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Key Points

• Some germline variants
are predicted to disrupt
protein function in HLH-
associated genes.

• Such variants are
neither enriched in
adult-onset HLH nor
associated with spe-
cific clinical or labora-
tory features of HLH.

Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder of immune system over-
activation that occurs as familial and acquired forms.1 HLH is characterized by excessive cytokine
production and inflammation, mediated by multiple immune cells including persistently activated
macrophages. Familial HLH (FHL) is typically diagnosed in childhood and is often caused by inherited
biallelic, deletion, or truncating variants in genes regulating the cytotoxic function of T lymphocytes and
natural killer cells.2,3 By contrast, acquired HLH usually occurs in the setting of malignancy, infection, or
autoimmune disease, and may be diagnosed at any age. Prior studies using in silico prediction
algorithms have concluded that germline HLH-associated variants are enriched in adult patients with
HLH but have been limited in the number of genes analyzed, incomplete clinical annotation to confirm
true HLH diagnoses, and the relatively small size of the adult cohorts. Finally, the comparatively
young ages at the time of HLH onset have made distinguishing FHL that occurs in early adulthood
from true adult-onset HLH difficult.4-6 To overcome these issues, we sought to identify potential
pathogenic germline variants in 17 genes implicated in FHL or other inherited immune disorders in
a highly annotated cohort of patients diagnosed with HLH in adulthood.7

Methods

After obtaining institutional review board approval, genomic DNA was isolated from bone marrow
aspirate or peripheral blood samples from adults treated in our hospital systems between 2001 and
2018 who met HLH-2004 diagnostic criteria; although there was incomplete information for some
patients (particularly natural killer cell activity; see supplemental Figure 1A), all patients reported here
met HLH-2004 criteria.8 Hybrid capture was performed on the samples using a custom SureSelect
system (Agilent Technologies) targeting the exons of 17 genes implicated in FHL that occur in the
context of other inherited immune disorders and have been described in the literature as associating with
HLH, or are tested on commercial HLH panels (AP3B1, BLOC1S6, BTK, CD27, IL2RG, ITK, LYST,
MAGTI, PRF1, RAB27A, SH2D1A, SLC7A7, STX3, STX11, STXBP2, UNC13D, XIAP).2,7,9

Sequencing was performed on the Illumina platform, and germline variant calling was done using the
GATK Haplotype caller pipeline.10 Common variants were excluded by removing alterations with
a genome aggregation database (gnomAD)11 frequency of .0.05. We predicted the effect of variants
on protein function using 5 in silico tools (PON-P2, PROVEAN, FATHMM, M-CAP, and REVEL). Variants
classified as disruptive (predicted to impair normal protein function) by at least 2 tools were considered
disruptive if none of the tools classified the variant to be nondisruptive. Variants classified as
nondisruptive by a single tool were still considered disruptive if 3 or more tools classified the variant as
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likely disruptive.12 The effect of splice site variants was predicted as
previously described.13 Statistical analysis for the enrichment of
variants in the HLH cohort compared with the control population
was performed using a Fisher’s exact test with P , .05 considered
significant.

Results and discussion

Our cohort included 88 adult patients with HLH (Table 1). The
median age at diagnosis was 54 years old (range, 18-81 years) and
the majority were male (55%) (supplemental Figure 1B). All patients
met HLH-2004 criteria.8,14,15 A precipitating etiology was identified
in most patients (77%) including malignancy (49%), infection
(30%), and autoimmune disease (17%).

Among the 17 genes sequenced, a total of 42 variants with
a gnomAD frequency of ,0.05 were identified in 45 patients. Of
these, 7 variants were considered disruptive (predicted to have an
impact on protein function) in 18 patients (20% of the cohort)
(Figure 1A). The most common variant was PRF1 A91V (n 5 12;
14%), an alteration commonly reported in adult HLH that has been
shown to impair lymphocyte cytotoxicity.16,17 Three patients had

SLC7A7 A91V, whereas the disruptive variants were restricted to
individuals, including PRF1 H222Q, ITK R581Q, LYST R2624W,
STX3 splicing, and a male patient with SH2D1A R55Q (SH2DA1 is
on chromosome X). Three patients harbored multiple disruptive
variants (PRF1 A91V and PRF1 H222Q, PRF1 A91V and SLC7A7
A91V, and biallelic PRF1 A91V). We did not identify disruptive
variants in the other FHL genes (UNC13D, STX11, or STXBP2)
(Figure 1B).

We next examined whether the 7 unique disruptive variants were
enriched in our cohort relative to whole-exome data from 2504
patients in the 1000 Genome Project (TGP; Figure 1C).
Disruptive variants were identified in the TGP using the same
gene set, pipeline, filtering, and algorithms used in our cohort.
The specific variants in our cohort were significantly less
common in the TGP (20% vs 5%; P , .001), an unsurprising
result given the rarity of individual variants and requirement for
a gnomAD frequency of ,0.05. To avoid this selection bias, we
compared the frequency of disruptive variants in our cohort to
the frequency of any disruptive variant in the 17 tested genes in
the TGP. Again, our cohort had a higher frequency compared
with the TGP (20% vs 9%; P , .01). However, this difference
was no longer significant when restricting our cohort to patients
who reported as “white” or “Caucasian” (n 5 68, the most
common ancestry in our cohort, hereafter referred to as "white")
and comparing those to European populations in the TGP
(n 5 503; 20% vs 13%; P 5 .13). Furthermore, although the
PRF1 A91V variant was more common in our cohort compared
with the TGP (14% vs 3%; P , .001), it was not more common
when restricting to European populations (17% vs 9%; P 5 .08).
Furthermore, after excluding patients with a PRF1 A91V variant,
there was no difference in the frequency of patients with
disruptive variants between our cohort and the TGP (4.4% in
both groups; Figure 1C). Of note, there was no difference in the
frequency of variants among whites (14 of 68; 21%) and
nonwhites (4 of 20; 20%) in the cohort.

Finally, we investigated whether the presence of a disruptive
variant was associated with any clinical feature. The presence
of a disruptive variant was not associated with age (mean age,
53 vs 51 years; P 5 .64), sex (33% vs 49% female; P 5 .22;
supplemental Figure 2), or a specific precipitating etiology
including malignancy (19% vs 22%; P 5 .79). Nor was there
a significant difference in peak ferritin levels, soluble interleukin
2 receptor (sIL-2R) levels, or the sIL-2R-to-ferritin ratio (a metric
often elevated in patients with lymphoma-associated HLH).18

We did not find a difference in the frequency of variants
between patients meeting 5 to 6 HLH-04 criteria (13 of 64;
20%) and those meeting 7 to 8 criteria (5 of 24; 21%). Similarly,
no differences were noted in those with and without a PRF1
A91V variant (supplemental Figure 3). Survival analysis was not
possible given the number of potential covariates (such as age, sex,
ancestry, precipitating etiology, prior/subsequent treatment).

Our data suggest that disruptive germline variants do not drive adult
HLH, unlike FHL. In contrast to cases of FHL, biallelic alterations,
deletions, nonsense, and frameshift mutations were extremely rare,
consistent with data from animal models that either biallelic loss
or polygenic mutations can drive disease.19 Furthermore, disruptive
variants were not enriched in adult HLH compared with con-
trol when accounting for ancestry, particularly when considering

Table 1. Characteristics of 88 patients studied in cohort

Total patients N 5 88

Median age (range), y 54 (18-81)

Median age, n (%), y

,40 23 (26)

40-59 33 (38)

.60 32 (36)

Sex, n (%)

Female 40 (45)

Male 48 (55)

Self-reported ethnicity, n (%)

White or Caucasian 68 (77)

Hispanic or Latino 5 (6)

Asian 5 (6)

Black or African American 2 (2)

South Asian/Indian 1 (1)

Unknown/not reported 7 (8)

Precipitating etiology, n (%)

Malignancy 43 (49)

Infection 26 (30)

Autoimmune disease 15 (17)

Multiple 14 (16)

Idiopathic 20 (23)

HLH-04 criteria, n (%)

5* 26 (30)

6 38 (43)

7 21 (24)

8 3 (3)

*Three patients were determined to meet at least 5 HLH-04 criteria by the treating
clinician but had 4 documented criteria in the clinical database due to incomplete
information (see “Methods” and supplemental Figure 1A).

926 MILLER et al 10 MARCH 2020 x VOLUME 4, NUMBER 5



non-PRF1 A91V variants. Additionally, there were no clinical
differences between patients with and without disruptive variants.
Finally, the contrast between the high frequency of disruptive
variants in the control population (9%) and the rarity of adult HLH
suggests that either the in silico algorithms overestimate the
disruptive effects of variants or these disruptive variants are
not strong drivers of disease. Either interpretation raises
questions about the role and routine testing of germline
variants in adults with HLH. Indeed, the fact that some of the
predicted disruptive mutations including PRF1 A91V are
considered of uncertain significance by other metrics like the
American College of Medical Genetics (ACMG) further calls
into question the role of these mutations in adult HLH
pathogenesis.20 Our data, however, do not negate the
importance of testing for genetic variants in cases in which
FHL is highly suspected (including strong family history and
young age of onset) and may influence treatment decisions
(such as donor selection for allogeneic hematopoietic stem
cell transplant).

Our study has several limitations. Like most prior studies, our cohort
is limited in size given the rarity of HLH and difficulty obtaining
usable biospecimens. However, this cohort contrasts with prior
adult HLH reports including strict diagnostic inclusion criteria,
significantly higher median age (at least 10 years older), expanded
gene panel, and incorporation of ancestry (an essential consider-
ation when studying germline genetics). Furthermore, whereas prior
studies compared the frequency of the specific disruptive variants
in their cohort to control populations, we compared the frequency
of any disruptive variant in a gene previously associated with HLH

in our cohort to a control population, and further assessed the
importance of ancestry and PRF1 A91V in this comparison.
Another limitation is the use of in silico algorithms to predict
the effect of mutations on protein function, an approach used
in nearly all prior studies of adult HLH. However, we used newer
algorithms that, although still limited, have shown better
performance than those previously used.12 We also note that
both ACMG and commercial testing often incorporate these
predictive algorithms so understanding their relevance has
clinical implications.20 To highlight the importance of these
issues and the variability across studies, we contrast our results
with a recent report of 112 adults with HLH in China that
concludes that germline variants are enriched in this population
(43%); though in agreement with our study, they were pre-
dominantly missense and monoallelic.6 The studies differ in the
ancestral composition of the cohort, older age of our population
(which excludes cases of pediatric HLH), differing algorithms to
predict disruption of protein function, and our approach to look
for any disruptive variant in control populations (not just the
frequency of those found in the group with HLH). In contrast,
another study from China found that just 5.1% of adults with HLH
had a germline variant; but again, the average patient age, gene
panel sequenced, and disruptive prediction algorithm differed,
and there was no formal comparison with a control population.21

Ultimately, additional efforts to better define disruptive variants in
larger numbers of genes, including whole-exome/genome anal-
yses, combined with expanded cohorts of adults with HLH of
varying ancestries, will further refine our understanding of genetic
contribution to the disease. Our data suggest that familial and
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Figure 1. Frequency and distribution of predicted disruptive variants in the HLH cohort. (A) Schematic of germline variant frequency within cohort among 17 HLH-

associated genes sequenced. (B) Frequency of total and predicted disruptive germline variants observed in FHL genes in cohort. (C) Percentage of individuals in HLH and the

1000 Genomes Project (TGP) cohort carrying variants in HLH-associated genes. TGP var indicates the percentage of individuals in the TGP cohort carrying variants identified

in the HLH cohort; TGP rule indicates the percentage of individuals in the TGP cohort carrying any variants identified by the same rules as for the HLH cohort. Percentages

compared whole data (HLH [n 5 88] and TGP [n 5 2503]) and white or Caucasian individuals (HLH [n 5 68] and TGP [n 5 503]). Among white or Caucasian individuals,

similar analysis was performed by excluding the PRF1 A91V variant. The percentage of individuals carrying predicted disruptive variants is shown in red. *P , .05; •P $ .05.

The significance test result for carriers of all variants is indicated in black; the same for carriers of predicted disruptive variants is shown in red. 1 indicates the SH2D1A R55Q

mutation, which is encoded on the X chromosome, was present in a male patient.
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adult-onset HLH have a distinct pathophysiology and do not
support routine germline testing of adults with HLH.
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