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Abstract

Diffusion MRI (dMRI), while powerful for characterization of tissue microstructure, suffers from 

long acquisition time. In this paper, we present a method for effective diffusion MRI 

reconstruction from slice-undersampled data. Instead of full diffusion-weighted (DW) image 

volumes, only a subsample of equally-spaced slices need to be acquired. We show that 

complementary information from DW volumes corresponding to different diffusion wavevectors 

can be harnessed using graph convolutional neural networks for reconstruction of the full DW 

volumes. The experimental results indicate a high acceleration factor of up to 5 can be achieved 

with minimal information loss.
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1 Introduction

Diffusion MRI (dMRI) is a unique imaging technique for in vivo measurement of tissue 

microstructural properties. However, in contrast to structural MRI, dMRI typically requires 

longer acquisition times for sufficient coverage of the diffusion wavevector space (i.e., q-

space). Each point in q-space corresponds to a diffusion-weighted (DW) image, and 

sufficient DW images are typically required for accurate characterization of the white matter 

neuronal architecture, such as fiber crossings and intra-/extra-cellular compartments 

[16,26,27]. To improve acquisition speed, we introduce in this paper a super-resolution (SR) 

reconstruction technique that only requires a subsample of slices for each DW volume.

In-plane and through-plane resolutions are determined by different factors. The former is 

affected by gradient strength, receiver bandwidth, phase encoding steps, and the number of 

readout points. The latter is determined by hardware limitations coupled with pulse sequence 

timing, and slice selection [8]. Fast and high-resolution reconstruction schemes can be 

designed by customizing MR acquisition and reconstruction. For example, SR 

reconstruction can be carried out with sub-voxel shifted scans in the in-plane [18] and slice-

select [8] dimensions. Scherrer and his colleagues [21] proposed an SR method to 
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reconstruct each DW volume from multiple anisotropic orthogonal scans, which they 

extended in [20] for estimation of tissue microstructural properties using diffusion 

compartment imaging. Ning et al. [17] proposed a compressed-sensing SR reconstruction 

framework that increases the spatio-angular resolution of dMRI data by using multiple 

overlapping thick-slice datasets with undersampling in q-space [17]. In [25], high-resolution 

diffusion parameters are estimated from a set of DW images with arbitrary slice orientation 

and diffusion gradient directions. Shi et al. [22] proposed a 4D low-rank and total variation 

regularized method for SR reconstruction. SR reconstruction based on a generative 

adversarial network is proposed in [1].

In this paper, we will introduce an SR reconstruction method for multifold acceleration of 

dMRI. We will show that, for each DW volume, only a subsample of slices in the slice select 

direction are needed to reconstruct the full 3D volumes, yielding an acceleration factor that 

is proportional to the subsampling factor. Each DW volume is subsampled with a different 

slice offset so that the volume captures complementary information that can be used to 

improve the reconstruction of other DW volumes. The non-linear mapping from the 

subsampled to full DW images is learned using a graph convolutional neural network 

(GCNN) [3,11], which generalizes CNNs to high-dimensional, irregular, and non-Euclidean 

domains. Such generalization is necessary in our framework since the sampling points in the 

q-space are not necessarily Cartesian. For improving perceptual quality, the GCNN is 

employed as the generator in a generative adversarial network (GAN) [7].

2 Methods

2.1 Formulation

A method overview is illustrated in Fig. 1. Each of the N DW volumes {Xn, n = 1, ⋯ , N} is 

undersampled in the slice-select direction by a factor of R:

Xn ⋅ , ⋅ , z : = Xn ⋅ , ⋅ , Rz + sn , (1)

where sn ∈ {0, 1, ⋯ , R − 1} is the slice offset for Xn. Our objective is to predict the full DW 

volumes from the undersampled data by learning a non-linear mapping function f such that

X1, ⋯ , XN = f X1, ⋯ , XN . (2)

Instead of reconstructing each DW volume individually, we reconstruct all DW volumes 

jointly by considering neighborhoods in the spatial and diffusion wavevector domains. The 

mapping function in (2) f is learned using GCNN.

2.2 Graph Representation

The dMRI sampling domain can be represented by a graph where each node represents a 

spatial location in physical space (x-space) and a diffusion wave-vector in q-space. This 

graph is encoded using a weighted symmetric adjacency matrix W. The graph Laplacian is 

defined as L = D − W, where D is a diagonal degree matrix. L can be normalized via L = I − 

D−1/2WD−1/2, where I is an identity matrix. The eigenvectors of L define a graph Fourier 

basis that allows filtering to be performed in the spectral domain [5].

Hong et al. Page 2

Inf Process Med Imaging. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 Spectral Filtering

According to Parseval’s theorem [2], a filter is localized in the spatial domain if and only if 

it is smooth in the spectral domain [3]. This can be achieved by approximating and 

parameterizing filters by polynomials [2]. Spectral filters approximated by the K-th order 

polynomials of the Laplacian are exactly K-localized in the graph [9]. In this work, we 

employ the Chebyshev polynomial approximation and define the graph convolutional 

operation from input x to output y as

y = gθ x =
k 0

K
θkTk L x, (3)

where L is the scaled Laplacian L = 2L/λmax − I with λmax being the maximal eigenvalue of 

L and Tk(·) is the Chebyshev polynomial of order k. Chebyshev polynomials {Tk(·)} form an 

orthogonal basis on [−1, 1] and have recurrence relation

Tk λ = 2λTk − 1 λ − Tk − 2 λ , T1 λ = λ, T0 λ = 1. (4)

The graph convolutional layers in the GCNN can be written as

Φ l = ξ
k 0

K
θk

l Tk L Φ l − 1 , (5)

where Φ(l) denotes the feature map at the l-th layer, θk
l  is a vector of Chebyshev polynomial 

coefficients to be learned at the l-th layer, and ξ is a non-linear activation function.

2.4 Adjacency Matrix

The adjacency matrix is defined by considering spatio-angular neighborhoods. Let each 

node be represented by a spatial location xi ∈ ℝ3 and a normalized wave-vector gj ∈ ℝ3. 

Inspired by the local neighborhood matching technique [4], we define an adjacency matrix 

W with weights {wi,j;i′,j′}:

wi, j, i′, j′: = exp −
xi − xi′ 2

2

σx2
exp − 1 − gj, gj′

2

σg2
, (6)

where σx and σg are the parameters used to control the contributions of the spatial and 

angular distances, respectively. We note that, in (6), the numerators of the arguments of the 

exponential functions are normalized to [0, 1].

2.5 Graph Convolutional Neural Networks

The proposed architecture is illustrated in Fig. 2. A residual convolutional block is employed 

to ease training since it can mitigate the vanishing gradient problem [10]. To increase the 

receptive field, a U-Net [19] structure with symmetric contraction paths for encoding and 

expansion paths for decoding is employed. Pooling and unpooling, realized using graph 

coarsening and uncoarsening, are applied respectively for each encoding and decoding step. 
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As in [5], we adopt the Graclus multi-scale clustering algorithm [6] for graph coarsening. 

The diffusion signals corresponding to the nodes of the graph are rearranged via index 

permutation to form a vector. The uncoarsening operation is achieved via a one-dimensional 

upsampling operation followed by an inverse permutation of indices. We employ the 

transposed convolution filter [13] for upsampling.

Multi-scale graphs, obtained via graph coarsening, are fed as features via graph convolutions 

to each level of the contraction path. The skip connection at each level in the U-Net consists 

of a transformation module (graph convolutions and concatenation) for boosting the low-

level features to complement the high-level features, as proposed in [15]. The transformation 

model narrows the gap between low- and high-level features.

The upsampling operation in slice direction is realized by a standard convolution in the low-

resolution space followed by pixel shuffling [23]. The pixel-shuffling operation maps R 
feature maps of size m×1 to an output of size Rm×1, where m is the number of nodes in the 

input graph.

2.6 Adversarial Learning

We employ the adversarial learning for better perceptual quality. In adversarial learning, the 

generator estimates the target image and the discriminator distinguishes the target image 

from the estimated one. During training, the generator and the discriminator are trained in an 

alternating fashion. Here, the generator G is the proposed GCNN, and the discriminator D is 

constructed via patch-GAN [12] as it is robust and computationally efficient with fewer 

parameters by using fully-convolutional instead of fully-connected layers. The discriminator 

classifies whether each local patch is real or fake. In the generator and discriminator, we use 

leaky ReLU (LReLU) activation with a negative slope of 0.2.

For adversarial learning, for the input source x and the target y, we define the discriminator 

loss as

ℒD x, y = ℒBCE D y , 1 + ℒBCE D G x , 0 , (7)

where ℒBCE is the binary cross-entropy function defined as

ℒBCE p, q : = −
i

qi log pi 1 qi log 1 pi . (8)

In (8), q consists of 1’s for a real target image and 0’s for a generated image, and p is the 

probability given by the discriminator. The generator loss is defined as

ℒGADV x, y = λg G x − y 1 + λADV ℒBCE D G x , 1 (9)

so that the generator G can produce a more realistic output to fool the discriminator D.
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3 Experimental Results

3.1 Material

We randomly selected 16 subjects from the Human Connectome Project (HCP) database 

[24] and divided them into 12 for training and 4 for testing using 4-fold cross-validation. For 

each subject, 90 DW images (voxel size: 1.25 × 1.25 × 1.25 mm3) with b = 2000s/mm2 were 

used for evaluation. The images were retrospectively undersampled by factors R = 3, 4, and 

5. Specifically, the set of DW images was divided into R groups, where the diffusion 

wavevectors were uniformly distributed in each group. For each group, the source images 

were generated by undersampling the original images with a slice offset.

3.2 Implementation Details

All DW images were normalized by their corresponding non-DW image (b0). We set the 

controlling parameters σx2 = 0.1 and σg2 = 1.0 in (6) for joint consideration of spatial and 

angular neighborhoods. We set K = 3 for the Chebyshev polynomials. For the loss functions, 

we set λg = 1.0, and λADV = 0.01. The proposed method was implemented using 

TensorFlow 1.12.0 and trained using the ADAM optimizer with initial learning rates of 

0.0001 and 0.00001 respectively for the generator and the discriminators.

3.3 Results

We compared our method with two upsampling methods: bilinear interpolation and bicubic 

interpolation, for three undersampling factors R = 3, 4, and 5. We measured the 

reconstruction accuracy by computing the peak signal-to-noise ratio (PSNR) of generalized 

fractional anisotropy (GFA) images, structural similarity index (SSIM), and mean absolute 

error (MAE). The quantitative results are summarized in Fig. 3. The normalized root-mean-

square errors (RMSE) in terms of spherical harmonic (SH) coefficients up to order 8 are 

summarized in Table 1.

Representative reconstruction results for GFA for a fixed undersampling factor R = 4, shown 

in Fig. 4, indicate that the proposed method recovers the details more accurately when 

compared with the two interpolation methods. Figure 5 shows the representative DW images 

and the RMSE maps of the SH coefficients. Figure 6 shows the reconstruction results with 

respect to various undersampling factors. Our method consistently produces more accurate 

details, even for a large R.

Figure 7 shows that our method yields fiber orientation distribution functions (ODFs) that 

are closer to the ground truth with less partial volume effects. We also extracted three 

representative tract bundles from whole brain tractography using the multi-ROI approach 

described in [14]. We extracted the forceps major (FMajor) using ROIs drawn in the 

occipital cortex and corpus callosum, and also the forceps minor (FMinor) using ROIs 

drawn in the prefrontal cortex and corpus callosum. For the corticospinal tract (CST), ROIs 

are drawn in precentral gyrus and posterior limb of the internal capsule. Figure 8 shows that 

our method yields richer fiber tracts that better resemble the ground truth.
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4 Conclusion

We have proposed to employ slice-undersampling for acceleration of dMRI. Each DW 

image is undersampled with a different slice offset and the missing slices are reconstructed 

by exploiting neighborhood information in the spatial and angular domains. The non-linear 

mapping from slice-undersampled DW images to full DW images is learned using GCNN. 

Spatio-angular relationship is jointly considered when constructing the graph for the GCNN. 

The experimental results demonstrate that the proposed method outperforms two commonly 

used interpolation methods.
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Fig. 1. 
Method overview.
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Fig. 2. 
The proposed graph CNN architecture.
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Fig. 3. 
Quantitative comparison using PSNR, SSIM, and MAE.
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Fig. 4. 
Predicted GFA maps and the corresponding error maps shown in multiple views (R = 4).

Hong et al. Page 11

Inf Process Med Imaging. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Predicted DW images (top row), the corresponding error maps (middle row), and RMSE 

maps of SH coefficients (bottom row) (R = 4).
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Fig. 6. 
Predicted GFA maps (top row) and their close-up views (middle and bottom rows).
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Fig. 7. 
Representative fiber ODFs.
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Fig. 8. 
Representative tractography results.
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Table 1.

Quantitative comparison of SH coefficients.

R Bilinear Bicubic Proposed

3 0.128 ± 0.003 0.132 ± 0.003 0.073 ± 0.003

4 0.163 ± 0.004 0.169 ± 0.004 0.096 ± 0.005

5 0.191 ± 0.004 0.198 ± 0.004 0.101 ± 0.004
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