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Key Points

• SCS of patients with
AML detected clones
at remission that ex-
panded into the domi-
nant clone at relapse.

• SCS provides unique
information on mutation
cooccurrence and
clonal diversity that may
enhance MRD
evaluation.

Although most patients with acute myeloid leukemia (AML) achieve clinical remission with

induction chemotherapy, relapse rates remain high. Next-generation sequencing enables

minimal/measurable residual disease (MRD) detection; however, clinical significance is

limited due to difficulty differentiating between pre-leukemic clonal hematopoiesis and

frankly malignant clones. Here, we investigated AML MRD using targeted single-cell

sequencing (SCS) at diagnosis, remission, and relapse (n 5 10 relapsed, n 5 4 nonrelapsed),

with a total of 310 737 single cells sequenced. Sequence variants were identified in 80% and

75% of remission samples for patients with and without relapse, respectively. Pre-leukemic

clonal hematopoiesis clones were detected in both cohorts, and clones with multiple

cooccurring mutations were observed in 50% and 0% of samples. Similar clonal richness

was observed at diagnosis in both cohorts; however, decreasing clonal diversity at remission

was significantly associated with longer relapse-free survival. These results show the power

of SCS in investigating AML MRD and clonal evolution.

Introduction

Acute myeloid leukemia (AML) is an aggressive neoplasm characterized by multiple molecular
abnormalities often occurring in a complex combination of related subclones.1,2 AML is primarily
a disease of the elderly and affects ;20000 adults annually in the United States. Patients are usually
treated with aggressive induction chemotherapy followed by either consolidation chemotherapy or
allogeneic hematopoietic cell transplantation. After induction, the majority of patients achieve a complete
remission (CR) as defined by normalization of peripheral blood counts with ,5% blasts detected in the
bone marrow. However, patients often relapse, with resistant disease resulting in a 28.3% 5-year overall
survival (OS).3 Increasing evidence suggests that minimal/measurable residual disease (MRD), which is
considered persistent leukemia below the 5% threshold seen by morphologic evaluation, is an
independent risk factor for relapse and could therefore guide disease management.4

MRD can be assessed by using multiparameter flow cytometry or molecular assays. Flow cytometry–
based assays use leukemia-associated aberrant immunophenotypes to detect MRD; they can be highly
variable and operator dependent. Regardless, immunophenotype-based MRD detected at a 0.1%
threshold has been associated with significantly shorter relapse-free survival (RFS) and OS.5,6 Of
interest, most cases of AML contain genetic mutations that can serve as clonal markers for MRD.
Molecular techniques including real-time quantitative polymerase chain reaction (PCR) and next-
generation sequencing (NGS) can therefore provide more specific assays for MRD detection.
Furthermore, because the mutational landscape of AML is diverse, NGS can identify personalized MRD
markers for potentially all AML cases by using a panel of AML-associated mutations. Large cohort
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studies using variant allele frequency (VAF) cutoffs between 0.02%
and 2.5% have identified an association between MRD detection
and RFS and OS.7-9

One complication of NGS MRD detection is that common
mutations in DNMT3A, TET2, and ASXL1 may occur in pre-
leukemic clonal hematopoiesis that persist in remission but do not
reflect relapse-causing leukemic cells. Indeed, exclusion of common
mutations associated with clonal hematopoiesis can enhance the
detection of clinically relevant MRD and the predictive power for
RFS.9 In addition, bulk NGS is unable to resolve clonal architecture,
particularly with rare variants detected in remission, which can
impair the ability to identify relapse-causing MRD. Moreover,
characterizing changes in clonal heterogeneity or diversity is
important for studying tumor evolution and its association with
treatment resistance or relapse.10

To address these limitations, we used single-cell sequencing
(SCS) to evaluate the clonal dynamics of AML from diagnosis to
remission to relapse. We defined clones as cells containing the
same mutations, and MRD as clones observed at remission that
expand into the dominant clone at relapse. SCS was not only able
to recapitulate bulk sequencing VAFs but was also able to
determine the clonal architecture at each time point, providing
insight into the clinical relevance of cooccurring clonal mutations.
Indeed, SCS detected and quantified both pre-leukemic clonal
hematopoiesis clones and frankly leukemic clones that eventually
dominated at relapse. We observed complex patterns of clonal
heterogeneity and evolution that may predispose patients to
relapse after undergoing conventional chemotherapy and/or
allogeneic hematopoietic cell transplantation. Our findings pro-
vide preliminary clinical validation of the utility of high throughput
SCS for MRD evaluation.

Methods

Patients and cell samples

Human AML samples were obtained from patients at the Stanford
Medical Center with informed consent, according to Institutional
Review Board–approved protocols (Stanford Institutional Review
Board Nos. 18329 and 6453). Collection occurred between 2011
and 2015, with samples of bone marrow and peripheral blood
obtained from 14 patients with de novo AML, aged 22 to 71 years.
Mononuclear cells were isolated from patient samples by using
Ficoll separation (GE Healthcare Life Sciences) and cryopreserved
in liquid nitrogen in 90% fetal bovine serum and 10% dimethyl
sulfoxide. Analysis was performed on freshly thawed cells. To be
included in the analysis, patients had to either have achieved CR or
CR with incomplete hematologic recovery defined according to
the 2017 European LeukemiaNet (ELN) guidelines.11 All patients
were treated with an anthracycline- and cytarabine-containing
induction regimen.

Targeted NGS of leukemia-associated mutations

Targeted amplicon sequencingwas performed as previously described
on select cases.12 VAF was defined as: (mutant read no.)/(wild-type
read no. 1 mutant read no.). Read counts and primer pairs are
available on request. Each locus was sequenced to .500-fold
coverage for .99% of assays.

Single-cell sequencing

SCS was performed by using Mission Bio’s Tapestri AML platform,
which assesses hotspot mutations in human AML (supplemental
Figure 4), according to the manufacturer’s protocol. Briefly,
cryopreserved bone marrow aspirates or peripheral blood mono-
nuclear cells were thawed and counted before loading ;150 000
cells onto the Tapestri microfluidic cartridge. Cells were emulsified
with lysis reagent and incubated at 50°C before thermally
inactivating the protease. The emulsion containing the lysates from
protease-treated single cells was then microfluidically combined
with targeted gene-specific primers, PCR reagents, and hydrogel
beads carrying cell-identifying molecular barcodes using the
Tapestri instrument and cartridge. After generation of this second,
PCR-ready emulsion, molecular barcodes were released in a photo-
cleavable manner from the hydrogels with UV exposure, and the
emulsion was thermocycled to incorporate the barcode identifiers
into amplified DNA from the targeted genomic loci. The emulsions
were then broken by using perfluoro-1-octanol, and the aqueous
fraction was diluted in water and collected for DNA purification with
SPRI beads (Beckman Coulter). Sample indexes and Illumina
adaptor sequences were then added via a 10-cycle PCR reaction,
and the amplified material then underwent SPRI purification
a second time.

After the second PCR and SPRI purification, full-length amplicons
were ready for quantification and sequencing. Libraries were
analyzed on a DNA 1000 assay chip with a Bioanalyzer (Agilent
Technologies) and sequenced on an Illumina MiSeq with 150 bp
paired-end chemistry. A single sequencing run was performed for
each barcoded single-cell library prepared with our microfluidic
workflow. A 5% ratio of PhiX DNA was used in the sequencing runs.
Sequencing data were processed by using Mission Bio’s Tapestri
Pipeline (trim adapters using Cutadapt, sequence alignment to
human reference genome hg19 [GRCh37.p13], barcode demulti-
plexing, cell-based genotype calling using GATK/Haplotypecaller).

Data were analyzed by using Mission Bio’s Tapestri Insights
software package and R software (R Foundation for Statistical
Computing). In detail, the following quality metrics were used to
filter for high-quality cells and variants: genotype quality score
(default .30), reads per cell per amplicon (.10), mutant genotype
VAF (.20%), germline variants as confirmed according to the
ClinVar database (false), and variants mutated ,1% in all samples
in a series (diagnosis, remission, and relapse).13 These filters affect
different parameters such as variant quality score, read depth per
variant per cell, and limit of detection. Only variants with clinical
implications known from databases (ClinVar and dbSNP) or verified
from previous bulk NGS sequencing are selected to identify groups
of cells that can be aggregated as arising from a single clone. The
number of clones can vary depending on parameter selections
during filtering. In all the selected clones, variants assigned
a heterozygous genotype must have a VAF between 40% and
60%, ,1% to be wild-type, and .95% to be homozygous. The
allele dropout (ADO) rate was estimated with data generated from
ADO amplicons. ADO amplicons span polymorphic regions of the
genome with a minor allele frequency of 50% (5 heterozygous
variants). If at least 3 of 10 ADO amplicons were called
heterozygous in at least 75% of all cells, the average fraction of
cells with homozygous calls (reference or mutant) represents the
ADO rate. In addition, during secondary analysis, potential ADO
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clones were identified and removed by using variant-specific
performance metrics, including reads per cell and genotype quality
scores.

Genomic landscape and mutation

cooccurrence analysis

Data were initially analyzed by using the Tapestri Insights
software package, which grouped cells with unique mutations.
After filtering for high-quality variants, groups of cells with
unique mutations were labeled as a distinct clone, creating 97
clones across all 38 samples. These clones were subsequently
analyzed as individual observations, or “patients,” and the
mutation landscape across all clones was evaluated by using
maftools R package. Cooccurrence analysis was performed
among these clones, and results were compared with per-
patient VAFs inferred from SCS and bulk NGS from The Cancer
Genome Atlas (TCGA).14 Only mutations identified from the
targeted sequencing panel were included. Spearman correla-
tion coefficients were determined by using the corrplot R
package and displayed with adjusted P values in terms of the
false discovery rate.

Mutation order analysis

The clonality patterns for each sample (n5 38) were determined by
using previously described methods.15 Ancestral (d1) and de-
scendant (d2) driver mutations were identified for each sample, and
an edge between these 2 driver pairs was constructed (outgoing for
d1 and ingoing for d2). In- and out-degrees for each driver event
were counted, and hypothesis testing was performed by applying
2-tailed binomial tests to infer whether a driver event was early
(greater number of out- vs in-degrees). Q values were determined in
terms of the false discovery rate to account for multiple hypothesis
testing using the qvalue R package.

Clonal diversity and evolution analysis

Shannon, Simpson, Menhinick, Margalef, and Richness indices
were determined by using the clonal composition for each
sample. Values at diagnosis and remission, and changes in values
from diagnosis to remission, were calculated for each patient.
Random forest regression was performed against RFS; it
identified the Menhinick richness index at diagnosis and the
change in the Simpson diversity index as the most influential
features. Cox proportional hazards models were determined by
using the Menhinick index at diagnosis, change in Simpson index,
age, sex, and 2017 ELN risk category against RFS. The
significance for each variable was assessed by using the Wald
statistic. Median values for richness and change in diversity were
used as split points for patient classification. End points (eg, RFS)
were defined according to standard criteria. The Kaplan-Meier
method and log-rank test were used for unadjusted analyses of
time-to-event end points. Analysis was performed by using vegan,
randomforest, randomForestExplainer, tree, survival, and surv-
miner R packages.

Statistical methods

Statistical comparisons were performed by using theWilcoxon rank
sum test for continuous variables and Fisher’s exact test for
categorical variables, unless otherwise noted.

Results

Fourteen patients with de novo AML who achieved a CR after
combination induction chemotherapy were consented for institu-
tional tissue banking and included in our cohort. Consecutive
peripheral blood or bone marrow samples were sequenced at
diagnosis, remission, and relapse for 10 relapsed patients and at
diagnosis and remission for 4 nonrelapsed patients (n 5 38
samples). SCS was performed by using a microfluidic, droplet-
based platform (Tapestri).16 The Tapestri AML panel included
hotspot regions of 19 recurrently mutated genes (supplemental
Figure 4), and the study cohort was selected for those patients with
mutations in these genes as determined by bulk NGS. A total of
310 737 cells were sequenced (average 8177 prefiltered cells per
sample), with an average of 2829 reads per cell (supplemental
Table 1). Cell capture rates were between 5% and 10%; however,
the microdroplet cell capture process is not selective or size
dependent, and should not introduce biases in resolving the
underlying clonal architecture.17 The limit of detection of the
platform is 0.1%, which has been reported with cell line spike-in
experiments prepared at different ratios.13

Baseline patient characteristics are provided in Table 1, and
additional clinical information is provided in supplemental Table 2.
Targeted SCS identified additional variants that were not detected
by bulk NGS but was unable to detect variants in ASXL1 for 3
patients. A majority of patient samples contained an NPM1mutation
(23 of 38 [60.5%]), which was identified in 51% of clones across all
patient samples. FLT3 mutations were identified in 31.6% (12 of
38) of patient samples and were present in 26% of all clones. The
mutational frequencies were generally similar to those identified
from the TCGA cohort (supplemental Figure 1).14 The mutation
landscape from SCS is illustrated in Figure 1A for all unique clones
identified (n 5 97) across all patient samples.

Using SCS data, we accurately resolved the clonal dynamics during
treatment and studied the timing of mutations in driver genes by
analyzing their cooccurrence patterns. We systematically anno-
tated ancestor–descendant relationships for each pair of mutations
that cooccurred in at least 1% of sequenced cells in a sample.
Mutations were classified as occurring early or late by comparing
frequencies of ancestral and dependent mutations, and mutation
order was inferred with statistical significance by using the binomial
test (as discussed in "Methods"). This analysis identified DNMT3A
and IDH2 as early mutations, although there were cases in which
IDH2 seemed to have been acquired after NPM1 (Figure 1B).
Variants in NPM1 and FLT3 were acquired at intermediate stages,
whereas mutations in RAS and KIT were predominantly late
acquisitions. SCS provided increased power to identify cooccurring
mutations compared with inference from bulk VAFs and with NGS
results from the TCGA cohort (Figure 1C-E). For patients who
eventually relapsed, there was a greater number of clonal
cooccurring variants at diagnosis (2 vs 1; P 5 .01) (Figure 1F).

In comparing the results of serial specimen SCS from individual
patients, we identified clonal mutations in remission for 8 of 10
patients who eventually relapsed (80%) and for 3 of 4 patients who
never relapsed (75%) (Table 1). Furthermore, the predominant
clone detected at relapse was identified in 4 of 9 evaluable
remission samples (44%) for patients with relapsed disease. Thus,
SCS detected relapse-causing MRD in primary patient specimens
at a higher frequency than published results using NGS (64 of 340
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[19%]), albeit in a smaller cohort.9 The lower limit of detection by
SCS was similar to published results using the Tapestri platform.17

We have previously reported on the heterogeneity of relapsed AML,
showing multiple distinct patterns of clonal evolution, including
relapse with the predominant clone from diagnosis, with a minor

subclone from diagnosis, or with further clonal evolution.18

Individual cases from the current cohort also display diverse
patterns of clonal evolution with similar patterns as our initial
findings. Case SU067 (Figure 2A) revealed a clonal switch from
a predominant NPM1/PTPN11 mutant clone at diagnosis to one
with NPM1 and WT1 mutations at relapse. The relapse-initiating

Table 1. Patient characteristics

ID

Age, y/

sex

Cytogenetics

Dx/Rem

2017

ELN SCS genotype Dx SCS genotype Rem SCS genotype Rel

Resp

status

Disease

detected

Treatment

(Ind/Cons/

HCT)

SU067 54/Female NK Fav PTPN11_A72T*
NPM1L287inc(TCTG)*

WT1_ins(GCACA)†

NPM1L287inc(TCTG)†
WT1_ins(GCACA)*
NPM1L287inc(TCTG)*

Relapse Yes IC/MEC/No

SU291 35/Female Trisomy 8/NK Int NPM1L287inc(TCTG)*
IDH2_R140W*

IDH1_R132H*
NPM1L287inc(TCTG)*
FLT3_D835Y*

Relapse No DC/HIDAC/
No

SU320 70/Male NK Int IDH2_R140Q*
KRAS_G12V*
NPM1L287inc(TCTG)*
FLT3_I836del(GAT)*
FLT3_D835Y†

IDH2_R140Q IDH2_R140Q*
KRAS_G12V*
NPM1L287inc(TCTG)*

Relapse No DC/IDAC/No

SU353 66/Male NK Adv FLT3-ITD*
NPM1L287inc(TCTG)*
ASXL1-Q377‡

FLT3-ITD
NPM1L287inc(TCTG)

FLT3-ITD*
NPM1L287inc(TCTG)*

Relapse Yes DC/No/No

SU359 22/Female NK Int WT1_R375ins*
NRAS_G12S*
KRAS_G12D* FLT3-itd*

WT1_R375ins NRAS_G12S Relapse Unknown IC/HIDAC/No

SU372 54/Female NK Int DNMT3A_R882H*
IDH1_R132H*
NPM1L287inc(TCTG)*
PTPN11_P491L*

DNMT3AR882H
IDH1_R132H
NPM1L287inc(TCTG)
PTPN11_P491L

DMNT3A_R882H*
IDH1_R132H*
NPM1L287inc(TCTG)*
PTPN11_P491L*

Relapse Yes IC/HIDAC/No

SU442 61/Male NK Int FLT3-ITD*
NPM1L287inc(TCTG)*

FLT3-ITD*
NPM1L287inc(TCTG)*

Relapse No DC/IC

SU484 71/Male NK Adv IDH2_R140Q*
FLT3_V592D*
NPM1L287inc(TCTG)*
ASXL1-G996R‡

IDH2_R140Q IDH2_R140Q*
NPM1L287inc(TCTG)*

Relapse No DC/No/No

SU654 47/Male NK Fav DNMT3A_R882C*
IDH1_R132C*
NPM1L287inc(TCTG)*
NRAS_G13D*

DNMT3A_R882C
IDH1_R132C

DNMT3A_R882C
IDH1_R132C
NPM1L287inc(TCTG)
NRAS_G13D

Relapse Yes DC/HIDAC

SU674 51/Female NK Int DNMT3A_R882C FLT3-ITD
NPM1L287inc(TCTG)

DNMT3A_R882C DNMT3A_R882C FLT3-ITD
NPM1L287inc(TCTG)

Relapse No IC/IC/Yes

SU218 40/Female NK Fav NPM1L287inc(TCTG)* NPM1L287inc(TCTG) Remission
(2695)

DA/HIDAC/No

SU290 64/Female NK Int GATA2_A318T*
NRAS_G12D* FLT3-
ITD(8286)* FLT3-
ITD(8315)* NRAS_G13D†

NRAS_Q61R†

KIT_D816H*
NRAS_G12C†

NRAS_Q61H†

KIT_N822K*

GATA2_A318T† Remission
(2697)

GCLAC/
GCLAC/
Yes

SU564 58/Male 45X, t(8;
21)(q22;q22)/
NK

Fav KIT_N822K* KIT_N822k Remission
(2061)

DC/HIDAC/
No

SU380 23/Male inv(16) Adv KIT_T417P* NRAS_Q61R*
NRAS_G13D*
ASXL1S577‡

Remission
(2061)

IC/HIDAC/No

Unmarked variants are from samples without an NGS comparison. “Disease detected” indicates that the dominant clone at relapse was identified at remission.
Adv, advanced; C, cytarabine; Cons, consolidation; D, daunorubicin; Dx, diagnosis; E, etoposide; Fav, favorable; GCLAC, clofarabine, cytarabine, and filgrastim; HCT, hematopoietic cell

transplantation; HIDAC, high-dose cytarabine; I, idarubicin; IDAC, intermediate-dose cytarabine; Ind, induction; Int, intermediate; M, mitoxantrone; NK, normal karyotype; Rel, relapse; Rem,
remission; Resp, response.
*Variants detected by both SCS and NGS.
†Variants detected by SCS only.
‡Variants detected by NGS only.
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Figure 1. Mutation landscape as observed by using SCS. (A) Somatic mutations are shown across 97 unique clones (columns) from 38 unique patient samples.

Columns are coded at the bottom based on clinical time point and response status. (B) Mutation order was determined by temporally directed edges when 2 putative driver

mutations were identified per sample. Mutation ordering was counted across all samples. The edges infer temporal sequences of mutations, and significance is illustrated by Q

values (as discussed in "Methods"). Mutations that are likely to occur early are emphasized with a thick border. The resulting graph illustrates the most likely temporal

acquisition of mutations across all samples. (C) Cooccurrence of mutations identified from SCS were assessed by using Spearman correlation matrices across all 97 unique

clones. (D) Cooccurrence of mutations is indicated from aggregated per-patient VAFs calculated from SCS data. (E) Cooccurrence of mutations from bulk NGS VAFs

obtained from the TCGA is indicated for the Tapestri panel mutations. The plot shows cooccurrence (blue) or exclusivity (red) with color coding and the false discovery

rate–corrected statistical significance. (F) Comparison of the number of mutation variants per cell identified by using SCS at diagnosis based on the patient’s eventual re-

sponse. *P , .1; **P , .05; ***P , .01.
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clone was detected at 0.24% (10 of 4136 cells) in remission. From
our previous analysis of this case, we were not able to detect this
variant at remission using targeted NGS, indicating the potential
utility of SCS for MRD detection. Case SU291 (Figure 2B) revealed
a clonal switch from an NPM1/IDH2 mutant clone to an NPM1/
IDH1/FLT3–tyrosine kinase domain cooccurring clone. SCS of
remission samples at days 26 and 359 did not detect any MRD.
Case SU320 (Figure 2C) revealed that the dominant IDH2/NPM1/
KRAS mutant clone at relapse was a minor clone at diagnosis,
and day 30 SCS did not detect any MRD. Case SU353 (Figure 2D)
relapsed with the same major clone identified at diagnosis, and
sequencing of the remission sample identified MRD at 1.3% (82 of
6442 cells). Our previous analysis also revealed that this patient had
MRD as measured by targeted amplicon sequencing of the flow-
sorted CD341 compartment at remission. Although this patient was
in hematologic CR, the high level of MRD was prognostic, as the
patient relapsed early at day 62. Case SU654 (Figure 2E) also
relapsed with the same dominant clones from diagnosis. Sequenc-
ing of the remission sample identified MRD at 0.12% (10 of 7840
cells), as well as clonal mutations in DNMT3A and IDH1. In contrast
to patient SU353, patient SU654 relapsed later on day 248. Case
SU674 (Figure 2F) relapsed with a minor clone from diagnosis, and
no MRD was detected according to SCS of the remission sample.

SU320, SU654, and SU674 illustrate cases in which pre-leukemic
clonal hematopoiesis can be distinguished from MRD by using
SCS. Figure 2G-H illustrates 2 cases of patients who remained in
remission. In case SU564 at diagnosis, only one mutation in KIT was
detected, although it is likely other mutations were present not
covered by the Tapestri panel. Regardless, the KIT mutation was
measured at 0.08% (6 of 7179 cells) at remission. In case SU290,
there were 12 unique clones identified at diagnosis, and the GATA2
mutation was measured at 0.02% (2 of 8726 cells) in the remission
sample by using SCS. Of note, we observed AML clones at
remission for 2 cases that continue in remission, SU380 and
SU218 (supplemental Figure 2), which was likely due to early
sampling. The remaining cases are illustrated in supplemental
Figure 2. All together, these cases illustrate the wide diversity of
clonal architecture and responses to treatment observed in patients
with AML and illustrate the utility of SCS to directly identify MRD in
some patients who subsequently relapse.

Clonal evolution in AML can be influenced by both anti-leukemia
therapies and the microenvironment; however, AML evolution
during treatment and its clinical relevance are not completely
understood. Modeling clonal heterogeneity using richness and
diversity metrics can provide insights into cancer evolution and its
association with treatment resistance and disease relapse.10

Richness indices such as the Menhinick index quantify the number
of different clones in a sample. Diversity indices such as the
Simpson index account for not only the number of observed clones
but also the relative abundance of each clone. A sample with equal
clonal frequencies would be considered more diverse than another
sample containing a dominant clone within the same total number of
clones. To evaluate the importance of clonal richness and diversity
in AML, we characterized the cellular composition of patient
samples at diagnosis and remission by using standard ecosystem
metrics (Figure 3A; supplemental Figure 3). Among these metrics,
random forest regression against RFS identified the Menhinick
richness index at diagnosis and the change in the Simpson diversity
index from diagnosis to remission as the 2 most influential features.

Cox proportional hazards analysis identified the change in the Simpson
diversity index as the most significant measurement associated with
RFS (hazard ratio, 0.077; P 5 .03) compared with the Menhinick
richness index, age, 2017 ELN risk category, and sex (Figure 3B). The
2017 ELN molecular risk stratification11 was determined by using
mutation data from both SCS and bulk NGS. Stratifying patients based
on changes in clonal diversity (supplemental Table 4) showed an RFS
benefit for patients who had a greater decrease in diversity at remission
(median not reached vs 224 days; P 5 .008) (Figure 3C). These
findings suggest that although patients with AML have a similar degree
of clonal richness at diagnosis, a greater decrease in leukemia
diversity at remission may be associated with longer RFS. Stability
or increase in AML diversity may therefore be a measure of leukemia
fitness and treatment resistance. Overall, this analysis is limited by
small patient numbers, the size of the genetic panel, and possible
ADO; however, the results suggest that clonal diversity and
mutation cooccurrence are clinically relevant in AML.

Discussion

Over the past 30 years, significant advances have been made in
defining the prognosis of AML patients based on clinicopathologic
features, cytogenetic aberrations, and somatic mutations. Increas-
ingly, the heterogeneity of AML at the molecular level has become
apparent. Although molecular and cytogenetic profiling continues to
provide the framework for risk stratification used to guide
management of AML,11 there has been inconsistency in NGS-
based classification systems used in clinical practice. Here we
show that SCS of AML samples at diagnosis, remission, and
relapse allowed for quantification of cooccurring mutation variants,
differentiation of pre-leukemic clonal hematopoiesis from relapse-
causing clones, identification of clinically relevant MRD, and
investigation of evolutionary trajectories during treatment.

In our data set, persistence of clones with multiple variants during
remission was associated with increased risk of relapse. This finding
is similar to previously published work using bulk NGS assays with
a sensitivity of 0.2% that showed that persistence of $2 lesions
was associated with significantly reduced leukemia-free survival and
OS.19 This finding raises the possibility that identification of
complex or multiple clones during remission increases the risk of
resistant disease and future relapse. Multiple groups are exploring
personalized digital droplet PCR assays for MRD tracking to
leverage this finding.20-22 However, SCS offers the opportunity to
avoid needing a personalized approach, while also allowing for
identification of de novo or previously undetectable somatic
variants. SCS also provides direct quantification of clonal diversity,
and modeling clonal evolution may be relevant for understanding
AML outcomes (Figure 3). Additional research is needed to verify
these observations in a larger cohort of patients.

Our results suggest a possible increased sensitivity of SCS
compared with NGS for identifying persistent mutations, with
80% of relapsed cases having $1 mutation identified at the
remission time point. Previous studies have reported 40% to 51.4%
of patients with persistent somatic variants at time of remission
according to bulk NGS sequencing.8,9 This is in part due to the
higher limit of detection of previously implemented NGS techni-
ques, which usually detected VAFs down to 2%.

Considerable interest exists regarding the use of MRD status in
AML to help inform escalation or de-escalation therapeutic
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Figure 2. SCS reveals heterogeneous clonal evolution in AML. Fishplots illustrating the diversity in clonal evolution captured by SCS at diagnosis, remission, and relapse.

Selected cases from patients who relapsed (A-F) and from patients who remained in remission (G-H). For each remission sample, the total number of cells identified as the dominant
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strategies (eg, initiating or intensifying treatment of patients with
MRD to lessen risk of relapse). Furthermore, assessment of MRD
status as a surrogate end point for clinical trials is also being actively
explored. SCS may add to this field by allowing for unequivocal
resolution of clonal structure at time of remission, as well as allowing
for identification of previously difficult-to-detect emerging resistant
clones.17 This approach may allow for better risk stratification and
lead to proactive treatment of persistent or emerging treatment-
resistant clones (Figure 3D). We also note that single-cell analysis
can provide unambiguous resolution of persistent pre-leukemic
clonal hematopoiesis from leukemic clones at remission. In addition,
our observations support the need for serial sampling to assess
MRD, as cases SU380 and SU218 had detectable variants at
remission but remained in remission. In fact, the recent consensus
document by the ELN MRD working party recommends serial
measurements of MRD during treatment.4

Current limitations of SCS for MRD detection include limited single-
cell throughput, relatively small panel size, ADO, and inability to
multiplex DNA with other analytes. Addressing these limitations may
allow for SCS to further increase the limit of detection and improve
specificity to allow for routine application of this technology in
clinical research and practice. Already, decreasing costs of
sequencing have allowed for expansion of the current panel from
19 genes (50 amplicons) to 47 genes (330 amplicons) in the next
iteration. In addition, multi-omics capabilities of the current platform
have been shown, possibly allowing for further characterization of
MRD clones beyond just the DNA mutational signature.23 Finally,
the recent ELN MRDWorking Party recommendations suggest that
at least 10 000 cells, if not upward to 500000 cells, are needed to
accurately detect MRD lower than the 0.01% threshold.4 Improve-
ments in microfluidics technology have allowed for increased
throughput to .50000 cells,24 theoretically decreasing the limit of
detection into the range of most error-corrected NGS and digital
droplet PCR technologies.25 However, significant improvements
are needed in SCS throughput to accurately quantify clinical MRD.

In conclusion, SCS-based evaluation of MRD during CR may allow
for identification of AML patients at high risk for relapse. It
specifically enabled the differentiation of pre-leukemic clonal
hematopoiesis from leukemic clones responsible for relapse. In
addition, greater clonal complexity was associated with reduced
elimination of all malignant clones with standard chemotherapy
regimens. This observation was associated with a higher risk of

resistant clones persisting and eventually causing clinical relapse.
Based on these results, SCS MRD assessment may be useful for
informing treatment decisions in first remission and for following
clonal evolution during and after conventional therapy in AML.

Acknowledgments

The authors thank Mission Bio for providing assistance with data
generation, data analysis, and data interpretation, and for comments
on themanuscript. In particular, they thank Jose Jacob for his generous
support on sample preparation, sample processing, data processing,
and data analysis. They also thank their patients and the Stanford
Hematology Division Tissue Bank for providing the specimens.

This work was supported by the National Institutes of Health,
National Cancer Institute (R01-CA188055, R.M.), the Ludwig
Institute for Cancer Stem Cell Research and Medicine (R.M.), and
the AdvancedResidency Training Program at Stanford (A.E.). R.M. is
a Leukemia & Lymphoma Society Scholar.

Authorship

Contribution: A.A., A.E., and R.M. were responsible for conception
and design, and developed themethodology; B.C.M., M.L., M.S., and
R.M. were responsible for acquisition of data (eg, provided animals,
acquired and managed patients, provided facilities); A.A., A.E.,
J.G.R., T.K., andR.M analyzed and interpreted the data (eg, statistical
analysis, biostatistics, computational analysis); A.A., A.E., T.K., J.G.R.,
M.R.C., and R.M. wrote, reviewed, and/or revised the manuscript;
and A.A., A.E., T.K., M.S., M.R.C., and R.M. provided administrative,
technical, or material support (ie, reporting or organizing data, con-
structing databases).

Conflict-of-interest disclosure: R.M. is a founder, consultant,
equity holder, and serves on the Board of Directors of Forty Seven
Inc. A.A. is an employee of Natera and a consultant for Mission Bio
and Notable Labs. B.C.M. is an employee of Roche/Genentech.
The remaining authors declare no competing financial interests.

ORCID profiles: A.E., 0000-0002-6480-8290; M.L., 0000-
0001-8945-5850.

Correspondence: Ravindra Majeti, Division of Hematology, De-
partment of Medicine, Lokey Stem Cell Research Building, 265
Campus Dr, G3021B, Stanford, CA 94305-5461; e-mail: rmajeti@
stanford.edu.

References

1. Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526-531.
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