed to answer the following questions: (i) how much
variability in AMF alpha- and beta-diversity exists on a
spatial scale of 10 m × 10 m and a temporal scale of one
season?; (ii) are spatial and temporal AMF patterns
coupled?; and (iii) which environmental drivers are
responsible for the observed patterns? We expected a
strong relationship between the AMF community and its
changing environment, primarily vegetation and phos-
phate availability.

Results

Taxonomical distribution of AMF

We recovered 1 088 162 AMF SSU rDNA gene reads
from all 360 soil samples. After a quality filtering step that
included removal of 22 042 potential chimera and non-
AMF reads, we had a total of 562 320 AMF reads
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representing 1562 reads per sample, and which were
clustered into 155 abundant operational taxonomical
units (OTUs). As described in detail in the ‘experimental
procedures’ section, the removal of rare OTUs (OTUs
represented by ≤ 3 reads) had no significant effect on
AMF beta-diversity. Thus, the AMF matrix including only
abundant OTUs was used for further analyses.

The 155 abundant AMF OTUs were assigned to seven
genera: Acaulospora (2 OTUs), Ambispora (2),
Archaeospora (3), Claroideoglomus (20), Diversispora
(9), Glomus (117) and Paraglomus (2). Taxonomical dis-
tribution based on the number of observed AMF OTUs
differed slightly between sampling dates. The genus Glo-
mus was most abundant throughout the entire growing
season, ranging from 69% in April to 77% in November
(Fig. 1, Supporting Information Table S1) with the highest
diversity (a total of 106 OTUs) detected in October.
Besides Glomus, other AMF genera displayed temporal
peaks; e.g. Claroideoglomus in June (16.4%) and
Diversispora in April (8%).

Spatiotemporal variation in AMF richness

The OTU richness of total AMF was spatially modelled
and checked for autocorrelation. Kriged maps were gen-
erated for all sampling dates except October, at which
date the empirical variogram model was a pure nugget,
indicating no spatial autocorrelation at the measured
scale (Fig. 2A-E). The observed patterns occurred and
were distributed throughout the entire AMF community
over the entire sampling season. In April and May
(Fig. 2A and B), AMF diversity was homogeneous with
low OTU richness across the plot. An increase in AMF
OTU richness was detected in June (yellow areas in
Fig. 2C). Moreover, first patches developed in June, and
became more pronounced in August and November

(Fig. 2D and E). In general, total AMF OTU richness
decreased at the end of the growing season (increase of
dark green in the kriged maps), but discrete hot spots
and cold spots with high or low AMF OTU richness
appeared.

For the two most abundant AMF genera, Glomus and
Claroideoglomus, OTU richness was also spatially mod-
elled and could be visualized through kriged maps
(Supporting Information Figs S1 and S2). Spatial distribu-
tion of Glomus could be modelled in May, June, August
and November, while the spatial distribution of
Claroideoglomus could only be modelled in August and
November. As was the case for all AMF OTUs, Glomus
OTU richness was low to medium in May and June
(Supporting Information Figs S1a, b), tending towards
spatial patches of low or high richness. Heterogeneity of
distribution became more pronounced in August with two
spots of high OTU richness (Supporting Informa-
tion Fig. S1c). However, a shift in OTU richness occurred
in November (Supporting Information Fig. S1d) with
areas of low and high OTU richness of Glomus.
Claroideoglomus OTUs exhibited similar spatial patterns
in August with areas of low and intermediate richness
(Supporting Information Fig. S2a) and in November gen-
erally lower richness but more heterogeneous distribution
across the plot (Supporting Information Fig. S2b).

The effect of sampling date on AMF richness, assessed
by linear mixed effect models (LMEM), was plotted for all
OTUs and additionally for the OTUs of the two most abun-
dant genera, Glomus and Claroideoglomus (Supporting
Information Fig. S3). Sampling date significantly influenced
richness of both total AMF and Glomus OTUs (P < 0.0001),
but not Claroideoglomus OTUs. OTU richness significantly
increased in all AMF OTUs from April to June, dropping in
August. Total AMF OTU richness peaked in October and
dropped significantly in November. The richness of Glomus
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AMF OTU richness
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Fig. 1. Bar graphs representing the
temporal distribution of AMF OTUs of
Glomeromycota genera detected
across the entire plot.
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OTUs was similar with significantly lower richness in April
and a peak in October. The OTU richness of
Claroideoglomus did not change over the sampling
season.

Environmental impacts on AMF richness

Linear mixed effect models, taking into account the
impact of all available environmental factors (n = 34) on
total AMF OTU richness, revealed significant effects of
soil- and plant-related parameters in 21 cases, as well as

23 significant effects of environmental variables on Glo-
mus OTU richness. Claroideoglomus OTU richness was
significantly affected by soil carbon content, but this
explained only 3% of its variance. To detect those envi-
ronmental variables most closely associated with the
observed temporal effect on total AMF and Glomus OTU
richness, we combined environmental variables and sam-
pling date as fixed effects in LMEMs. This combination
indicated that the measured environmental variables
explained less unique variance in total AMF and Glomus
OTU richness than did sampling date. The final LMEM
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Fig. 2. Geostatistical data analysis of AMF OTU richness with all AMF OTUs grouped together per sampling date: (A) April, (B) May, (C) June,
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(Table 1) for total AMF OTU richness pointed to plant
species richness, percent silt content and sampling date
as the three main drivers at the investigated site, which,
taken together, explained 36% of the variance. Silt con-
tent had a positive effect, while plant species richness
was slightly negatively associated with total AMF OTU
richness. Temporal variation was reflected by the signifi-
cant effects of sampling time and indicated by the differ-
ent intercepts of the single months (Table 1). Glomus
richness was driven by plant species richness, root bio-
mass, percent silt content, pH and sampling date, which
together explained 38% of the variance in Glomus. Here,
we found a slightly negative impact of plant species rich-
ness, while root biomass, silt content and pH positively
affected the OTU richness of Glomus. For both total AMF
and Glomus OTU richness, sampling date explained
large proportions of the variance, 27% and 28%, respec-
tively. As plant species richness was only assessed at
three sampling dates, we additionally fitted models with-
out this variable for total AMF and Glomus OTU richness
to determine the best predictor variables across the
whole season. When all six sampling dates were
analysed, total AMF OTU richness was not influenced by
plant variables; instead, there was a slight negative asso-
ciation with soil NH4

+ content. Glomus OTU richness was
best predicted by legume and root biomass, NH4

+, silt
content, pH, the fungal to bacterial ratio and sampling
date over the entire season (see Table 1).

Spatiotemporal variation in AMF community composition

AMF beta-diversity (βSOR) was lower within time points
and within subplots than between these groups (ANOSIM
P-value = 0.001). When the data set was stratified by
sampling date, silt content, pH, microbial biomass, soil C
content and K2SO4-extractable organic N significantly
explained variation in βSOR. However, these variables
together explained less than 10% of the variation in βSOR.
No relationship between AMF βSOR and any plant vari-
able could be detected. Additionally, a spatial gradient
explaining 4% of the variability was observed (Supporting
Information Tables S2 and S3).

The AMF βSOR of the subplots between one time point
and the one immediately following varied slightly
(Supporting Information Fig. S4). However, there was no
stronger correlation between subplots near each other in
comparison to those subplots further distant (Supporting
Information Fig. S5; for data on Glomus and Claro-
ideoglomus see Supporting Information Figs S6 and S7,
respectively). No significant correlations between the
temporal development of βSOR and environmental vari-
ables were observed. Turnover (βSIM), meaning OTU
replacement between time points, and nestedness
(βSNE), meaning OTU gain and loss from one time point
to the next, are summarized in Fig. 3 (for data on Glomus
and Claroideoglomus, see Supporting Informa-
tion Fig. S8). The turnover in AMF community

Table 1. LMEM results for richness of entire AMF, Glomus, and Claroideoglomus for three and six sampling dates.

Sampling
dates Target Model coefficients of fixed effects n

Percentage explained variance

Random
effects

Fixed effects

Environmental
variables

Sampling
time

3 all AMF OTU = −0.57 * plant species no. + 1.7 * silt content
+ 23.39 (for sampling time May) + 25.47 (for
sampling time June) + 30.95 (for sampling time
October)

180 48 9 27

6 all AMF OTU = −0.7 * NH4
+ + 1.3 * silt content + 22.25 (for sampling

time April) + 22.81 (for sampling time
May) + 25.3 (for sampling time June) + 22.82 (for
sampling time August) + 30.5 (for sampling time
October) + 22.96 (for sampling time November)

360 45 6 27

3 Glomus OTU = −0.41 * plant species no. + 0.5 * root biomass
+ 1.5 * silt content + 0.75 * pH + 15.78 (for
sampling time May) + 16.73 (for sampling time
June) + 22.9 (for sampling time October)

180 60 10 28

6 Glomus OTU = 0.37 * legume biomass +0.34 * root biomass −
0.65 * NH4

+ + 1.25 * silt content +0.35 * pH −
12.73 * fungi:bacteria ratio + 15.46 (for sampling
time April) + 16.73 (for sampling time
May) + 18.06 (for sampling time June) + 17.41 (for
sampling time August) + 23.82 (for sampling time
October) + 17.96 (for sampling time November)

360 54 7 14

6 Claroideoglomus OTU 0.57 * Ctotal 360 11 3 —

Given are significant environmental variables with their coefficients (data z-transformed for comparison between coefficients), number of samples
in the model as well as explained variances. Subplot number was used as random effect (intercepts not displayed). n = number of samples.
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composition appeared to be constant between 0.3 and
0.4 during the sampling season. The highest AMF βSIM
was detected between June and August, which is likely
linked to the fact that this difference represented a dura-
tion of two months. βSNE peaked later in the season, par-
ticularly between August and October, but also between
October and November. However, kriged maps revealed
hot spots of turnover from April to May as well as from
October to November (Supporting Information Fig. S9).
Analysis of spatial AMF βSOR demonstrated some con-

tinuity within subplots early in the growing season (see
supplemental material for more details; Supporting

Information Figs S10 and S11). The relationship between
temporal βSOR (the average βSOR over time) and spatial
βSOR (the average AMF βSOR with the neighbouring sub-
plots) of each subplot displayed a positive trend (Fig. 4),
indicating that subplots with AMF communities that dif-
fered strongly from neighbouring subplots also changed
more over time. The positive relationship was signifi-
cantly stronger than the relationship observed in null-
models of βSOR, which were based on random community
permutations that maintained each sample’s richness
and the overall or sampling date point-specific probability
of OTU occurrence (Supporting Information Fig. S12). Con-
currently, no significant relationships between OTU rich-
ness or changes in alpha-diversity with spatial or temporal
βSOR were observed. The same pattern was observed for
the βSOR of Glomus OTUs, while Claroideoglomus βSOR

did not differ significantly from the null-models (Supporting
Information Fig. S12). No explanatory power was gained
by adding environmental variables to the linear model
explaining temporal βSOR with spatial βSOR. Among the
environmental variables, the mean grass biomass best
explained spatial βSOR of all OTUs (P-value 0.01, adjusted
R2 = 0.43).

Discussion

General characterization of AMF

AMF form a multispecies mutualism with over 80% of ter-
restrial plants, i.e. with more than one fungus per host
plant (Smith and Read, 2008). With a total of 155 abun-
dant AMF OTUs on a 10 m × 10 m plot over a vegetation
period that extended from April to November, our study
found relatively high AMF richness compared to recent
studies (Dumbrell et al., 2010; Davison et al., 2012; Horn
et al., 2014).
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Jun-Aug
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Apr-May

0.0 0.1 0.2 0.3 0.4 0.5

 β SIM 

 β SNE

β-diversity

Fig. 3. Patterns of variability within AMF assemblages across the
studied plot from one time point to the next. Stacked bars represent
overall beta-diversity (βSOR) observed in the partial data sets, com-
puted using the R package betapart (Baselga & Orme, 2012); dark
grey sections of the bars represent the contribution of the turnover of
AMF (βSIM), light grey sections account for the nestedness of AMF
(βSNE); error bars represent variability between SCALEMIC subplots.
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All four orders of the phylum Glomeromycota and
seven genera were represented in the observed OTUs.
Dominant at all time points was the AMF genus Glomus.
This dominance is in agreement with previously publi-
shed studies in grasslands, forests and agricultural eco-
systems (Daniell et al., 2001; Gai et al., 2009; Öpik et al.,
2009). Although AMF OTU richness was high, genera
such as Rhizophagus or Funneliformis, which have often
been observed in a comparable German grassland of low
land-use intensity (Horn et al., 2014), were not detected
in our dataset.

Spatiotemporal variation in AMF alpha-diversity

Our current study determined whether AMF richness
exhibits spatiotemporal variation at a small spatial scale
in a grassland soil, and which environmental variables
shape differences in AMF alpha-diversity. Studies in
which other results of the SCALEMIC Experiment have
been published observed an increase in biomass of
grasses and forbs until June and additionally a gain in
biomass of legumes in October as well as significant
shifts in mineral nitrogen content of soils over time
(Regan et al., 2014). Moreover, temporal shifts in plant
biomass and nutrient availability were detected (Klaus
et al., 2016). Results of our spatial analyses illustrate
clearly how AMF OTU richness varied across the sam-
pled plot and also over the season. The appearance of
hot or cold spots of AMF richness showed a dynamic pro-
cess that developed during the vegetation period. The
detected spatial autocorrelation of AMF OTUs with
ranges below 10 m across our plot for five of six time
points is in accordance with previous studies, e.g., by
Bahram et al. (2015), who reported autocorrelation
ranges around 9 m. Richness of AMF OTUs therefore
shows distance-decay relationships at the investigated
plot scale.

Interestingly, although more than 100 OTUs were
detected on the entire 10 m × 10 m plot at each sampling
date, many of these AMF appeared in patches of 20-30
OTUs per sampling point. This discrepancy between total
observed OTU richness across the plot and OTU rich-
ness per individual sampling point may be related to car-
rying capacity (Allen, 1989). We define carrying capacity
as the maximum number of AMF OTUs the studied
SCALEMIC grassland plot can sustainably support.
Accordingly, the local AMF carrying capacity appears to
have been patchy but potentially dynamic over time. The
observed temporal dynamic could be connected to
changes in resource availability. This could be related to
asynchronous growth of plants across the site (Yachi and
Loreau, 1999). For instance, a changing supply of photo-
assimilates could be accompanied by dense AMF popu-
lation sizes at one sampling point (hot spot), but reduced

AMF richness at another point (cold spot) on the plot
within or across sampled time points. This is in line with
findings of the linear mixed effect models, which found a
connection between AMF richness and changing environ-
mental variables such as plant species richness, root bio-
mass, pH and NH4

+. To the best of our knowledge, this
has not been shown previously and underscores the
need for more temporal investigations.

Restricted impact of environmental variables on AMF
richness

Linear mixed effect model analyses revealed a significant
effect of soil texture on the total richness of both AMF
and the genus Glomus across the plot. The heteroge-
neous distribution of silt in our soil modified important
habitat conditions. Hot spots of high silt content are char-
acterized by larger volumes of medium-sized pore space
and improved aeration in the surrounding microenviron-
ment (Horn et al., 2010), resulting in favourable habitat
conditions for AMF, which lead to increased AMF OTU
richness. Although the dependence of AMF on soil tex-
ture in grassland soils was shown in a large scale study
(Oehl et al., 2017), no studies have yet demonstrated that
this effect occurs with small textural changes (changes in
silt content < 10%) at the plot scale. Soil texture signifi-
cantly affected temporal variations in AMF OTU richness
even though it was temporally stable. We suggest that
this is because soil texture influences a number of habitat
conditions such as nutrient availability, pore space distri-
bution and thereby also the hydrological budget and oxy-
gen supply (Horn et al., 2010), which themselves vary
over time. That soil texture was a better measure than
single effects, e.g. soil water content, indicates its value
as a measurement that captures a range of temporal vari-
ations in texture-dependent habitat conditions. This result
emphasizes the importance of microhabitat conditions
for AMF.

In addition to soil texture, plant species richness was a
significant driver of OTU richness for both total AMF and
Glomus in the months of May, June and October. Inter-
estingly, a reduction in plant species richness led to an
increase in total AMF and Glomus OTU richness.
Argüello et al. (2016) described a positive feedback
mechanism for AMF-plant mutualism, leading to stronger
cooperation between AMF and plants under the condition
of high AMF diversity per plant. In addition, newly emerg-
ing plant species over the season may have had different
root architectures such as less root biomass, leading to a
reduction in AMF OTU richness, as higher root biomass
significantly increased the OTU richness of the genus
Glomus. It has also been suggested that both AMF and
plants actively control their associated symbiotic partners
(van der Heijden et al., 2015), in which case changes that
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resulted in a more cooperative plant community could
influence AMF OTU richness. Similarly, the newly emerg-
ing plant species may have had more acidic root exu-
dates, which would have reduced the OTU richness of
Glomus, as Glomus OTU richness decreased with
decreasing soil pH. A similar effect of pH on AMF OTU
richness in grassland ecosystems was also observed by
Heyburn et al. (2017). Even when they were evaluated
over all six sampling dates throughout the season, the
effects of soil texture, pH and sampling date remained
significant. Over the longer time, the impact of plants on
total AMF OTU richness was not significant; instead, a
negative effect of NH4

+ was detected. The same was true
for OTU richness of Glomus. As NH4

+ reduces soil pH,
this was likely a combined effect of the two soil proper-
ties. In addition, an increase in legume biomass led to an
increase in Glomus OTU richness, which may have been
due to increased coverage of the mycorrhizal plant part-
ners such as Trifolium pratense (L.) (van der Heijden
et al., 1998) and Vicia sepium (L.) (Closa and
Goicoechea, 2011) over time. The negative relationship
between the fungal:bacterial ratio of phospholipid fatty
acids and Glomus richness was related to an overall
increase in saprotrophic fungi at the site (Regan et al.,
2014), which was accompanied by a reduction in Glomus
richness, indicating both competition for resources
(Hodge et al., 2001) and interactions due to fungal com-
munity composition (Tiunov and Scheu, 2005) at the
study site. However, not all AMF genera reacted in the
same way. Claroideoglomus was affected neither by soil
texture nor by any of the above-mentioned environmental
properties; instead, a small but significant effect of soil
carbon content on this genus was detected.
Even though environmental soil properties explained a

portion of the variance in AMF alpha-diversity, sampling
date was the most important driver of total AMF and Glo-
mus OTU richness. Previous studies have reported an
increase in AMF OTU richness during the growing sea-
son with a decrease in autumn, which could be explained
by changing weather conditions within a sampling year
(i.e. temperature and precipitation; Kabir et al., 1998;
Staddon et al., 2003). In our study, there were signifi-
cantly fewer AMF OTUs in November than in June or
October. This phenomenon may have been related to
cold temperatures and less precipitation at this sampling
date [see supplemental Fig. A1 of Regan et al. (2014)].
Also, the observed decline in AMF OTU richness in
August may have been associated with a suppression of
plant growth and reduced carbon supply from plant to
fungus after the mowing event (Gehring and Whitham,
2002). This mowing event and the subsequent regrowth
of plants could have led to the high number of AMF
OTUs detected in October. It was shown recently that
more AMF propagules are present in mown than in

unmown soils (Binet et al., 2013), benefiting new AMF
infections after mowing. In addition, this is likely con-
nected to increasing root exudation following above-
ground plant biomass removal (Waters and Borowicz,
1994). More diverse exudates are likely to recruit a
greater AMF diversity (Hugoni et al., 2018). Conse-
quently, mowing leads to emerging micro-niches, which
favour a higher variability in AMF. Thereby, AMF can be
considered as stress tolerant since they can cope with
partition and destruction of their hyphae (Buscot, 2015).
Since up to only 10% of the explained variance was
directly attributable to measured environmental effects
(see Table 1), our results could indicate that neutral pro-
cesses, stochasticity or randomness due to natural vari-
ability may play a role in the formation of unpredictable
AMF patchiness in addition to the contribution from deter-
ministic processes. This applied to both total AMF OTUs
and OTUs of the genera Glomus and Claroideoglomus.

Pronounced spatiotemporal relationships in AMF beta-
diversity

In addition to alpha-diversity, this study sought to under-
stand whether or not beta-diversity in AMF exhibited
similar spatiotemporal patterns. With respect to OTU rich-
ness, AMF beta-diversity expressed as Sørenson index
indicated spatiotemporal relationships. Theoretically,
local AMF communities should be of a common and pre-
dictable composition since the species pool at the plot
scale is limited; thus, beta-diversity in both spatial and
temporal senses should be low according to Powell and
Bennett (2016). However, in our study, AMF beta-
diversity appeared high, with a particularly high turnover
rate from one observed time point to the next. Although
the turnover rates were high (consistently �40% of the
AMF community changed from one time point to the sub-
sequent one), a certain spatiotemporal stability of AMF
communities was observed. Our results suggest that
AMF community composition at the first three time points
(April-June) was determined by prior communities. It is
possible that DNA measures either detected defective
and dead cells (Carini et al., 2016), or dormant AMF
stages, such as spores from the previous year, which
impacted the observed AMF community at the beginning
of the vegetation period. This effect was lost during the
summer, which suggests that either legacy effects due to
the cyclic character of seasons in temperate regions
(Bahram et al., 2015) or the appearance of priority effects
(Viana et al., 2016) shaped AMF community composition,
as has been shown for soil bacteria (Francioli et al.,
2016, 2018). The plant-AMF interaction may have been
set back to zero during winter, resulting in a random start
of plant growth and fungal infections during spring. These
priority effects could have resulted in high heterogeneity
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within subplots, which decreases over the season.
Coupled with this is the fact that competition among AMF
emerges only over time (Maherali and Klironomos, 2012).
Alternatively, AMF detected from spores in our analyses
transformed from spores while colonizing growing plant
roots during the second half of the vegetation period. In
the second half of the year, these AMF may have
dropped below the molecular detection limit. Also, the
mowing event before sampling in August shuffled AMF
community composition, since mowing is known to multi-
ply AMF propagule numbers (Binet et al., 2013). How-
ever, we could not identify a direct link between either the
plant community taken together or between single plant
species and the AMF community. This missing link
between these two communities (Hart et al., 2001) sup-
ports the ‘independence hypothesis’ which suggests that
neither plants nor AMF express any covariation at all in
this mutualism (Zobel and Öpik, 2014).

Recent studies mention dispersal limitation of AMF
(Davison et al., 2015) as one reason for patchiness in
community composition at small scales. This results in
‘unpredictable assembly’ (Powell and Bennett, 2016) of
AMF, which corresponds well with our findings that
approximately 80% of variation in βSOR could not be
explained by environmental variables. This could indicate
that stochastic rather than niche-related processes shape
AMF βSOR. However, one general pattern could be identi-
fied: over time, AMF community composition differed less
within than between subplots. More similar environmental
conditions found within a subplot appeared to result in
significantly lower beta-diversity over time. This indicates
that even small environmental differences between two
subplots affected AMF community composition. Indeed, it
has previously been shown that pH, C, N, P and soil
water content shape AMF grassland communities (Horn
et al., 2014). In our study, around 20% of the observed
variation in AMF beta-diversity could be explained by
measured environmental factors. Nevertheless, it is pos-
sible that the low variance explained by environmental
variables in our study indicates the influence of important
but unmeasured variables, and not stochastic processes
as such. To confirm that neutral processes shape spatio-
temporal AMF beta-diversity, future studies should con-
sider microscale effects such as root exudates and pore
space to identify currently unidentifiable drivers.

Conclusions

Our study of AMF alpha- and beta-diversity found spatio-
temporal distribution patterns at the observed plot scale of
10 m × 10 m. We were able to illustrate well both the dyna-
mism of AMF OTU richness, and community development
across one vegetation season. Thereby, we demonstrated,
albeit indirectly, that stochastic recruitment processes

largely shaped our observed patterns of AMF OTU richness
and community composition. If seasonal variations in carry-
ing capacity are considered, then shifts in plant growth,
diversity and dominance are likely to favour AMF species
already engaged in the symbioses. However, our results
revealed high AMF turnover over time, suggesting ongoing
recruitment of AMF from formerly dormant propagules. We
acknowledge that the detection of niche-based processes
could have been limited by the choice of our measured
environmental parameters, which were either unable to
detect them or wrongly selected for this purpose. Nonethe-
less, both the scale and spatiotemporal approach of the
SCALEMIC Experiment have expanded our understanding
of biotic and abiotic interactions at scales that had hereto-
fore not been examined in such detail. Further research,
ideally on more than one site, is needed for a deeper and
more comprehensive understanding of the spatiotemporal
assembly of soil microbes at small scales by assessing
and linking functions of bacteria and fungi with plant traits.
Likewise, and within the frame of an emerging discussion
as to whether AM fungal communities are more structured
by the abiotic or biotic environment (Hempel, 2018), future
studies should incorporate balanced consideration of envi-
ronmental variables.

Experimental procedures

Study site and soil sampling

The studied grassland plot (48�27031.3700N, 9�27036.2600E)
is one of 300 experimental plots in the large and long-term
interdisciplinary research project ‘Biodiversity Explor-
atories’, which aims to understand relationships between
land-use, multitrophic biodiversity and ecosystem function-
ing across Germany (Fischer et al., 2010). The grassland
plot is located in the Schwäbische Alb in southwest
Germany. The plot has never received mineral fertilizers
and has never been ploughed. Characterized by a rather
nutrient-poor substrate, this plot’s soil type is a Rendzic
Leptosol (FAO classification). The plot is dominated by
Plantago lanceolata L., Festuca rubra L and Helictotrichon
pubescens (Huds.) Pilg. and belongs to the phytosociologi-
cal class of Festuco-Brometea (Oberdorfer et al., 2001;
Klaus et al., 2016). Furthermore, the grassland is usually
mown once per year, and grazed briefly by sheep for
1-2 weeks in late summer or early autumn. In 2011, the
year of investigation, mowing took place on 30th July and
sheep herds grazed on this site in May for five days, in
September for seven days and in October for one day.

The SCALEMIC Experiment (Regan et al., 2014)
encompasses a 10 m × 10 m plot divided into 30 subplots,
each 2 m × 1.67 m (Supporting Information Fig. S13).
Within each subplot six pairs of sampling locations (each
20 cm × 20 cm) were randomly assigned, with one pair

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 873–888

Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi 881



sampled at each of six dates over one growing season.
This provided a randomized complete block design for
temporal data analysis with sampling date as ‘treatment’
factor, subplots as complete blocks and pair of sampling
locations as randomization unit. Sample pairs were sepa-
rated by 50 cm to provide appropriate lag distances for
geostatistical analyses. Sampling dates were chosen
along a seasonal gradient with the following characteriza-
tion: (i) beginning of vegetation (5th April), (ii) stage of
main plant growth (17th May), (iii) peak of plant biomass
(27th June), (iv) two weeks after mowing (16th August),
(v) nine weeks after mowing (5th October) and (vi) after
the first frost (21st November). Accordingly, a total of
360 soil samples were collected (60 per date × 6 dates) in
the year 2011.
Soil samples were collected with core augers (diameter

58 mm). The upper 10 cm layer was taken at each sam-
pling point (Supporting Information Fig. S13) after vegeta-
tion was removed and the top one cm, consisting of litter,
was discarded from the sample. Subsequently, the soil
was immediately stored at 4 �C and sieved (< 5 mm)
within 24 h after sampling to remove stones, roots and
macrofauna. An aliquot for molecular analyses was
stored at −20�C before processing in the laboratory. A
detailed description of the sampling design and proce-
dure can also be found in Regan et al. (2014).

DNA extraction and pyrosequencing of AMF amplicons

DNA was extracted from two replicates of each homoge-
nized soil subsample (300 mg each) according to the
manufacturer’s protocol using the FastDNA® SPIN Kit for
Soil (MP Biomedicals, Solon, OH) as described in
Stempfhuber et al. (2016). Independent measurements of
DNA concentration from both sample replicates were
made on a NanoDrop® ND-1000 spectrophotometer
(Thermo Scientific, Wilmington, DE). The replicates were
subsequently pooled and re-measured, confirming the
final DNA concentration of each sample, which was
diluted to a PCR template concentration of 5 ng DNA ml−1

with ultra-pure water. A semi-nested PCR protocol was
used to amplify the �630 bp-long small subunit (SSU)
region of the AMF 18S rDNA via pyrosequencing analy-
sis (454 GS-FLX, Roche). In the first PCR run (PCRI) a
Glomeromycota-specific region was amplified with the
primer set GLOMERWT0/GLOMER1536 (Wubet et al.,
2006), followed by the semi-nested second PCR reaction
with the forward general fungal primer NS31 (Simon
et al., 1992) including the A adaptor and a 10 bp multi-
plex identifier (1 of 60 different MIDs), and the B adaptor
including the reverse modified AMF primer AM1a and
AM1b (Morris et al., 2013). The first PCR was carried out
at a 25 μl reaction volume with 0.5 μl of diluted DNA tem-
plate (5-20 ng μl−1), 12.5 μl GoTaq Green Mastermix 2×

(Promega, Mannheim, Germany), 1 μl of each primer
(25 μM) on an Eppendorf Mastercycler DNA Engine Ther-
mal Cycler PCR (Eppendorf, Hamburg, Germany) with
the following PCR conditions: 98�C for 30 s, 5 cycles of
94�C for 30 s, 60�C (−1 �C/cycle, 4 cycles) for 30 s,
72�C for 1 min and 25 cycles of 94�C for 30 s, 55�C for
30 s, 72�C for 1 min, and for extension 72�C for 5 min.
For the semi-nested PCR, two separate amplifications
were performed using 1 μl of the diluted amplified product
of PCRI (1:10), 25 μl GoTaq Green Mastermix 2x, and
1 μl of each primer (25 μM); these 50 μl reactions were
run under the following conditions: 98�C for 30 s,
followed by 30 cycles of 94�C for 30 s, 63�C for 30 s,
72�C for 1 min and 72�C for 5 min.

Each sample in both PCR amplification steps was
amplified in triplicate and accompanied by a negative
control. The semi-nested PCR amplified products were
pooled per sample, taking into account the amplicon con-
centration (checked by a 1.5% agarose gel). Pooled sam-
ples (30 μl each) were purified with the QIAquick Gel
Extraction Kit (Qiagen GmbH, Hilden, Germany) following
the manufacturer’s recommended protocol. The purified
products were quantified by fluorometry using Quant-iT™
PicoGreen® dsDNA Assay Kit (Life Technologies GmbH,
Darmstadt, Germany) as suggested by Roche Diagnos-
tics GmbH (Mannheim, Germany) for amplicon library
preparation. Equimolar concentrations of 60 MID tagged
amplicons were loaded into individual lanes on a GS-FLX
LUMITRAC 600 plate (Titanium Series) separated with a
four-lane gasket and sequenced at the Department of
Soil Ecology, UFZ – Helmholtz-Centre for Environmental
Research (Halle/Saale, Germany).

Bioinformatic analysis of sequence data

Sequence read quality filtering and splitting of the dataset
into individual samples was performed using mainly
MOTHUR (Schloss et al., 2009). Sequences were trimmed
using the ‘keepfirst’ command in order to discard
sequences with less than 300 bp and chopping at least
50 bp from potential noisy sequence ends. Simultaneously,
all sequences with average quality scores of below 20 as
well as MID- and primer sequences were removed.
Sequences were then downsampled to the smallest read
number per sample (1562 sequences per sample) and
potential chimeric sequences were identified and removed
by UCHIME (Edgar et al., 2011) as implemented in
MOTHUR. These quality-filtered sequences were clustered
into OTUs based on the algorithm implemented in CD-HIT-
EST (Huang et al., 2010) with a sequence similarity thresh-
old of 97%. The representative sequence for each resulting
OTU was compared to a Global Alignment for Sequence
Taxonomy (GAST)-based taxonomic assignment of an
NCBI based fungal reference data set (Huse et al., 2008)
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at the 97% similarity level. All non-Glomeromycota OTUs
were removed from the dataset (�11% of sequences).
Representative sequences (most abundant sequence per
OTU) of the Glomeromycota OTUs were further taxonomi-
cally assigned by using the MaarjAM virtual taxa reference
database (web-based database for studies of the diversity
of arbuscular mycorrhizal fungi, version 0.8.1 beta; Öpik
et al., 2010).

The raw SSU DNA sequences were deposited in the
National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) under study accession num-
ber SRP137677. In addition to all measured values, the
analysed and processed data used in this study can be found
in the BExIS database (https://www.bexis.uni-jena.de/).

Environmental properties

The interdisciplinary approach of the SCALEMIC Experi-
ment permits data from previous works on various envi-
ronmental properties of the site to be used in the present
study. We collected information on plant diversity (rich-
ness, Shannon index) on three sampling dates (May,
June and October) and plant biomass (aboveground bio-
mass of grasses, herbs and legumes; root and litter bio-
mass; Regan et al. (2014), Regan et al. (2015), Klaus
et al. (2016)). We also measured soil texture, bulk den-
sity, water content, mineral nitrogen (Nmin = NH4

+ +
NO3

−), total carbon and nitrogen, extractable organic car-
bon and extractable nitrogen (EOC, EN), bioavailable
phosphate (PO4

3−), pH, bacterial and fungal biomass
(phospholipid fatty acid (PLFA) content; Regan et al.
(2014)); as well as bacterial and archaeal abundances
(qPCR on 16S rRNA; Regan et al. (2017)). These vari-
ables were used in statistical analyses to determine their
explanatory power with respect to AMF OTU richness
and community composition (see detailed list of environ-
mental properties in Supporting Information Table S4).

Statistical analyses

Statistical analyses were performed using the software R
(version 3.4.0; R Development Core Team, 2017) unless
stated otherwise. First, to test whether rare AMF taxa
(OTUs represented by ≤ 3 sequence reads per sample)
affected estimates of beta-diversity, we performed Pro-
crustes correlation analysis based on Bray Curtis dissimi-
larity using the protest function (Peres-Neto and Jackson,
2001) of the ‘vegan’ R package (Oksanen et al., 2018).
This approach provides information about congruence
between two non-metric multidimensional scaling
(NMDS) ordinations; in our case AMF data matrices com-
prising all OTUs and only abundant OTUs (OTUs repre-
sented by > 3 sequence reads per sample) with
999 permutations. Results indicated nearly identical

ordinations in the presence or absence of rare AM fungal
OTUs on AMF beta-diversity (Procrustes correlation coef-
ficient = 0.9915, P = 0.001). Hence, all subsequent ana-
lyses were performed using the relative abundance AMF
community matrix excluding singletons, doubletons and
tripletons.

To assess the spatial distribution of the richness of all
AMF OTUs, and of the OTUs belonging to the genera
Glomus and Claroideoglomus, semivariogram analyses
were performed using the R package ‘gstat’ (Pebesma,
2004). Data were checked for normality of distribution
and were log or square root transformed if necessary
according to McBratney and Webster (1986). As environ-
mental data did not show general distribution trends
across the study site in preliminary analyses, isotropy
was assumed for semivariogram analysis. Subsequently,
empirical semivariograms for the three AMF groups at
each sampling date were computed separately. In cases
where empirical semivariograms indicated spatial auto-
correlation, semivariogram models were fitted using the
‘fit.variogram’ function. Bin sizes were restricted to mini-
mum 35 points per bin; spherical, exponential and linear
models were fitted using the default method of the ‘fit.
variogram’ function. The model with the lowest sum of
squared error (SSErr) was selected. To estimate the
amount of variance that was spatially correlated, the
percent spatial structure was calculated by subtracting
the nugget effect from the sill, and dividing the
remaining, or partial sill, variance by the sill variance.
Kriged maps for semivariogram models were gener-
ated with ArcGIS (ESRI, 2010, Environmental Re-
search Institute, Redlands, CA).

The effects of sampling date and environmental vari-
ables on the OTU richness of all AMF and of the genera
Glomus and Claroideoglomus were assessed using LME
models accounting for the spatial sampling design. First,
different model structures were tested with SAS 9.4 (SAS
Institute Inc., Cary, NC) using subplot number as random
block effect, and models were evaluated and chosen
based on Akaike’s information criterion (AIC; see
Supporting Information Table S5). The addition of spatial
autocorrelation structures as well as addition of a random
effect for pairs of sampling locations did not substantially
improve model fit, and this was also the case for an addi-
tion of temporal autocorrelation structure. As the model
was to be used repeatedly for selection of important
covariates, we chose a model that included a subplot
effect and residual error as random effects. The resulting
model structure was as follows:

yijk = μ+bj + β1xijk 1ð Þ + � � �+ βnxijk nð Þ + eijk

where yijk is the value of the response variable for the i-th
sampling date on the j-th subplot at the k-th sampling
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location, bj is the random effect for the j-th subplot, β1−n are
the slopes of the regression on the predictor variables (=
fixed effects) xijk(1−n), and eijk is the independently normally
distributed error term with constant variance. This model
structure was subsequently used for all LMEMs, which
were computed in R using the package ‘nlme’ (Pinheiro
et al., 2017). We separately assessed the effects of sam-
pling date and environmental variables in univariate models
for each independent variable for total AMF OTUs, Glomus
and Claroideoglomus. To detect those environmental vari-
ables which were most strongly related to the observed
temporal effects, additional LMEMs were computed on the
combination of individual environmental variables together
with sampling date. The best predictors among plants as
well as abiotic and biotic soil properties were then included
in the final LMEMs. These contained all significant drivers,
and were set up separately for total AMF OTUs, Glomus
and Claroideoglomus. Models with the best predictor vari-
ables were selected based on lowest AIC (based on full
maximum likelihood) using the ‘stepAIC’ function with for-
ward and backward selection, and checked for homosce-
dasticity and normal distribution of residuals. Spearman
correlations of environmental variables in the final models
revealed no considerable multicollinearity. Explained
unique variance of dependent variables by independent
variables and random effects was assessed following the
approach of Nakagawa and Schielzeth (2013) using the
function ‘sem.model.fits’ of the ‘piecewiseSEM’ package
(Lefcheck, 2016). Separate models were calculated for
models that contained plant diversity data because these
were only available at three sampling dates.
To assess AMF beta-diversity, Sørensen distances

(βSOR), as well as their turnover (βSIM) and nestedness
(βSNE) components, were calculated using a function gen-
eralizing the ‘beta.sample’ algorithm from the R package
‘betapart’ (Baselga and Orme, 2012; see supplement
material for further details). In accordance with the nested
study design, the means of the distances between all com-
binations of within-subplot repetitions were calculated.
Significance of groupings of community composition by
sampling date and subplot were assessed by analysis of
similarities (ANOSIM), as implemented in the R package
‘vegan’ (Oksanen et al., 2018). To compare community
structures at different sampling dates within and between
subplots, the complete Sørensen distances between all
samples were calculated and the median values of all
pairwise distances matching each comparison were
extracted and visualized using the R package ‘beanplot’
(Kampstra, 2008). Significance of comparisons was
established using the non-parametric Mann-Whitney test.
To detect which environmental variables were sources

of variation in βSOR, permutational multivariate analysis of
variance based on the Sørensen distance matrix was
performed using the function ‘adonis’ from the R package

‘vegan’ (Oksanen et al., 2018). First, all z-transformed
environmental variables were applied in separate univari-
ate models, with stratification by sampling date. In a sec-
ond model, all significant variables were combined in
descending order of their significance in the first run,
again with stratification by sampling date. Spearman cor-
relations of the significant variables revealed no consider-
able multicollinearity.

Spearman correlations between the temporal develop-
ments of βSOR between consecutive sampling dates
(delta) at each subplot were calculated and visualized by
hierarchical clustering of the inverse correlation by
Ward’s criterion using the R packages ‘dendextend’
(Galili, 2015) and ‘vegan’ (Oksanen et al., 2018). Correla-
tion between patterns in temporal development of mean
turnover to environmental parameters at each subplot
was assessed using the ‘vegan’ (Oksanen et al., 2018)
implementation of Mantel’s test.

In order to relate spatial and temporal patterns in βSOR,
the approach of Mellin et al. (2014) was adapted to the
present dataset. Briefly, for spatial βSOR, the average of
the βSOR values for each sampling date of AMF commu-
nities between each subplot and its neighbours was cal-
culated. For temporal βSOR, the mean delta at each
sampling plot was calculated. Linear models between
both βSOR terms were fitted for 1000 different rarefactions
and compared to null-models based on 1000 draws of
species identities (based on their relative probability of
occurrence among samples), while holding constant the
total number of species in each sample. To detect further
variables contributing to the spatiotemporal patterns in
βSOR, OTU richness at each subplot and environmental
variables and their changes over time were included in
the models.
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