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Third harmonic generation (THG) microscopy
shows great potential for instant pathology of
brain tissue during surgery. However, the rich
morphologies contained and the noise associ-
ated makes image restoration, necessary for
quantification of the THG images, challeng-
ing. Anisotropic diffusion filtering (ADF) has
been recently applied to restore THG images
of normal brain, but ADF is hard-to-code, time-consuming and only reconstructs
salient edges. This work overcomes these drawbacks by expressing ADF as a ten-
sor regularized total variation model, which uses the Huber penalty and the L1 norm
for tensor regularization and fidelity measurement, respectively. The diffusion ten-
sor is constructed from the structure tensor of ADF yet the tensor decomposition is
performed only in the non-flat areas. The resulting model is solved by an efficient
and easy-to-code primal-dual algorithm. Tests on THG brain tumor images show
that the proposed model has comparable denoising performance as ADF while it
much better restores weak edges and it is up to 60% more time efficient.
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1 | INTRODUCTION

Third harmonic generation (THG) microscopy [1–3] is a
non-linear imaging technique for label-free three-
dimensional (3D) imaging of live tissues without the need
for exogenous contrast agents. THG microscopy has estab-
lished itself as an important tool for studying intact tissues
such as insect embryos, plant seeds and intact mammalian
tissue [2], epithelial tissues [4–6], zebrafish embryos [3, 7]
and zebrafish nervous system [8]. This technique has been
applied for in vivo mouse brain imaging, revealing rich mor-
phological information [9]. Brain cells appear as dark holes
on a bright background of neuropil, and axons and dendrites
appear as bright fibers. More important, THG microscopy

has shown great potential for clinical applications. Excellent
agreement with the standard histopathology of skin cancers
has been demonstrated for THG [10, 11] and THG also
shows great potential for breast tumor diagnosis [12, 13].

In particular, we have recently demonstrated that THG
yields high-quality images of fresh, unstained human brain
tumor tissue [14]. Increased cellularity, nuclear pleomor-
phism, and rarefaction of neuropil have been clearly recog-
nized in the acquired THG images of human brain tissue.
This finding significantly facilitates the in vivo pathology of
brain tumors and helps to reveal the tumor margins during
surgery, which will improve the surgical outcomes.

Reliable image processing tools will strengthen the poten-
tial of THG microscopy for in vivo brain tumor pathology. In
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the image analysis pipeline of THG images of brain tissue,
image denoising is essential and challenging due to the rich cel-
lular morphologies and the low signal-to-noise ratio (SNR)
[15]. Anisotropic diffusion filtering (ADF) lies in the core of
image denoising techniques that are able to remove strong
image noise while maintaining the edges of objects sharp
[16–18]. The structure tensor is responsible for capturing the
distribution of local gradients, thus enabling ADF to reconstruct
certain kinds of structures, such as one-dimensional (1D) flow-
like [17, 19, 20] and two-dimensional (2D) membrane-like
structures [21, 22], as well as 2D blob and ridges [23]. In a pre-
vious study [24], we have applied the classical edge-enhancing
ADF model [16] to restore the “dark” brain cells observed in
THG images of mouse brain tissue. We have further developed
in [15] a salient edge-enhancing ADF model to reconstruct the
rich morphologies appearing in THG images of structurally
normal human brain tissue. However, all the existing ADF
models have the drawback that the restored edges are in fact
smooth [25]. So far, most ADF models [19–21] are implemen-
ted using an explicit or semi-implicit scheme [17, 26] to solve
the diffusion equation which converges slowly.

The combination of ADF and the total variation
(TV) model [27–29] provides an approach to overcome the
drawbacks of the ADF models. TV regularization is another
standard denoising method that has been studied mathemati-
cally for over decades [30–35]. In [25], an ADF model is for-
mulated as a tensor regularized total variation (TRTV) model to
restore the truly sharp edges, but the presented algorithm is
based on gradient descent and has a slow convergence rate.
The adaptive TRTV (ATRTV) model [36] improves conver-
gence by using the primal-dual algorithm [35] to solve the
accompanying convex optimization model. The structure tensor
adapts to the local geometry at each point but the estimated ten-
sor may not reflect the true local structures if the image is cor-
rupt by strong noise. Other important regularization approaches
include the structure tensor total variation (STV) [37, 38] that
penalizes the eigenvalues of the structure tensor, but STV does
not make use of the directional information [36]. The higher-
order regularizations such as the total generalized variation [39]
and the Hessian Schatten-Norm regularization (HS) [40] have
also been proposed and also ignore direction of derivatives.
There are many important alternative approaches to the image
denoising problem such as dictionary learning based methods
[41], sparse representation based methods [42], non-local based
methods [43], prior learning based methods [44–46], low-rank
based methods [47] and deep learning based methods [48].

In this study, we present a robust and efficient TRTV model
that inherits the advantages of both ADF and TV, that is, their
abilities of suppressing strong noise, estimating and restoring
complex structures, and efficient convergence, to reconstruct 2D
and 3D THG images of human brain tissue. The contributions
of this study are 3-fold. First, the pointwise decomposition of a
structure tensor, which is time-consuming and necessary for
both ADF and TRTV, is greatly accelerated by performing the

tensor decomposition only in the non-flat areas. We use the gra-
dient magnitude of a Gaussian at each point to estimate the first
eigenvalue of the structure tensor and to distinguish flat from
non-flat areas. In the flat areas, the identity matrix is used as the
diffusion tensor and no tensor decomposition is needed, while in
the non-flat regions, the tensor decomposition is applied to con-
struct the application-driven diffusion tensor. Second, existing
TRTV models adopt the L2 norm for the data fidelity term while
we use the L1 norm to make the proposed model (TRTV-L1)
robust to outliers and image contrast invariant. In previous work,
it has been shown that geometrical features are better preserved
by the TV models with the L1 norm [49]. Third, we solve the
TRTV-L1 model with an efficient and easy-to-code primal-dual
algorithm as in [35, 36]. In a detailed comparison of methods
we show the ability of the TRTV-L1 model to reconstruct weak
edges, which is not well possible with other TRTV models.
Weak edges are commonly observed in THG images and are
important for clinical applications.

This work is a considerably extended version of the
robust TRTV model previously presented at a conference
[50]. The rest of this paper is organized as follows: we
review the existing TRTV models in Section 2. The pro-
posed TRTV-L1 model is explained in detail in Section 3.
Simulated and real THG images are tested to demonstrate
the efficiency and robustness of the proposed TRTV-L1

model in Section 4. Conclusions follow in Section 5.

2 | RELATED WORK

2.1 | Anisotropic diffusion filtering and regularization

Let u denote an m-dimensional (m = 2 or 3) image, and f be the
noisy image. An ADF model [16–24, 51] has originally been
defined by the partial differential equation (PDE) as follows:

∂tu= div Druð Þ,u x,t=0ð Þ= f , ð1Þ
together with an application-driven diffusion tensor D,
where the raw image f is used as the initial condition. D is
computed from the gradient of a Gaussian smoothed version
of the image ruσ in 3 consecutive steps. First, the structure
tensor J is computed at each point to estimate the distribu-
tion of the local gradients:

Jρ ruσð Þ=Kρ
* ruσ�ruσð Þ,ρ≥ 0: ð2Þ

Here uσ is the Gaussian smoothed version of u, that is,
u is convolved with a Gaussian kernel K of SD, σ,

Kσ*uð Þ=
ð
Rm

Kσ x−yð Þu yð Þdy, ð3Þ

Kσ =
1

2πσ2ð Þm=2
exp −

j x j
2σ2

2
 !

: ð4Þ
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The SD, σ, denotes the noise scale of the target
image [17]. To study the distribution of the local gradients,
the outer product of ruσ is computed and each component
of the resulting matrix is convolved with another Gaussian
K of SD, ρ. ρ is the integration scale that reflects the charac-
teristic size of the texture, and usually it is large in compari-
son to the noise scale σ [17].

Second, the structure tensor J is decomposed into the
product of a diagonal matrix with eigenvalues μi and a
matrix of eigenvectors qi that indicate the distribution of the
local gradients [17]:

J =Q diag μið ÞQT : ð5Þ
The diagonal matrix, diag(μi), is the eigenvalue matrix of

all the eigenvalues ordered in the descending order, and the
matrix Q is formed by the corresponding eigenvectors qi.

Finally, the eigenvalue values in (5) are replaced by the
application-driven diffusion matrix diag(λi):

D=Q diag λið ÞQT , ð6Þ
where λi represents the amount of diffusivity along the
eigenvector qi.

By taking the input image f as the starting point and
evolving Eq. (1) over some time, the image is smoothed in
flat areas and along the object edges, whereas the prominent
edges themselves are maintained. Both the explicit and
semi-implicit schemes [17] have been widely employed to
implement Eq. (1). The explicit scheme is easy-to-code yet
converging slowly. The semi-implicit scheme is more effi-
cient because a larger time step is allowed, but harder to
code because the inverse of a large matrix is involved.

Mathematically, Eq. (1) closely relates to the regulariza-
tion problem that is designed to achieve a balance between
smoothness and closeness to the input image f:

min
u

R uð Þ+ λku− f k: ð7Þ

In this functional, the first term is the regularization term
(regularizer) that depends on the diffusion tensor D. The sec-
ond term is the data fidelity term that uses a mathematical
norm ||.|| to measure the closeness of u to the input image f.
The implementation of this functional therefore depends on
the construction of the diffusion tensor D, the choice of the
regularizer and the fidelity norm. If we use the L2 norm for
the data fidelity and substitute:

R uð Þ=
ð
Ω
ruTDru=

ð
Ω
Sruj j2, withD= STS, ð8Þ

into Eq. (7), its E-L equation has the form:

∂tu= div Druð Þ−λ u− fð Þ, ð9Þ
which has the same diffusion tensor as (1). Because ru
appears quadratically, R behaves as a L2 regularizer which
has been shown unable to recover truly sharp edges [25],

and the relation between (9) and (1) explains why the output
of ADF is intrinsically smooth.

2.2 | Total variation

Another standard image denoising method is the TV model
that was introduced into compute vision first by Rudin,
Osher and Fatemi (ROF) [27] as follows:

min
u

ð
Ω
j ru j + λ u− fk k22: ð10Þ

The TV regularization penalizes only the total height of
a slope but not its steepness, which permits the presence of
edges in the minimizer. Although the ROF model permits
prominent edges, it tends to create the so-called stair-casing
effect and the primal minimization method used converges
slowly. To address these drawbacks, several modifications
have been made to reduce the stair-casing effect and acceler-
ate the convergence rate: replacing the TV regularization by
Huber regularization, replacing the L2 norm by the L1 or
Huber norm [52], and solving the convex minimization
problem by the Chambolle's dual method [31], the split
Bregman method [33], or the hybrid primal-dual method
[30, 32, 34, 35, 53]. These first-order primal-dual algorithms
enable easy-to-code implementation of the TV model. How-
ever, all these methods cannot properly remove the noise on
the edges and cannot restore certain structures like 1D line-
like structures, because only the modulus of a gradient is
considered in the regularizer, not its directions. Total varia-
tion based methods have also been applied to other image
processing fields such as compressive sensing, mixed noise
removal and image deblurring of natural and brain
images [54–56].

2.3 | Anisotropic total variation filtering

In order to overcome the problems of ADF and TV and com-
bine their benefits, it is helpful to notice the close relation
between diffusion filtering and regularization, which was
initially studied in [57] for isotropic diffusion. The relation
between anisotropic diffusion and the TV regularization was
studied in [25], via the TRTV model as follows:

min
u

ð
Ω
j Sru j+ λ

2
u− fk k22 = min

u

ð
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruTDru

p
+
λ

2
u− fk k22:

ð11Þ
The matrix S satisfies D = STS, with a given diffusion

tensor D. The anisotropic regularizer used in (11) overcomes
the drawbacks of ADF and reconstructs truly sharp edges.
Because the directional information has been incorporated
via the diffusion tensor D in this model, it is also able to
remove the noise on the edges and restore the complex struc-
ture which is not possible with the TV model. Despite these
improvements, the minimization used in [25] to solve this
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TRTV model was based on gradient descent which suffered
from slow convergence.

The diffusion behavior of (11) can be analyzed in terms
of the diffusion equation given by its E-L equation:

∂tu= div
D

j Sru jru
� �

−λ u− fð Þ: ð12Þ

The first term on the right corresponds to an ADF with
the diffusion tensor D/ j Sruj.

2.4 | Adaptive regularization with the structure tensor

In [36], the convexity of the problem (11) was used to
improve the computational performance of the TRTV model
[25] by applying the primal-dual algorithm [35], to solve the
convex optimization of the proposed ATRTV model [36].
Also, the Huber penalty gα was used to regularize the struc-
ture tensor and reduce the stair-casing effect caused by the
TV regularization:

min
u

ð
Ω
gα Sruð Þ+ λ

2
u− fk k22, ð13Þ

gα ruð Þ=
ruj j2
2α

if j ru j < α,

j ru j −α

2
if j ru j ≥ α:

8><
>: ð14Þ

Here the matrix S, with S= max
ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
,μ1 + μ24

p Þ�
diag μið Þ−1=2QT , is the adaptive tensor used to rotate and
scale the axes of the local ellipse to coincide with the
coordinate axes of the image domain. This design of the
adaptive regularizer has taken into account the local struc-
ture of each point to penalize image variations. However,
we noticed that the asymmetry of S may create artifacts
and reduce the applicability of the algorithm in practice.
We also note that the diffusion strength along the ith direc-
tion is approximately proportional to 1=

ffiffiffiffi
μi4

p � 1, which is
not enough to suppress the noise when the input is corrupted
by strong noise.

3 | MATERIALS AND METHODS

3.1 | Image samples and acquisition

All procedures on human tissue were performed with the
approval of the Medical Ethical Committee of the VU Uni-
versity Medical Center and in accordance with Dutch license
procedures and the declaration of Helsinki. All patients gave
a written informed consent for tissue biopsy collection and
signed a declaration permitting the use of their biopsy speci-
mens in scientific research. We imaged brain tissue samples
from 6 patients diagnosed with low-grade glioma and
2 patients diagnosed with high-grade glioma, as well as
2 structurally normal references with THG microscopy [14].
Structurally normal brain samples were cut from the

temporal cortex and subcortical white matter that had to be
removed for the surgical treatment of deeper brain structures
affected by epilepsy. Tumor brain samples were cut from
tumor margin areas and from the tumor core and peritumoral
areas. For details of the imaging setup, the tissue preparation
and the tissue histology, we refer to previous works [9, 14].

3.2 | The proposed tensor regularized total variation

When applied to THG images of brain tissue, all the
methods above have their specific problems. The ADF
models are computationally expensive and they cannot
restore weak edges. The TV model creates the stair-casing
effect and cannot restore thin 1D line-like structures. The
existing TRTV models are either too expensive in computa-
tion or lack of enough denoising capability. To deal with
these drawbacks and to make the TRTV approach applicable
to THG images corrupted by strong noise, we present an
efficient estimation of the diffusion tensor and we replace
the L2 norm used in the data fidelity term by the robust L1

norm. We solve the resulting model by an efficient primal-
dual method.

3.2.1 | Efficient estimation of the diffusion tensor

One time-consuming step of the ADF and TRTV models is
that the diffusion matrix D or S needs to be estimated at each
point to describe the distribution of local gradients. This is
of no interest in flat areas because the gradients almost van-
ish. In 3D, this tensor decomposition procedure takes about
half of the total computational time. If the tensor decomposi-
tion is only computed in non-flat areas, the procedure will
be substantially accelerated.

To do this, we exploit the fact that the flat regions consist
of points whose first (largest) eigenvalue is small, and that
this eigenvalue can be roughly estimated by |ruσ|

2 [16].
This fact motivates the idea of thresholding |ruσ|

2 to distin-
guish flat and non-flat regions. Before thresholding, we use
the following function g to normalize and scale exponen-
tially |ruσ|

2 to the range [0,1]:

g sð Þ= exp
−C4

s=λð Þ4
 !

, s>0: ð15Þ

This function has been used in the edge-enhancing
ADF model [16] to define the diffusivity along the first
direction. Following [16] we set C4 = 3.31488. λ is the
threshold to control the trend of the function [16]. Then
we regard the points with g(|ruσ|

2) < h (here h is always
set to 0.9) as the flat regions and the other points as the
non-flat regions. In the flat regions, the diffusion along
each direction is isotropic and the diffusion tensor
D reduces to the identity matrix I. In the non-flat regions,
the diffusion tensor D is defined as a weighted sum of the
identity matrix and the application-driven diffusion tensor,
with the weight g(|ruσ|

2):
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D= 1−g ruσj j2
� �� �

I + g ruσj j2
� �

Q diag λið ÞQT

=Q 1−g ruσj j2
� �� �

I + g ruσj j2
� �

diag λið Þ
� �

QT

≔QΛQT :

ð16Þ

Therefore, the g(|ruσ|
2) has two roles here, one of which

is acting as a threshold value and the other is acting as the
weight for constructing the diffusion tensor D of the non-flat
areas. Note that most of the ADF and TRTV models could
in principle be accelerated using the procedure described
here with almost no loss of accuracy. When applied to 3D
images, we use the following eigenvalue system to optimize
the diffusivityλi:

λ1 = 1−g ruσj j2
� �

,

λ2 = λ1− λ1−λ3ð Þhτ Cplane
� �

,
λ3 = 1:

8><
>: ð17Þ

For 2D THG images, the second diffusivity λ2 is
ignored. hτ(�) is a fuzzy threshold function between 0 and
1 that allows a better control of the transition between 2D
plane structures and other regions [21, 58], as follows:

hτ xð Þ= tanh γ x−τð Þ½ �+1
tanh γ 1:0−τð Þ½ �+1

, x2 0,1½ �: ð18Þ

where γ is a scaling factor that controls the transition and we
set it to 100. Cplane is the plane-confidence measure [21, 59]
defined as follows:

Cplane =
μ1−μ2
μ1 + μ2

: ð19Þ

Smoothing behaviors of the diffusion matrix (17) are dif-
ferent for different regions: in background regions, λ1 is
almost 1 and smoothing is encouraged from all the directions
at an equal level (isotropic smoothing). In the vicinity of
edges, λ1 ≈ 0, smoothing at the first direction is discour-
aged. In plane-like regions, the fuzzy function hτ tends to
1, and λ2 = 1, and smoothing at the second and third direc-
tions is allowed. In 1D structure regions, λ2 tends to λ1 and
both are close to 0. Smoothing at the third direction is
allowed only.

3.2.2 | Robust anisotropic regularization

Given a diffusion tensor D designed as (16), we consider the
same regularizer as in Eq. (13) of the adaptive TRTV
model [36]:

R uð Þ=
ð
Ω
gα Sruð Þ, ð20Þ

but contrary to [36] we use a symmetric S, S = D. To ana-
lyze the behavior of this regularizer in terms of diffusion, we
note that the E-L equation that minimizes R(u) is:

∂tu= div
1

max α,jSrujð ÞS
TSru

� �
: ð21Þ

To analyze the diffusion behavior along each eigenvector
direction, we only need to estimate the jSruj:

j Sru j = jQΛQTru j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QTruð ÞTΛ2 QTruð Þ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i=1

Λ2
i qT

i ru
� �2s

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i=1

Λ2
i μi

s
:

ð22Þ

Hence, the regularization problem (20) is a scaled ver-
sion of the diffusion problem with the diffusion tensor STS =
QΛ2QT, whose behavior along each eigenvector is almost
the same as the diffusion problem with diffusion tensor D.
Note that in the flat regions, S becomes the identity matrix,
and the regularization (20) reduced to the Huber
regularization.

3.2.3 | Tensor regularized total variation-L1

Different from the existing TRTV models, we consider the
robust minimization problem as follows:

min
u

ð
Ω
gα Sruð Þ+ λ u− fk k1, ð23Þ

where we have used the L1 norm in the data fidelity term.
Compared to the L2 norm, the L1 norm is image contrast
invariant, robust to noise and sensitive to fine details
[49, 60].

3.2.4 | Numerical minimization

To efficiently solve the minimization problem (23), we note
that it is a convex problem which can be reformulated as a
saddle-point problem. Therefore, it can be solved efficiently
by the primal-dual approach [34–36]. To describe the prob-
lem in matrix algebra language, we reorder the image matrix
u row-wisely into a vector with N points, that is, u 2 RN.
The minimization problem (23) is written as the following
primal minimization problem:

min
u

J Auð Þ+ λ u− fk k1, ð24Þ

where Au(i) = S(i)ru(i) at each point i, and J denotes the

Huber norm, J Auð Þ=PN
i=1gα Au ið Þð Þ.

To convert problem (24) into a primal-dual problem, we
introduce a dual variable p 2 RmN (m = 2 or 3, the dimen-
sion of an image), and the convex conjugate of J (we refer to
[61] for a complete introduction to the classical theory of
convex analysis) is:

J* pð Þ= sup
q2RmN

p,qh i−J qð Þ: ð25Þ

Since J** = J, we have

J Auð Þ= sup
p

p,Auh i−J* pð Þ: ð26Þ

Substituting (26) into (24), we obtain the equivalent
saddle-point problem of the minimization problem (24):
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min
u

max
p

p,Auh i−J* pð Þ+ λ u− fk k1: ð27Þ

According to the hybrid primal-dual algorithm described
in [34, 35], we need to solve the following dual, primal and
approximate extra-gradient steps iteratively,

pk+1 = argmax
p

p,Auk
	 


−J* pð Þ, ð28Þ

uk+1 = argmin
u

A*pk+1,u
	 


+ λ u− fk k1, ð29Þ

uk+1 = uk+1 + θ uk+1−uk
� �

,θ2 0,1½ �: ð30Þ
Similar to [35, 36], the maximization problem (28) has

the closed-form solution:

p̂= pk + τ1Auk,

pk+1 ið Þ= p̂ ið Þ
max 1+ ατ1,jp̂ ið Þjð Þ :

ð28aÞ

where τ1 is the dual step size and α is defined in the Huber
regularization in (14) and (23). For an intuitive understand-
ing of (28a), we note that J* can be interpreted as the indica-
tor function for the unit ball in the dual norm,

J* pð Þ= 0, pk k* ≤ 1,
∞ , otherwise

�
ð31Þ

and then problem (28) is equivalent to solve the dual
problem:

pk+1 = argmax
p2X

p,Auk
	 


, ð32Þ

where X = {p, J*(p) ≤ 1}. Since the ascend direction of
(32) is Auk, (28a) can be considered as updating p along the
ascend direction and projecting p onto X.

We solve the primal problem (29) with the primal algo-
rithm described in [35], where the L1 norm can be solved by
the pointwise shrinkage operations:

ûk+1 = uk−τ2A*pk+1,uk+1 ið Þ

=
û ið Þ−τ2λ if û ið Þ− f ið Þ> τ2λ,
û ið Þ+ τ2λ if û ið Þ− f ið Þ< −τ2λ,

f ið Þ if j û ið Þ− f ið Þ j ≤ τ2λ:

8<
: ð29aÞ

Here τ2 is the primal step size and the conjugate of A is:

A*pk+1 ið Þ= − div S ið ÞTpk+1 ið Þ� �
: ð33Þ

Problem (24) is convex and the efficiency of the pro-
posed algorithm comes from the ability to find closed-form
solutions for each of the sub-problems. We summarize the
proposed algorithm, including the estimation of the diffusion
tensor, in Algorithm . This algorithm is partially inspired by
the work of Estellers et al. [36]. Note that we use the forward
differences to compute the discrete gradients and backward
differences for the divergence to preserve their adjoint
relationshipdiv = − r*.

Algorithm: The efficient algorithm for the convex mini-
mization problem (24).

Initialization. Set u0 = u0 = f ,p0 = 0,k=0:
Choose the initial step size τ1, τ2 >
0 and θ 2 [0, 1].

While (||uk + 1
− uk|| > ε).

1. Compute the structure tensor J, using (2).

2. Construct diffusion matrix S: in the flat areas, set S as the

identity matrix; otherwise, compute S using (16).

3. Update pk, uk and uk iteratively, using (28a), (29a) and (30).

4. Set k = k + 1.

Output: uk + 1, when ||uk + 1
− uk|| ≤ ε is satisfied.

4 | EXPERIMENTAL RESULTS

We validate the proposed TRTV-L1 model on a 2D simu-
lated image, and around 200 2D and 3D THG images of nor-
mal human brain and tumor tissue. The field of view of the
2D and 3D THG images is 273 × 273 μm2 (1125 × 1125
pixels) and 273 × 273 × 50 μm3 (1125 × 1125 × 50 vox-
els), respectively. The intensities of these images are scaled
to [0, 255]. We have previously developed a salient edge-
enhancing ADF model (the SEED model) to process the
THG images of normal brain tissue [15], while the images of
tumor tissue have not been published for the purpose of
image analysis before. We compare our 2D results with the
TV model [34], the edge-enhancing ADF model (the EED
model) [16], the BM3D model [62], the HS model [40], the
STV model [38], the ATRTV model [36] and our previous
SEED model [15]. We only compare our 3D results with the
TV model and the SEED model because not all source codes
are readily available for other models in 3D. A comparison
between EED and SEED has already been made in [15]
for 3D.

4.1 | Implementation

The proposed TRTV-L1 model and ADFs are implemented
in Visual Studio C++ 2010 on a PC with 8 3.40-GHz
Intel(R) Core(TM) 64 processors and 8 GB memory. Multi-
ple cores have been used to implement the 3D algorithms,
and a single core has been used for the 2D implementation.
The TV model is implemented using the primal-dual algo-
rithm described in [34]. The ADF models are implemented in
the semi-implicit scheme [17]. The Matlab source codes for
the BM3D model [62], the HS model [40], the STV model
[38] and the ATRTV model [36] are available online from
the authors' websites. The parameters are manually optimized
for each model. The key parameters used for the proposed
TRTV-L1 model involve λ = 0.15, τ1 = 0.02, τ2 = 8.5 and
θ = 1.0 for 2D and λ = 0.15, τ1 = 0.05, τ2 = 1.5and
θ = 1.0 for 3D. The convergence accuracy ε is set to 10−2.
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4.2 | Denoising effect

The performance of the proposed TRTV-L1 model is first
evaluated on a 2D simulated image (Figure 1). The simu-
lated image consists of seven horizontal lines of the same
width (255 pixels), but of different heights, 50, 30, 25, 10,
5, 3 and 1 pixels. The intensity of each line horizontally
increases from 1 to 255, mimicking edges with varying gra-
dients. Gaussian noise with SD of 60 is added to simulate
strong noise. The TV model cannot remove the noise on the
edges (blue square), creates stair-casing effect, fails to
restore the 1-pixel line and restores the 3-pixel line only par-
tially. The ADF models, that is, the EED and SEED models,
have the highest peak signal-to-noise ratio [36] and they pro-
vide the best denoising effect, but they also lose some weak
edges of all the lines. The BM3D model has perfect perfor-
mance on keeping fine details, for example, a large part of
1-pixel line is kept, but it creates ripple-like artifacts (yellow
square) and its denoising effect is not comparable to the ten-
sor methods. The HS model penalizes the second-order
derivatives and thus it is able to avoid the stair-casing effect

and capture blood-vessel-like structures, but it has limited
denoising effect and creates dark-dot-like artifacts. The
ATRTV model is able to get rid of most stair-casing effect,
but the noise on the edges (blue square) is not properly
removed. This behavior remains for other parameter settings.
A possible explanation could be that there is not enough dif-
fusion strength along the edge direction, possibly caused by
the design of diffusion tensor. Its ability of keeping fine
details is also limited, for example, part of the 1-pixel line is
swiped out. STV suffers less stair-casing effect than TV, but
its performance on denoising and keeping fine details is also
limited, because it does not consider the eigenvectors that
are the key for restoring local structures. Our TRTV-L1

model combines the benefits of the L1 norm and tensor regu-
larization, and has a denoising performance that is compara-
ble to the ADF models and higher than the other models.
Moreover, TRTV-L1 is also able to keep fine details as
BM3D does. The weak edges of all the simulated lines are
better restored by TRTV-L1 than by other tensor methods
and regularization methods.

FIGURE 1 Comparison of denoising results on the simulated image
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We then compare the performance of the proposed
TRTV-L1 model with the aforementioned models using
around 200 THG images of normal human brain and tumor
tissue. One 2D typical example of THG images of normal
brain tissue from gray matter is depicted in Figure 2. Brain
cells (mainly including neurons and glial cells) and neuropil
(consisting of axons and dendrites) are the basic features in a
human brain, which appear as dark holes with dimly seen
nuclei inside and bright fibers, respectively. Brain cells and
neuropil are sparsely distributed in gray matter. The strong
noise and rich morphologies contained in these THG images
make the image denoising challenging. The TV model is
able to remove the noise but it causes the stair-casing effect.
It cannot restore the thin fiber-like neuropil because it does
not consider the distribution of the local gradients (blue
square). The ADF models (the SEED result is similar to the
EED result and thus it is omitted) already give very satisfy-
ing results. The noise has been properly removed, but a

substantial amount of weak edges have been smoothed to
some extent, for example, the weak edges of some fibers and
dark brain cells (blue square), because they are equivalent to
the anisotropic TV with the L2 regularizer. The BM3D keeps
the most fine details (the thin neuropil in the blue square),
but its denoising effect is limited and again it creates ripple-
like artifacts. Note that the parameter σ involved in BM3D
reflects the noise level of an image and the result of σ = 100
shown in Figure 2 indicates that the noise level of THG
images is comparable to Gaussian noise with SD of 100.
The HS model has limited performance on suppressing the
strong noise in THG images, the result seems a bit blurred
and dark-dot-like artifacts are created as appeared in the sim-
ulated image (Figure 1, HS). The result of ATRTV is similar
to TV (but with less stair-casing effect), and it is not able to
restore the thin neuropil with weak edges. The STV model
causes little stair-casing effect, and does not keep fine
details due to the lack of directional information. Compared

FIGURE 2 One 2D THG image of normal brain tissue from gray matter. Brain cells and neuropil appear as dark holes with dimly seen nuclei inside and
bright fibers, respectively
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with BM3D and HS, our TRTV-L1 model is able to keep
reasonable amount of fine details yet has a significantly
superior denoising performance. Compared to other tensor
and regularization methods, TRTV-L1 can keep all salient
edges and many more weak edges and fine details. TRTV-
L1 also provides the best image contrast and suffers almost
no stair-casing effect, because of the L1 norm and the robust
anisotropic regularizer used. Results presented in Supporting
Information (Figures S1-S7) indicate that the parameter set-
tings in Figure 2 are optimal for BM3D, HS, ATRTV and
STV. The comparison of the segmentations resulted from
the denoised images (Figures S5 and S6) not only confirms
our qualitative evaluation of the denoising performance but
also suggests that the denoising effort of TRTV-L1 can really
benefit the following segmentation step.

3D THG images of normal brain tissue from white mat-
ter (Figure 3) are adequate testing materials to demonstrate
the 3D performance of the proposed model, because of the
presence of the complex morphologies, for example, nets of
neuropil. The density of brain cells, for example, neurons
with dimly seen nucleus or with lipofuscin granules inclu-
sions (blue arrow), is low but the density of neuropil is
higher than in gray matter. We see that the noise has been
removed by all the models. Nevertheless, the TV model can-
not enhance the fiber-like structures (the left blue square)
and suffers from the stair-casing effect. The SEED model is
able to enhance the fibers, but some weak edges have been
in fact smoothed (the blue square). Only our TRTV-L1

model succeeds to reconstruct almost all the sharp and weak
edges.

One 2D example of THG images of the low-grade tumor
tissue obtained from an oligodendroglioma patient is shown
in Figure 4. Compared to the THG images of normal brain
tissue, more brain cells (including cell nuclei and the sur-
rounding cytoplasm) are present that indicates the presence
of a tumor. Again, the TV model suffers from the stair-cas-
ing effect. The ADF models fail to restore the weak edges
(blue arrow). BM3D and HS have weaker denoising effect

than other methods. BM3D creates ripple-like artifacts and
HS blurs the image. In contrast to the conventional approach
for tensor estimation, ATRTV attempts to capture the direc-
tionality and scale of local structures via another convex
approximation, but our results on THG images do not sug-
gest superior merits of this aspect of ATRTV over the con-
ventional approach in restoring local structures. The result of
STV is similar to that of ATRTV due to the lack of direc-
tional information. Compared to other models, TRTV-L1

either has better denoising performance and/or restores more
fine details and weak edges (blue and yellow arrows).

One 2D example of THG images of the high-grade
tumor tissue obtained from a glioblastoma patient is shown
in Figure 5. All the fiber-like neuropil are now completely
absent and the whole area is filled with cell nuclei. The den-
sity of cell nuclei here is even higher than that of the low-
grade tumor tissue, indicating that those cells likely represent
tumor cells. The TV model is able to reconstruct both the
salient and weak edges but it again causes the stair-casing
effect around the edges. The ADF models provide quite sim-
ilar results without any stair-casing effect, but the weak
edges have been blurred. BM3D and HS have limited
denoising effect. ATRTV and STV suffer less stair-casing
effect than TV, but the contrast seems degenerated. The pro-
posed TRTV-L1 model has reconstructed the salient and
weak edges, which will greatly facilitate applications like
automatic cell counting.

4.3 | Computational performance

We first evaluate the computational cost of TRTV-L1 that
has been saved by restricting the tensor decomposition to the
non-flat areas. Roughly, the flat regions estimated in each
iteration increase from 50% up to 90% of the whole image
domain, and on average, 80% pixels are considered as flat
regions, indicating that tensor decomposition is needed only
for 20% of the pixels (Figure 6A). The reconstruction with
and without full estimation of the structure tensor

FIGURE 3 One 3D THG example of normal brain tissue from white matter, with the 33th slice shown. More neuropil is observed than in gray matter
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everywhere has been compared using THG images, from the
aspects of timing and restoration quality. No significant dif-
ference in the number of iterations needed for convergence
is observed between the full and partial estimation of struc-
ture tensor. For 2D THG images the partial estimation
approach saves ~10% of computation time, either in terms of
convergence time or time per iteration. No significant degra-
dation has been found in the restoration quality (Figure 6B,C
and Figure S7) when h varies from 0.0 to 0.9, and thus we

use h = 0.9 to obtain maximal gain in speed. We also find
that the absolution difference per pixel between the two
reconstructions is 3.8, indicating the small difference
between the 2 solutions. As a reference, the absolution dif-
ference per pixel between the reconstruction using partial
estimation of structure tensor and the input noisy image is
54.4. For 3D THG images, ~40% of computation time is
saved by the partial estimation approach. A visual map of
non-flat regions that results from the last iterative step is

FIGURE 4 One 2D THG example of low-grade tumor tissue from an oligodendroglioma patient. High cell density and thick neuropil indicate the presence
of a tumor

FIGURE 5 One 2D THG example of high-grade tumor tissue from a glioblastoma patient. The whole area is occupied by tumor cells
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shown in Figure 6D. This map actually consists of all the
sharp edges of the image, which conversely suggests that the
weak edges are restored from the regularization and L1 fidel-
ity rather than from the diffusion. Similar tests on the EED
model indicate that the same computational gains can be
achieved for the ADF models, using the partial tensor
decomposition.

To demonstrate the computational efficiency of the pro-
posed TRTV-L1 model, we compare the average computa-
tional time needed by TRTV-L1 to the ADF models on
30 2D and 5 3D THG images. The semi-implicit scheme
used to implement ADFs allows larger time steps than the
explicit scheme. We found that ADFs converge much slower
and consume more time per iteration than TRTV-L1. For
example, TRTV-L1 on average needs only ~1/3 number of
iterations of EED to converge to the same accuracy 10−2 and
TRTV-L1 consumes ~2/3 time of EED per iteration
(Figure 6E), which results in a ~75% higher speed than
EED. In practice, a fixed number of iteration is also a strat-
egy to stop the iterations, and we find that both ADFs and
TRTV-L1 have already produced quite satisfying results
after 50 iterations. In this condition, TRTV-L1 is on average
~30% more time efficient than ADFs on 2D THG images,

and ~60% more time efficient on 3D THG images. Com-
pared to other tensor regularization models, our TRTV-L1

model is roughly as efficient as the STV model, faster than
the ATRTV model that uses another convex optimization to
estimate structure tensor.

5 | DISCUSSION AND CONCLUSIONS

In this work, we have developed a robust and efficient
TRTV-L1 model to restore images corrupted by noise. THG
images of structurally normal human brain and tumor tissue
have been tested. The proposed model showed impressively
better results on the reconstruction of weak edges and fine
details and it was more efficient than existing ADF and
TRTV models. Comparisons to other state-of-art denoising
techniques that are able to keep fine details, indicate that
TRTV-L1 can restore a reasonable amount of fine details but
it has significantly better denoising performance without cre-
ating artifacts. The artifacts created by other models may
result in false positives in subsequent segmentation steps.
Therefore, the proposed TRTV-L1 model will greatly facili-
tate the following segmentation and cell counting of THG

FIGURE 6 Computational performance of the proposed TRTV-L1 model. (A) The percentage of pixels (y-axis) that are considered as points in the flat
regions, in each iteration (x-axis) during the tensor decomposition of a 2D THG image. (B, C) Comparison of the TRTV-L1 results with (B) and without
(C) full tensor decomposition everywhere. (D) The visual map of non-flat regions that results from the last iterative step. (E) The time per iteration (y-axis)
needed for TRTV-L1 and EED, tested on the 30 2D THG images
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images of brain tumor, from which we conclude that the
robust and efficient TRTV model will strengthen the clinical
potential of the THG microscopy on brain tumor surgery.
Moreover, based on the tests on the simulated image and the
THG images with complex morphologies, we believe that
the proposed method can be generalized to other
application-driven projects. The efficient estimation of the
diffusion tensor we proposed here can be used to accelerate
most of the existing tensor diffusion and regularization
models, by performing tensor decomposition only in the
non-flat regions. Compared to existing TRTV models, for
example, the ATRTV model, the approach we combined the
diffusion tensor and TV can be easily used to derive other
application-driven TRTV models from existing ADF
models. The L1 norm in the data fidelity term makes the pro-
posed TRTV-L1 model contrast invariant, robust to noise
and sensitive to fine details. The primal-dual algorithm used
to optimize the proposed model is easy-to-code in compari-
son with the existing ADF models because no sparse matrix
inversions are involved. Although there are many other
important types of image denoising methods as aforemen-
tioned, in this study we emphasize the benefits of tensor-
based techniques that they are able to capture local
structures. Compared to other alternative approaches, for
example, the machine learning methods, a training step is
usually included which needs a training set of clear images
with high SNR, but such images are difficult to acquire for
THG brain images.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.
Figure S1 Results of BM3D for σ = 50, 100 and 150. The
denoising effect of BM3D increases with σ. The denoising
effect starts to occur when σ = 50, and achieves its optimal
effect for σ = 100. Larger σ does not contribute to further
improvement. These images show that BM3D creates ripple-
like artifacts and has limited denoising performance.
Figure S2 Results of Hessian Schatten-Norm regularization
(HS) for λ = 0.1, 0.3 and 0.5. The denoising effect starts to
occur when λ = 0.1, and achieves its optimal performance
for λ = 0.3. The result becomes too blurred when λ = 0.5.
HS creates dark-dot artifacts, has limited denoising perfor-
mance and blurs the image.
Figure S3 Results of ATRTV for λ = 18, 10, 5 and μ = 8.6,
5.0 and 3.0. ATRTV has better denoising effect when λ and
μ are small. The denoising effect starts to occur when
λ = 18, μ = 8.6, and achieves its optimal performance for

λ = 10, μ = 5.0. The result becomes blurred when λ and μ
get smaller. The result of ATRTV is similar to that of TV,
with less stair-casing effect created, but it is not able to
restore fine details and weak edges corrupted by strong
noise.
Figure S4 Results of STV for λ = 0.24, 0.32 and 0.4. The
denoising effect starts to occur when λ = 0.24, and achieves
its optimal performance for λ = 0.4. The result of STV is
similar to that of TV, with less stair-casing effect created,
but it is not able to restore fine details and weak edges cor-
rupted by strong noise.
Figure S5 Segmentations of the dark holes (brain cells)
within the raw image and the denoised images in Figure ,
using manually optimized thresholds to detect most parts of
the dark holes with least background included. The segmen-
tation of the raw image indicates the strong noise present in
the THG image. The segmentations of TV, EED, ATRTV,
STV and TRTV-L1 are similar but the small objects resident
in segmentations of BM3D and HS illustrate their poor
denoising performance.
Figure S6 Segmentations of the bright objects (neuropil)
within the raw image and the denoised images in Figure 2,
using manually optimized thresholds to detect most parts of
the bright objects with least background included (eg, the
fiber indicated by yellow arrow). The segmentation of the
raw image indicates the strong noise present. The segmenta-
tion of TRTV-L1 is comparable to those of BM3D and HS,
where more fibers have been resolved than other models.
Sometimes fibers (blue arrows) are even better segmented
from the image denoised by TRTV-L1, which suggests that
BM3D and HS could visually keep more details than TRTV-
L1 but it is not necessarily beneficial for the segmentation
followed.
Figure S7 Results of the proposed TRTV-L1 model for
h = 0.0 (full estimation), 0.2, 0.5, 0.8 and 0.9 (partial esti-
mation). Almost no degradation has been found in the resto-
ration quality when h varies from 0.0 to 0.9, and thus we
use h = 0.9.
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