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Abstract

Diffusion MRI (dMRI), while powerful for the characterization of tissue microstructure, suffers 

from long acquisition times. In this paper, we propose a super-resolution (SR) reconstruction 

method based on orthogonal slice-undersampling for accelerated dMRI acquisition. Instead of 

scanning full diffusion-weighted (DW) image volumes, only a subsample of equally-spaced slices 

need to be acquired. We show that complementary information from DW volumes corresponding 

to different diffusion wave-vectors can be harnessed using graph convolutional neural networks for 

reconstruction of the full DW volumes. We demonstrate that our SR reconstruction method 

outperforms typical interpolation methods and mitigates partial volume effects. Experimental 

results indicate that acceleration up to a factor of 5 can be achieved with minimal information loss.

Keywords

Diffusion MRI; Accelerated acquisition; Super resolution; Graph CNN; Adversarial learning

1 Introduction

Diffusion MRI (dMRI) is a unique imaging technique for investigating tissue microstructural 

properties in vivo and non-invasively. However, in contrast to structural MRI, dMRI 

typically requires longer acquisition times for sufficient coverage of the diffusion wave-

vector space (i.e., q-space). Each point in q-space corresponds to a diffusion-weighted (DW) 

image, and a sufficient number of DW images are typically required for accurate 

characterization of the white matter neuronal architecture, such as fiber crossings and intra-/

extra-cellular compartments [1,2]. To accelerate acquisition while preserving the resolution 

in the wave-vector space, we introduce in this paper a super-resolution (SR) reconstruction 

technique that only requires a subsample of slices for each DW volume.

In this paper, we will introduce an SR reconstruction method for multifold acceleration of 

dMRI. We will show that, for each DW volume, only a subsample of slices in slice-select 

directions are needed to reconstruct the full 3D volumes, yielding an acceleration factor that 

is proportional to the subsampling factor. Each DW volume is subsampled with a different 
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slice offset so that the volume captures complementary information that can be used to 

improve the reconstruction of the other DW volumes. Instead of limiting the slice-

undersampling in one direction, we propose an orthogonal slice-undersampling scheme for 

increasing complementary information between undersampled DW volumes. In contrast to 

collecting multiple orthogonal scans as proposed in [3], our approach acquires a single DW 

image for each wave-vector, and hence does not prolong the acquisition time.

A non-linear mapping from the undersampled to the full DW images is learned using a 

graph convolutional neural network (GCNN) [4], which generalizes CNNs to high-

dimensional and non-Euclidean domains. Such generalization is necessary in our framework 

since sampling in the q-space is not necessarily Cartesian. We fully exploit the relationships 

of neighboring sampling points in the spatial domain and the diffusion wave-vector domain 

in the form of a graph. To learn the target images with improved perceptual quality, the 

GCNN is employed as the generator in a generative adversarial network (GAN) [5]. GANs 

have been shown to yield impressive performance in natural image generation and 

translation [6].

2 Methods

2.1 Formulation

Each of the N DW volumes {Xn, n = 1, … ,N} is undersampled in the slice-select direction 

by a factor of R:

Xn x, y, z :=
Xn x, y, Rz + sn ,
Xn x, Ry + sn, z ,
Xn Rx + sn, y, z ,

for axial scan,
for coronal scan,
for sagittal sacn,

(1)

where sn ϵ {0, 1, … ,R − 1} is a slice offset for Xn in each scan direction. Our objective is to 

reconstruct the full DW volumes from the undersampled data by learning a non-linear 

mapping function f such that

X1, ⋯ , XN = f X1, ⋯ , XN . (2)

In the current work, the mapping function is learned using GCNN.

An overview of the proposed method is illustrated in Fig. 1. First, the set of wave-vectors is 

divided into three subsets, with each subset associated to a scan direct (axial, coronal, or 

sagittal) and corresponding to a set of uniformly distributed gradient vectors. Since the graph 

for each scan direction can be different, GCNN is applied separately for each scan direction. 

Refinement layers are applied to generate the final DW volumes by considering the 

correlation across scan directions.

2.2 Graph Representation and Spectral Filtering

The dMRI sampling domain can be represented by a graph where each node represents a 

physical spatial location in x-space and a diffusion wave-vector in q-space. This graph is 

encoded using an adjacency matrix W and the graph Laplacian is defined as L = D – W, 
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where D is a diagonal degree matrix. L can be normalized via L = I – D−1/2WD−1/2, where I 
is an identity matrix. In this work, we define the adjacency matrix W considering spatio-

angular neighborhoods as in [7].

Since a localized filter in the spatial domain should be smooth in the spectral domain, 

localized filters can be approximated and parameterized by polynomials [4]. Spectral filters 

approximated by the K-th order polynomials of the Laplacian are exactly K-localized in the 

graph [8]. In this work, we employ the Chebyshev polynomial approximation and define the 

graph convolutional operation from input x to output y as y = k 0
K θkTk L x  where L is 

the scaled Laplacian L = 2L/λmax − I with λmax being the maximal eigenvalue of L, and 

Tk(·) is the Chebyshev polynomial of order k. Then, the graph convolutional layers in the 

GCNN can be represented as

Φ l = ξ
k 0

K

k
l Tk L Φ l − 1 , (3)

where Φ(l) denotes the feature map at the l-th layer, Θk
l  is a matrix of Chebyshev 

polynomial coefficients to be learned at the l-th layer, and ξ is a non-linear activation 

function.

2.3 Graph Convolutional Neural Networks

Based on the graph convolutional operation, a residual convolutional block [9] and U-Net 

[10] structure with encoding and decoding are employed. Pooling and unpooling, realized 

using graph coarsening and uncoarsening, are applied respectively for each encoding and 

decoding step. As in [4], we adopt the Graclus multi-scale clustering algorithm [11] for 

graph coarsening. The diffusion signals corresponding to the nodes of the graph are 

rearranged via index permutation to form a vector. The uncoarsening operation is achieved 

via a one-dimensional upsampling operation followed by an inverse permutation of indices. 

Multi-scale graphs, obtained via graph coarsening, are fed as features via graph convolutions 

to each level of the encoding path. The skip connection at each level in the U-Net consists of 

a transformation module (graph convolutions and concatenation) for boosting the low-level 

features to complement the high-level features, as proposed in [12]. The transformation 

module narrows the gap between low- and high-level features.

The upsampling operation in slice-select direction is realized by a standard convolution in 

the low-resolution space followed by pixel shuffling [13]. The pixelshuffling operation maps 

R feature maps of size m × 1 to an output of size Rm × 1, where m is the number of nodes in 

the input graph and R is the desired upsampling factor.

In the decoding path, inspired by [14], we add a branch to compute diffusion indices such as 

generalized fractional anisotropy (GFA) [15]. This branch provides the microstructure 

estimation of dMRI data and can help the generator to produce dMRI data with more 

accurate diffusion indices. In this work, we focus on only GFA which is estimated by two 

consecutive fully-connected layers.
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The proposed architecture for each scan direction is illustrated in Fig. 2. For the refinement 

network, we apply graph convolutional layer followed by two consecutive residual 

convolutional blocks. The final output is obtained via a graph convolution layer with one 

output channel.

2.4 Loss Function

We employ the adversarial learning strategy to match the distribution of the generated 

images to the distribution of target images. For the input source x, the target DW image y, 

and the target GFA yGFA , the generator loss is defined as the combination of pixel-wise 

difference, GFA difference, and adversarial loss:

ℒG x, y, yGFA = λI GI x − y 1 + λGFA GGFA x − yGFA 1
+ λADVℒBCE DI GI x , 1 + λADVℒBCE DGFA GGFA x , 1 , (4)

where ℒBCE is the binary cross-entropy function. In (4), GI(x) and GGFA(x) are the outputs 

of the generator in the reconstruction path and diffusion index path, respectively. We define 

the discriminator loss as

ℒDI x, y = ℒBCE DI y , 1 + ℒBCE DI GI x , 0 , (5)

ℒDGFA x, yGFA = ℒBCE DGFA yGFA , 1 + ℒBCE DGFA GGFA x , 0 , (6)

where DI and DGFA are the discriminators for the predicted images and GFA, respectively. 

DI is based on patch-GAN [6] which consists of three graph convolutions with 64, 128, 256 

features, each followed by leaky ReLU (LReLU) and graph pooling. DGFA consists of three 

fully-connected layers with 64, 32, and 1 node(s), respectively.

3 Experimental Results

3.1 Material and Implementation Details

We randomly selected 16 subjects from the Human Connectome Project (HCP) database 

[16] and divided them into 12 for training and 4 for testing for 4-fold cross-validation. For 

each subject, 90 DW images (voxel size: 1.25 × 1.25 × 1.25mm3) with b = 2000s/mm2 were 

used for evaluation. The images were retrospectively undersampled by factors R = 3,4, and 

5. After being divided into three subsets for different scan directions, each subset was further 

divided into R groups, where the wave-vectors were uniformly distributed in each group. For 

each group, the source images were generated by undersampling the original images with a 

slice offset based on its scan direction. Practically, such an undersampling scheme can be 

implemented by scanning only a selective set of slices for each point in the q-space. All DW 

images were normalized by their corresponding non-DW image (b0). The order K for the 

Chebyshev polynomials is set to 3. For the loss functions, we set λI = 1.0, λGFA = 0.1, and 

λADV = 0.01. The proposed method was implemented using TensorFlow 1.12.0 and trained 

with the ADAM optimizer with an initial learning rate of 0.0001 and 0.00001 for the 

generator and the discriminator, respectively.
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3.2 Results

We compared our SR method with two conventional methods: Bicubic interpolation and 3D 

U-Net [17] applied to input images upsampled with bicubic interpolation. Three different 

undersampling factors R = 3, 4, and 5 are considered. The number of channels for 3D U-Net 

is set so that its number of training parameters is comparable to the proposed method. We 

measured the reconstruction accuracy of the reconstructed dMRI data by mean absolute 

error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). 

Quantitative results are summarized in Fig. 3.

Representative results for GFA images computed from the reconstructed full DW images at 

a fixed undersampling factor R = 4, shown in Fig. 4, indicate that the proposed method 

recovers more structural details compared with the two conventional methods which exploit 

only spatial correlation. Figure 5 shows that our method can yield fiber orientation 

distribution functions (ODFs) that are closer to the ground truth with less partial volume 

effects, especially in regions marked by rectangles.

4 Conclusion

We have proposed to employ orthogonal slice-undersampling for acceleration of dMRI. 

Each DW image is undersampled with a different slice offset, and the full DW images are 

reconstructed by exploiting neighborhood information in the spatial and angular domains. 

The non-linear mapping from slice-undersampled DW images to the full DW images is 

learned using GCNN. The spatio-angular relationship is jointly considered when 

constructing the graph for the GCNN. The experimental results demonstrate that the 

proposed method outperforms the commonly-used interpolation method and a 3D U-Net 

based SR reconstruction method.
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Fig. 1. 
Method Overview: GCNNa, GCNNc, and GCNNs denote the GCNNs for the axial, coronal, 

and sagittal scan directions, respectively. GCNNref denotes the GCNN for refinement.
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Fig. 2. 
The proposed graph CNN architecture for GCNNa, GCNNc and GCNNs. The number of 

feature maps is set to 64 for all layers except for the last graph convolutional layer, which 

has R channels for each scan direction.
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Fig. 3. 
Quantitative comparison using MAE, PSNR, and SSIM of (a) DW images and (b) GFA 

maps.
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Fig. 4. 
Predicted GFA maps and the corresponding error maps shown in multiple views (R = 4).
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Fig. 5. 
Representative fiber ODFs (R = 4).
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