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Abstract

The univariate bootstrap is a relatively recently developed version of the bootstrap (Lee & 

Rodgers, 1998). DeFries-Fulker (DF) analysis is a regression model used to estimate parameters in 

behavioral genetic models (DeFries & Fulker, 1985). It is appealing for its simplicity; however, it 

violates certain regression assumptions such as homogeneity of variance and independence of 

errors that make calculation of standard errors and confidence intervals problematic. Methods have 

been developed to account for these issues (Kohler & Rodgers, 2001), however the univariate 

bootstrap represents a unique means of doing so that is presaged by suggestions from previous DF 

research (e.g., Cherny, Cardon, Fulker, & DeFries, 1992). In the present study we use simulations 

to examine the performance of the univariate bootstrap in the context of DF analysis. We compare 

a number of possible bootstrap schemes as well as more traditional confidence interval methods. 

We follow up with an empirical demonstration, applying results of the simulation to models 

estimated to investigate changes in body mass index in adults from the National Longitudinal 

Survey of Youth 1979 data.
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Introduction

Defries-Fulker regression (DF Analysis) is a biometrical estimation routine based on 

standard regression models. Though the method is around 35 years old, and there exists 

substantial interest in and use of the method, there are still outstanding questions about best-

practices in terms of implementing DF Analysis. The purpose of this project is to develop 

and evaluate several confidence interval methods that can be used with this biometrical 

procedure. Specifically, using simulation, we evaluate the application of several bootstrap 
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resampling approaches, including the standard and the univariate bootstrap, to DeFries-

Fulker behavioral genetic models. The goal is to provide a straightforward and accurate way 

to get confidence intervals for DF model parameter estimates, particularly in DF models 

applied to non-normal data. Current options for DF model confidence interval (CI) creation 

are limited to CI’s formed using a sandwich estimator, which may have software limitations, 

or the standard regression CI’s, which are based on parametric statistical assumptions and 

likely to be inaccurate.

In contrast to current CI options, the standard bootstrap is widely available and the 

univariate bootstrap is relatively simple to implement. Currently there are few applications 

of the univariate bootstrap in the literature, despite some advantages over the standard 

bootstrap. Thus, this project may provide methodological innovation, as a stepping off point 

for the application of univariate bootstrapping to broader multiple regression and more 

advanced models. An empirical application of the different CI methods to DF analysis of 

BMI data from the National Longitudinal Survey of Youth 1979 dataset is presented to 

illustrate.

Despite increasing popularity of other statistical methods (e.g., structural equation models), 

DF analysis remains a widely used tool in behavioral genetics. A google scholar search for 

“DeFries Fulker Regression” identified 14,300 results in August, 2019; limiting results to 

the past year (August 2018 to August 2019) returned 3,040 results. A wide variety of 

subjects are being studied using DF analysis. Roos & Neilson (2019) used DF analysis with 

the Add Health data to study status achievement. Schwartz et al. (2017) used the Add Health 

data to examine the heritability of self-control. Maczulskij and Böckerman (2019) used DF 

analysis with Finnish twin data to “account for shared environmental and genetic 

confounders” in a study of stresses related to the labor market. Other recent DF analysis 

applications include Dominque et al. (2016), who found evidence for increased heritability 

of smoking behavior over time; Jackson (2015), who examined the link between nutritional 

quality and antisocial behavior; Meldrum and Barnes (2017), who found that unstructured 

socializing with peers positively predicted delinquent behavior after controlling for genetic 

and environmental influences; and York (2017), who found that social media had a heritable 

component. This broad array of examples only scratches the surface. Since its original 

development, DF analysis has become increasingly valuable to estimate biometrical models. 

SEM methods obviously have greater flexibility, but DF analysis has broad accessibility. 

Many DF analysis studies report both SEM and DF analysis results (an early example can be 

found in Rodgers, Kohler, Kyvik, & Christensen, 2001, who studied fertility using DF 

Analysis in the Danish twin data).

DF Analysis

DeFries-Fulker (DF) analysis is a regression method to estimate biometrical parameters 

from behavioral genetic/kinship data (DeFries & Fulker, 1985). The typical goal in any 

biometric ACE analysis is to partition the total phenotypic variance of a given outcome into 

the proportion that is genetic variance (A, or h2), the proportion that is shared environmental 

variance (C, or c2), and the proportion that is nonshared environmental variance (E, or e2). 

The DF model does this using a regression model that is easy to use and that can allow for 
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the inclusion of additional explanatory variables (e.g., to further partition environmental 

variance into known and unknown environmental factors; see Rodgers, Rowe, & Li, 1994). 

Dominance models can be estimated using DF analysis (Waller, 1994), and the method is 

useful in both selected (DeFries and Fulker, 1985; Purcell & Sham, 2003) and unselected 

(Rodgers & McGue, 1994) settings.

In their original formulation DeFries and Fulker (1985) intended their model to be used in 

cases where one member of a kinship pair had a selected condition (e.g., a reading disability, 

or schizophrenia). This member of the kinship pair would be the focal member, or proband. 

The proband’s score on the outcome variable would be the IV in the regression model, call 

that score K2. Using the score of the other kin pair member (call that score K1), and the 

known average genetic relatedness of the kin pair (R; 1 for monozygotic twins, .5 for full 

siblings and dizygotic twins, etc.) DeFries and Fulker’s regression model can estimate how 

the overall phenotypic variance partitions into a genetic component of variance, a shared 

environment component of variance, and a non-shared environment and error component 

(the error component and the non-shared environmental component are combined or fully 

confounded in the residual term in many DF models, in particular in those with two levels of 

genetic relatedness such as MZ and DZ twins). Table I shows an example of the kind of data 

that might be used for a DF model. This data set has four MZ twin pairs (R = 1) and two full 

sibling or dizygotic twin pairs (R = .5). The K2 scores correspond to the proband for the 

regression analysis.

The original formulation of the DF model follows:

K1 = B0 + B1K2 + B2R + B3K2R + e

In this formulation K2 is the proband outcome score, K1 is the co-kin outcome score, and R 
is the proportion of (segregating) genes shared on average. The coefficients can be directly 

interpreted in behavioral genetic terms (see Rodgers & McGue, 1994): B1 is the proportion 

of variance caused by shared environmental effects (genetic effects have been controlled by 

the other regression terms, and non-shared environmental effects lead to differences, not 

similarities, and go into the residual term). B3 is a direct estimate of the proportion of 

variability associated with genetic processes. Rodgers and Kohler (2005) pointed out that the 

model contains a second (hidden) estimate of these two biometrical parameters, because 

E(B0) = (1 − c2) ∗ K and E(B2) = − ℎ2 ∗ K (each of which can be used to easily solve for a 

second estimate of h2 and c2). Note that the two estimates of h2 and of c2 are not in general 

equal to one another. Although the original DF model is simple to implement, it has two 

notable shortcomings. First, when kinship pairs are not selected such that one member is 

clearly the proband and the other is not, the decision about which member provides the IV 

and which provides the DV is arbitrary. Second, the ability to estimate h2 and c2 in more 

than one way causes some ambiguity about which estimate to use.

In order to address the first shortcoming of the DF model, i.e., arbitrariness in unselected 

settings of which score is the IV, double entry of data was introduced. Double entry of the 

data allows each member of a kinship pair to take a turn as both the IV and the DV, resolving 
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this issue (e.g., Kohler & Rodgers, 2001; Rodgers & McGue, 1994). Double entry also 

results in the kinship correlations being equivalent to the intraclass correlation coefficient. 

Table II shows the data from Table I in double entered form, which necessarily doubles the 

sample size.

Finally, the DF model has been simplified to provide an equivalent, but easier to interpret, 

model (Rodgers & Kohler, 2005). The simplified model, which will be used in this project, 

resolves the ambiguity of which estimate to use for h2 and c2 by providing a single estimate 

of each. The model follows.

(K1 − Km) = b1(K2 − Km) + b2(R ∗ (K2 − Km)) + e

In the simplified DF model, Km is the mean of K1 and K2 (it is identical in double entry 

settings), b1 estimates the proportion of variation attributable to shared environment factors 

(when model assumptions are met), b2 estimates the proportion of variation due to shared 

genetic factors (i.e., heritability), and e is the residual of the model; the proportion of 

variation due to non-shared environment can be estimated from the identity h2 + c2 + e2 = 

1.0. The model has no intercept because both sides of the equation are mean centered using 

Km, which ensures that the intercept of the model is 0.

The DF model is conceptually similar to an analysis of covariance model. The outcome/

predictor variable, K can (and arguably should) be a quantitative variable. R is theoretically 

quantitative as a ratio scale variable. In using kinship pairs, we assume an outcome variable 

has been measured for both members of a kinship pair. The level of genetic relatedness 

needs to be known, and there need to be at least two kinship groups (e.g., monozygotic twins 

and dizygotic twins; full siblings and half siblings) to identify estimation of both c2 and h2.

It makes statistical and logical sense to double enter the data (Kohler & Rodgers, 2001; 

Rodgers & McGue, 1994). Without double entry the decision about which member of the 

kin pair is the predictor and which is the predicted is entirely arbitrary in unselected settings. 

Furthermore, without double entry the centering of the variables and fitting of a no-intercept 

model is a questionable practice when using unselected samples given that the “proband” 

group will in general have a different mean from the co-kin group (although because there is 

not a true “proband” in unselected cases this difference would be due to random chance). 

However, double entry artificially doubles the sample size, meaning standard errors that are 

produced by typical regression output are too small (Kohler & Rodgers, 2001). A sandwich 

estimator approach has been proposed to correct this deflation (Kohler & Rodgers); however 

some have suggested that the sandwich estimator may not be entirely appropriate in this case 

because the sandwich estimator is for model misspecification, not incorrect sample sizes. 

Other authors have suggested a permutation technique for estimating the standard errors 

although they did not actually utilize that method (Cherny et al., 1992). Interestingly, both 

the Kohler and Rodgers (2001) paper and the Cherny et al. (1992) paper foreshadow the 

current study. Kohler and Rodgers (2001) used bootstrapping as a test for their estimator, 

and Cherny et al.’s (1992) suggestion of permutation is immediately relevant to univariate 

bootstrapping.
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In addition to the issue of double entry, heteroscedasticity across the groups may also be a 

concern (Kohler & Rodgers, 2001). If there is a genetic effect it implies that more 

genetically related individuals will be more similar to each other (presuming that the equal 

environments assumption holds). Although the effects of genetics and the environment will 

be equal across groups (e.g., we are not estimating different environmental effects for half-

siblings vs. full siblings), our ability to accurately predict an individual’s score based on 

their co-kin score will increase as their genetic relatedness increases. This increase in 

predictive ability will decrease the residual term for genetically more highly related groups, 

particularly as genetic effects increase. This increase has the effect of guaranteeing 

heteroscedasticity in the model, an obvious violation of regression assumptions involved in 

hypothesis testing. Resampling procedures can help us account for such violations, although 

results from bootstrapping techniques can vary depending on how heteroscedasticity is 

managed (e.g., Stine, 1989; Wu 1986).

At a minimum, a well conducted DF analysis has violated two of the fundamental 

assumptions of regression. The errors will not be independent because of double entry, and 

the errors will be heteroskedastic (assuming that any genetic heritability is present). 

Furthermore, double entry results in a doubling of the n term in any equations used, which 

will result in overly narrow confidence intervals. Determining what methods (if any) are 

appropriate for correcting for these regression violations is the purpose of this project.

Bootstrap Resampling

Bootstrapping is a resampling procedure for obtaining accurate standard errors and 

confidence intervals for model parameters (e.g., Efron & Tibshirani, 1986). The bootstrap 

procedure can also be used to create a sampling distribution to support standard hypothesis 

testing. The basic bootstrap takes a data set and samples observations of that data set with 

replacement to create another resampled data set. In the resampling taxonomy of Rodgers 

(1999), bootstrapping is sampling with replacement to form a full data set. A model is then 

fit to the new resampled data set and the model parameters are recorded. This process is 

repeated thousands of times, each time with a new resampled data set. Other versions of the 

bootstrap exist, but each is based on the core idea of resampling with replacement from 

some given set of observations or distributions to create new resample data sets to refit the 

model being tested. If the original data being bootstrapped are approximately representative 

of the population, bootstrapping provides a way to approximate the results researchers 

would get if they replicated their study thousands of times in the population. This approach 

allows the researcher to create a confidence interval around the observed parameter 

estimates. To calculate the number of possible permutations we need to use the 

“multichoose” formula, which gives the number of possible combinations when k elements 

are chosen from n options with replacement. The formula is 
n + k − 1

k . In bootstrapping k 

and n are equal and so for a given sample there are 
2n − 1

n  possible bootstrap samples 

(where n is the number of unique observations), from which to calculate the parameter 

estimate of interest. Several sources will use 
2n − 1
n − 1  as the formula instead. While this looks 
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as though it ought to produce a different result, in fact these two formulas are algebraically 

exactly equal. Because 2n-1 is always an odd number, and because n and n-1 are the 

numbers just greater than and just less than exactly half of 2n-1, the number of possible 

choices is equal regardless of whether n or n-1 observations are chosen. Alternatively, 

consider that choosing n-1 observations to keep from 2n-1 possibilities is equivalent to 

choosing n observations to omit (since n-1+n=2n-1), so the number of combinations must be 

equal. Skeptical readers may also ascertain this for themselves using any n in widely 

available software that can calculate the binomial coefficient (e.g., the “choose()” function in 

R). This formula results in a large number of possible combinations, even at small samples. 

For example, for ten observations there are 92,378 unique samples.

Permutation Resampling

The permutation resampling procedure is similar to bootstrapping in that it takes an original 

sample and creates thousands of new data sets, estimates parameters in each one, and creates 

a distribution of parameter estimates. In a permutation resampling procedure (also known as 

a randomization test; see Edgington, 1987) the researcher permutes the data thousands of 

different ways (potentially all possible ways if the number of possible permutations is low 

enough) by resampling observations without replacement from individual variables of the 

data set. In essence each variable is shuffled like a deck of cards, randomizing the 

relationship between all the variables (hence a randomization test). In the taxonomy of 

Rodgers (1999) the permutation (randomization) test is resampling without replacement to 

form a full sample. This resampling framework allows researchers to create intervals around 

the null hypothesis of no relationship to use for null hypothesis significance testing. For a 

given sample there are n!k–1 possible combinations (where k is the number of variables). 

Each variable can be reordered n! different ways. The number of combinations of reordered 

variables increases exponentially when new variables are added (although some of these 

combinations are simply unordered duplicates of others). There are n!k, where k is the 

number of variables, combinations of permuted variables. To account for duplicates the 

number of combinations should be divided by n!, which is equivalent to n!k–1. For example, 

for ten observations with two variables there are 3,628,800 unique samples, which is equal 

to 10!2–1 = 10!.

Univariate bootstrapping

The univariate bootstrap resamples with replacement, like the traditional bootstrap, but from 

each variable independently as in permutation analysis (Lee & Rodgers, 1998). This 

procedure gives a distribution of parameter estimates under the null hypothesis, as in the 

permutation analysis. Alternatively, the univariate bootstrap dataset can have a correlation 

imposed on it using a diagonalization technique (Beasley et al., 2007). The correlation 

imposed can either be a hypothesis imposed (HI) or observed imposed (OI) null hypothesis 

about the correlation. When a correlation is imposed the resulting bootstrap provides a 

distribution of parameter estimates that would occur if the imposed correlation were the 

population correlation (Rodgers & Beasley, 2012). When the observed correlations are 

imposed on the data set this will result in a confidence interval around the observed 

parameter estimates, as in standard bootstrapping. The number of unique samples in a 
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univariate bootstrap is nk + n − 1
n

 unique samples (as before, n is sample size and k is the 

number of measured variables). For example, for ten observations and two variables there 

are 42.6 trillion possible unique data sets.

The diagonalization technique used in past research on the univariate bootstrap was first 

developed by Kaiser and Dickman (1962) as an approach to generate data with a specified 

correlation. In the original Kaiser-Dickman method the data to be diagonalized are 

standardized (and are assumed to be uncorrelated in the population), and then matrix 

multiplied by a matrix square-root decomposition of the desired correlation matrix; the 

Cholesky decomposition has performed best in univariate bootstrapping applications. For the 

univariate bootstrap the Kaiser-Dickman procedure needs to be slightly altered. Because the 

goal is a sampling frame with a given correlation structure, the sampling frame needs to be 

standardized, not the raw data. If the raw data were standardized it would involve dividing 

the data by the sample standard deviation, however the sampling frame standard deviation of 

that variable is based on many repetitions of that variable (nk-1, where k is the number of 

variables and n is the number of observations). This means that the sampling frame estimate 

of the variance is equal to n(k − 1)∑(x − x̄)2

nk − 1
, instead of the original sample estimate of the 

variance, ∑(x − x̄)2
n − 1 . If the correct variance is used in the standardization, the normal Kaiser-

Dickman procedure can then be followed and will result in a sampling frame with the 

correct correlation structure. If the original sample estimate of the variance is used, the 

correlation structure will not match the desired correlation structure. The discrepancy 

between the two variances will go to 0 as n gets large, because both equations will, in the 

limit, be equivalent to the sum of squares over n. For relatively small n cases, the difference 

can be quite important.

Bias Correction, Acceleration and Invalid Bootstraps

Although the typical bootstrap is conceptually simple, in practice some bias is present in 

where the interval is centered; the estimate needs to be corrected for this bias, because the 

interval may not be wide enough. Bias corrected and accelerated intervals (BCa) were 

created to help manage bias and width issues in standard bootstrapping (Efron, 1982). In 

contrast, the univariate bootstrap has generally low bias, both in its null and HI and OI 

forms, although the OI form performs somewhat better than the HI form with regards to 

alpha control in testing hypotheses about the correlations (Beasley et al., 2007). In addition, 

a bootstrap can (with low probability) return a data set that has a single constant resampled 

value for one of the variables (because the samples are with replacement the same 

observation could be selected every time). In the typical bootstrap that will happen with 

probability n
2n − 1

n

. For ten unique observations that problematic outcome will occur 

about .01% of the time. In the univariate bootstrap it occurs with probability 

2n − 1
n × k

nk + n − 1
n

. For 

O’Keefe and Rodgers Page 7

Behav Genet. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ten observations with two variables that occurs approximately .00000004% of the time. 

Although these probabilities are low, when sampling from a data set with ten bivariate 

observations, for 10,000 bootstrap samples there is a 66.13% chance of at least one invalid 

sample in the typical bootstrap procedure; with the univariate bootstrap there is only 

a .0004% chance of an invalid sample.

The univariate bootstrap has some limitations (as currently implemented). The univariate 

bootstrap eliminates heteroscedasticity in regression residuals entirely, similar to residual 

bootstrapping (Stine, 1989). Heteroscedasticity occurs when the variance of the residuals 

changes across levels of the independent variable. Some authors have suggested that failure 

to use a bootstrapping method that replicates heteroscedasticity can result in an 

unrepresentative bootstrap parameter distribution and potential bias (e.g., Stine, 1989; Wu, 

1986). The univariate bootstrap creates a grid of points that is uniformly variable across the 

whole length of every axis, and as a result there is no heteroscedasticity in the base 

univariate sampling frame. Diagonalization reintroduces linear relationships, but it does not 

reintroduce heteroscedasticity. In addition to heteroscedasticity, if higher order relationships 

are of substantive importance the univariate bootstrap is problematic. Finally, the univariate 

bootstrap has not been adequately extended beyond bivariate correlations (but see Rodgers 

& Beasley, 2012, for an introductory effort at using the univariate bootstrap for multiple 

regression). Although these are weaknesses that need to be addressed, they are not the focus 

of the present study.

Current application

The DF model is an excellent case for the application of the univariate bootstrap, despite 

heteroscedasticity. There are only two variables of interest, which is a case where the 

univariate bootstrap is known to work well (e.g., Beasley et al., 2007; Beasley & Rodgers, 

2012; Lee & Rodgers, 1998). The calculation of standard errors in DF analysis is not 

straightforward, which is a case where bootstrapping methods generally are advised. Lastly, 

it is nearly impossible to conceive of a case with non-selected twins where the DF analysis 

would contain a nonlinear effect (because items are double entered it is unlikely to make 

sense to say that someone’s score would be a quadratic or other nonlinear function of their 

co-kin’s score). Nonlinear effects are currently difficult to model using univariate 

bootstrapping, so their expected absence is a good safeguard. Heteroscedasticity would 

typically be an issue for the univariate bootstrap, however DF analysis is a special case 

where the logical resampling framework helps to obviate the issue.

The procedure to be used in this study is to simulate a setting in which we calculate sample 

correlations for each of the kinship groups in our sample (e.g., monozygotic twins, siblings 

and half siblings). A sampling frame using all possible pairs of the observed outcomes is 

created for each group, with the observed correlation for each group imposed on their 

sampling frame (this is a new feature of the univariate bootstrap, with certain advantages). 

Because diagonalization is imposed for a different sampling frame for each group, the 

natural heteroscedasticity is retained. This occurs because each kinship group (e.g., all 

identical twins as a group) is diagonalized separately from the other kinship groups. For 

each group, the number of pairs of data, equal to the number of original pairs in the group, 
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are then randomly selected with replacement from each sampling frame. The DF analysis is 

conducted on this sample. Unlike traditional DF analysis, double entry is unnecessary in this 

case because the repeated sampling of the bootstrap gives each co-kin an equal probability 

of being the predictor or the predicted. The standard errors are then formed using bootstrap 

confidence intervals. These intervals will typically be wider than those normally achieved 

using single-entry DF analysis because of the reduced sample sizes used in the bootstrap 

analysis, but narrower than those from double-entry settings. This method should also 

provide all of the typical advantages of bootstrapping (e.g., minimal distributional 

assumptions) that are not specific to the DF case.

Methods

All analyses were conducted in the R software package (R Core Team, 2019). Bootstrapping 

was and DF analyses were conducted using the Omisc package (O’Keefe, 2019). Source 

files are available in the code appendix. A simulation study was designed with 96 potential 

conditions. These were formed by crossing four factors: distribution, sample size, MZ:DZ 

balance and effect sizes. The distributions selected were normal, χ1
2 and χ10

2 . The rationale 

behind these three distributions is that they provided a scenario consistent with parametric 

test distributional assumptions (the normal distribution), a moderately skewed case (χ10
2 ), 

and a highly skewed distribution (χ1
2). There were 2 sample sizes, 48 and 498 twin pairs, 

split between MZ and DZ twins. Forty eight twin pairs was chosen as being what might be 

expected from a convenience sample of twins, whereas 498 was chosen as what might be 

expected from a larger, more focused, twin study. A balanced and unbalanced twin design 

was used, with the unbalanced twin design having an exactly 2:1 DZ:MZ ratio. The 2:1 ratio 

was chosen as being approximately equal to the ratio of MZ to DZ twins in the general 

population. Finally, 0, 0.3 and 0.69 were used as the effect sizes for a2 and c2, representing 

no effect, a medium effect and a large effect. There were 8 allowable a2 and c2 effect size 

combinations (0, 0; 0, 0.3; 0, 0.69; 0.3, 0; 0.3, 0.3; 0.3, 0.69; 0.69, 0; 0.69, 0.3; note that 

0.69, 0.69 cannot occur, because that combination sums to greater than 1).

Code for the univariate bootstrap was written in R. To test that it was performing as 

expected, full univariate sampling frames were created using the software and checked 

against what would be expected (i.e., variable means, variances and correlations were as 

expected), and a brief simulation study examining the univariate bootstrap CI properties was 

conducted. To examine the CI properties 10,000 simulations were run. For each simulation, 

100 bivariate normal observations were selected with a population correlation of .3, and 

1,000 bootstrap samples were taken and a CI created. The proportion of CI’s that contained 

the true population value of .3 could not reject the nominal rate of .95, consistent with 

expectations that the software was behaving as expected.

Running in parallel, using the ‘parallel’ package in R (R Core Team, 2019), the 96 

conditions took approximately eight days to run on a desktop computer. For each condition 

all of the confidence interval methods under consideration were conducted 10,000 times. For 

bootstrap methods 1,000 bootstrap resamples were used.
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There were multiple plausible ways to conduct the bootstrap analyses. For the standard 

bootstrap it was possible to bootstrap prior to double entry, or after double entry. For cases 

after double entry it seemed worthwhile to examine the effects of taking a bootstrap sample 

equal to the double entered sample size (twice the number of twin pairs) versus taking a 

sample equal to the original number of twin pairs. For univariate bootstrapping all the 

possibilities for the standard bootstrap also existed. Additionally there was the possibility of 

using the entire sample (both MZ and DZ twins) as the source for each group and then 

diagonalizing afterwards (i.e., sampling within groups, and sampling ignoring group 

membership). However, because we are already assuming the same mean and variance for 

MZ and DZ twins on the focal variable, and the correlation is imposed after resampling, it 

should make little difference if observations were actually from an MZ or DZ twin. These 

considerations resulted in three standard bootstrapping schemes (double entry after 

bootstrapping, double entry before bootstrapping with a bootstrap resample the size of the 

double entered dataset, and double entry before bootstrapping with the bootstrap resample 

half the size of the double entered dataset) and six univariate bootstrapping schemes (the 

same three conditions as for standard bootstrapping crossed with sampling either within 

kinship groups or sampling using pooled kinship data). For all bootstrapping schemes, both 

a standard 95% CI was created as well as a BCa 95% CI using a jackknife estimate for the 

acceleration parameter (DiCiccio & Efron, 1996).

Ultimately there were 21 different confidence interval methods tested. The standard 

regression CI, the standard regression CI but with the interval width multiplied by the square 

root of two (to account for the doubling of the sample size due to double entry), the Kohler-

Rodgers sandwich CI, six standard bootstrap CI’s (half were standard intervals, half BCa 

intervals), and 12 univariate bootstrap CI’s (half were standard intervals, half BCa intervals). 

Not all of these conditions will be described in detail within the Results section, though all 

results can be obtained from the first author. We will present the conditions of greatest utility 

for DF analysis researchers in the next section.

Results

The results are organized into sections as follows. First coverage rates of the various 

methods are presented and tested for deviations from the nominal coverage. After 

considering the general coverage rates the proportions of Type I errors that occur due to the 

confidence interval being too high or being too low are considered. Next the power of each 

method is presented and compared with other methods. Finally, a follow up simulation that 

helps illuminate some of the main results, and further confirms the reliability of the 

programming, is presented.

As a rule, the behavior of the CIs was quite similar within certain classes of CIs. For 

example, the bias corrected and accelerated CIs were not markedly different from the 

uncorrected versions. The kind of grouping used for the univariate bootstrap made no 

difference in this application. The univariate and the standard bootstrap performed similarly. 

The primary dividing line between methods that had adequate coverage and those that did 

not was whether or not the method attempted to account for double entry of the data in some 

way. Thus, bootstrap methods that used bootstrap resamples only half the size of the double 
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entered dataset had better coverage than those that did not. The square root of two correction 

also behaved better than methods that did not explicitly correct for sample size. Because the 

results were relatively similar within various classes of CIs we elected to present exemplars 

from each class, and particularly those which are of special interest.

Thus we present results from seven of the CI methods: the standard parametric CIs, the 

square root of two correction to those CIs, the Kohler-Rodgers robust correction to those 

CIs, univariate and standard bootstraps of the data prior to double entry, and standard and 

univariate bootstraps that take bootstrap resamples half the size of the previously double 

entered data. Methods not reported here functioned similarly to those reported. For example, 

the bias corrected and accelerated versions of all CIs performed nearly identically. The 

within group sampling and ungrouped sampling methods for the univariate bootstrap 

performed very similarly as well.

First, coverage will be addressed. A binomial distribution with p = .95 and an n of 10,000 

produces cutoffs of .9457 and .9542 as the lower and upper bounds of a 95% CI. If a 

confidence interval method is used we would expect on average 95% of simulations using 

that method to capture the true population value at least 94.57% of the time and no more 

than 95.42% of the time. Given that researchers might allow for conservatism but not 

liberalism in a confidence interval we also evaluated the confidence interval methods using a 

cutoff of 94.64%, which is equivalent to a 1-tailed cutoff (i.e., if coverage was less than 

94.64% we rejected the null hypothesis that the method had adequate coverage). Overall 

there were 96 conditions, each with 2 parameters, resulting in 192 tests for each confidence 

interval. Table III summarizes how often each confidence interval either properly captured 

the true population value or was not overly liberal (i.e., either proper or conservative).

Table III shows what proportion of intervals, averaged across all conditions within an 

interval, had expected (or non-liberal) coverage rates (i.e., a coverage rate of 95% or less). 

The first column shows what proportion had expected coverage rates (an ideal score would 

be 100 in this column). The second column shows what proportion had non-liberal coverage 

(coverage was not significantly less than 95%, but could be significantly lower). Based on 

table 3, it appears that no confidence interval method had ideal coverage; however, if 

conservatism is allowed there were several promising methods. In particular, the univariate 

bootstrap method that double entered prior to bootstrapping and then used bootstrap 

resamples half the size of the double entered data set had adequate or conservative coverage 

in all cases, although not shown in this table, standard bootstrapping methods that did the 

same behaved similarly. Table IV shows marginal coverage across conditions (i.e., the 

average coverage for each interval across parameter type, parameter value, MZ sample size, 

and population distribution separately). A version of this table that shows the results of all 

crossings of all conditions (i.e., the 96 simulated conditions and both regression parameters) 

can be found in Appendix A. Most confidence interval methods were overly liberal, and 

significantly so. Only bootstrapping methods where double entry occurred before 

bootstrapping and the bootstrap sample size was half the size of the double entered data set 

performed well by this metric across all conditions.
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Next, we examined the probability of missing to the left or right. We were primarily 

concerned with too many misses to the left or right. We used a 1-tailed test for left and right 

misses (and treated missing left and right as separate events with separate tests). With 10,000 

simulations and an expected miss rate of .025 for both left and right, it gave a cutoff of 276, 

that is, simulations in which there were more than 276 misses left or more than 276; misses 

right were considered statistically significantly different from expected. Note that a method 

could have adequate coverage (i.e., 95%) yet have more misses in one direction than 

expected (e.g., if misses were asymmetrical, 4% of misses occurred on the low end of the 

interval and 1% of misses occurred on the high end of the interval). In general, there was an 

imbalance in the miss pattern. Confidence intervals tended to miss such that the upper end of 

the confidence interval was lower than the actual population value slightly more than the 

converse. Table V shows this.

The next consideration was power. The number of times 0 was outside the lower bounds of 

the confidence interval was calculated for each condition for each confidence interval 

method for which the null hypothesis was incorrect and should be rejected (i.e., excluding 

conditions where the population value was 0). Table VI shows the power of all confidence 

interval methods marginalized across the simulation conditions as a proportion of times that 

zero was outside the confidence intervals. An additional table in Appendix A shows the 

same calculations for power in each simulation and for each CI method. Lower numbers 

indicate lower power. Overall, the highest power was found in the bootstrapping methods 

that used bootstrap samples equal in size to the sample being bootstrapped and the typical 

regression confidence interval. The bootstrap intervals that performed well in terms of their 

Type I error rate (i.e., those that double entered and took bootstrap sample sizes half the size 

of the double entered sample) and the square root of two corrected typical CI perform poorer 

in terms of power. This is exactly in line with the Type I error rate results given the typical 

tradeoffs between power and Type I errors.

The fact that the bootstraps that double entered and then took bootstrap samples half the size 

of double entered data set did much better than all the other methods was surprising. In order 

to make sure that this was not due to a coding error, we implemented a small simulation to 

confirm the behavior outside of DF models. The results are both confirmatory and 

illuminating. For this simulation 100 bivariate normal observations with standard deviations 

of 1, means of 5, and correlations of .3 were generated (Table VII). The cor.test function in 

the R stats package (R Core Team, 2015) was used to obtain the standard confidence 

intervals. A univariate bootstrap and typical bootstrap confidence interval were constructed, 

followed by a univariate and typical bootstrap that used bootstrap resamples twice the size of 

the original sample. Then the data were double entered and univariate bootstraps, typical 

bootstraps using both the full double entered data sample size and a sample size equal to half 

that were used to obtain four more confidence intervals. This simulation was repeated 1,000 

times. The results match the results above and provide some insight into the process 

underlying the results. When the bootstrap sample size is greater than the actual effective 

sample size it reduces the variability of the bootstrap resamples’ parameter estimates around 

the sample parameter estimate, producing confidence intervals that are too narrow and that 

have an alpha level far higher than the nominal rate. Table VII shows the actual alpha rate 
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for the various confidence interval methods. The highest alpha rate expected with 1,000 

simulations is 6.2%.

Empirical Analysis

Method

We now turn to a short empirical analysis. Our analysis uses data from the National 

Longitudinal Survey of Youth 1979 (NLSY79) sample. The NLSY79 is a household 

probability sample that followed adolescents from 1979 to the present on an approximately 

biennial basis (the survey was annual in early years of the study). The NLSY79 provides a 

rich, biometrically informed, dataset for analysis. For the present analysis we chose to look 

at individual BMI and its change over time. Individual BMI has a significant impact on 

individual health over time (e.g., Kopelman 2007). Previous research using the Framingham 

Heart Study has demonstrated heritability of BMI but a lack of heritability for change in 

BMI (Coady et al. 2002), we replicate the latter finding here. Anecdotally, one might expect 

that if one’s parents or older siblings had a notable change in their BMI over time that one 

would experience a similar change. This belief reflects either a shared genetic or shared 

environmental influence on BMI trajectory.

In the NLSY79 information was available for nearly every survey administration for 

individual’s weight. Height was not measured as consistently, but was measured in the first 

few years of the survey and then several times during the most recent survey administrations. 

Height and weight are the only measures need to calculate BMI. For years with an observed 

weight but not observed height we imputed the missing height on a person by person basis. 

Our imputation method was fairly simple as we reason that adult height is not generally 

highly variable, and height can be measured with a high degree of accuracy. For imputation 

we used a weighted mean of the height measures available in 1985 and 2006. If an 

individual was missing either of those observations we simply replaced the missing 

observations with the other observed height (if both were missing no imputation was done). 

Although this imputation process is somewhat ad hoc, height should not vary substantially 

for an individual in this sample between those times. There were over 11,000 individuals 

with at least one measure at either time point and over 7,000 with measures at both time 

points. Years earlier than 1985 had more observations, however many of the participants 

were not adults during those years and may not have attained adult height. In 1985 the 

youngest observed participant was 20 and so all participants were likely at (or very nearly at) 

their adult height.

The imputation process allowed us to calculate 185,843 BMI’s for 12,575 individuals. This 

gave us, on average, approximately 14 observations per individual. For each individual we 

then calculated the slope of the regression of BMI on Year. We excluded individuals whose 

absolute value of their slope was greater than 1. For a man of average height a slope of one 

or more would suggest an average annual weight gain or loss of 7 pounds for the duration of 

their available data, for a woman of average height this would be a weight gain or loss of 

approximately 6 pounds. The vast majority of individuals were included under this criterion. 

Our interest was in the heritability of this slope.
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Results

Using a publically available package, NlsyLinks (Beasley 2018; see Rodgers et al, 2016, for 

background), we then used known biometrical relationships to create pairs of observations 

for full and half siblings. There were 284 half sibling pairs and 3,881 full sibling pairs. A DF 

analysis indicated BMI a2 = 0.20, and BMI c2 = .03. Neither the a2 nor c2 component was 

statistically significant. However the width of the confidence intervals does vary 

considerably across the various methods (Table VIII).

These results suggest that the variability in the trend of weight gain or loss is due to non-

shared environmental factors (or measurement error, which is confounded with E), and is not 

due to genetics or shared environmental factors, consistent with previous findings. We also 

notice that the confidence interval widths follow nearly the same pattern as in the simulation 

study. The narrowest confidence intervals are the standard confidence interval and bootstrap 

intervals that do not correct for double entry. The widest are bootstrap intervals that correct 

for double entry (either by double entering data after bootstrapping or by taking bootstrap 

samples only half the size of the double entered data), the square-root-of-two correction and 

the Kohler-Rodgers robust confidence interval. The Kohler-Rodgers robust interval behaving 

similarly to the corrected bootstrap and the square-root-of-two correction is somewhat 

different than in the simulation study, but otherwise the pattern is similar.

Discussion

Overall it would appear that, if more weight is given to avoiding Type I errors than Type II 

errors, bootstrapping or a correction using the square root of two should be the preferred 

method to construct CIs in DF analysis. In particular, when bootstrapping, data should be 

double entered and then a bootstrap sampling scheme that samples half the size of the 

double entered data (i.e., the original sample size) should be used. This method had 

somewhat lower power and slightly wider CIs, however it captured the true population value 

at a far higher rate than other methods across all conditions. The square-root-of-two 

correction might be an option in some settings. That method had slightly higher power in 

general, but was generally more liberal than bootstraps that corrected for double entry. This 

greater liberalism arguably outweighs any power benefits. Results for the univariate 

bootstrap and the standard bootstrap were similar. However, previous work by Beasley et al. 

(2007) suggested that the univariate bootstrap may be preferred because of the potential for 

superior performance in other settings, particularly with skewed distributions.

The final simulation illuminates why the most effective bootstrap method was double entry 

followed by a bootstrap half the size of the double entered sample size (an m < n bootstrap). 

When the sample size is inflated, either by using a bootstrap resample that is larger than the 

original sample size, or using a sample that is double entered, the bootstrap appears to lack 

the necessary variability; as a result, overly narrow confidence intervals are obtained, which 

then have Type I error rates substantially lower than expected. In DF models, although 

heteroscedasticity and non-independence of errors exist, the primary driver of CI inaccuracy 

is the doubling of the sample size with double entry. Although the Type I error rate was 

substantially better in the m < n bootstraps, the power was lower. Researchers may be 

tempted to use the other methods for the sake of improved power, but that cannot be 
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recommended here. Although power could be increased to virtually one with increasing 

sample size, no method is appropriate if Type I error rates are not controlled to avoid a 

liberal direction. This study shows that several methods are flawed with regards to Type I 

error rates and only correcting for the sample size can resolve this.

Overall the univariate bootstrap lived up to expectations, performing similarly to, or better 

than, the standard bootstrap. Further, its simplicity compared to a standard bootstrap with 

bias correction and acceleration is notable. Given that this represents the first full-scale 

application of the univariate bootstrap beyond bivariate correlations, this finding is 

encouraging for future research regarding the application of the univariate bootstrap to more 

advanced applications. With regards to DF models specifically, researchers can reasonably 

use a sample size corrected univariate bootstrap. The square root of two correction presented 

here, while better than the other non-bootstrap approaches, was rather liberal and we cannot 

advise its use despite its advantage in simplicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table I:

Example of kinship data.

K1 K2 R

9 20 1

8 18 1

21 16 1

7 19 1

19 17 .5

7 21 .5
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Table II:

Example of double entered kinship data.

K1 K2 R

9 20 1

8 18 1

21 16 1

7 19 1

19 17 .5

7 21 .5

20 9 1

18 8 1

16 21 1

19 7 1

17 19 .5

21 7 .5
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Table III:

Proportion of confidence intervals out of 192 simulated intervals (each replicated 10,000 times) with expected 

coverage or non-liberal coverage.
a,b

Proportion
with
expected
coverage

Proportion
with non
liberal
coverage

Robust CI 0.13 0.08

Typical CI 0.01 0.10

Typical Adjusted by 2 0.19 0.72

Standard DEA Bootstrap standard CI 0.16 0.11

Univariate DEA WGS Bootstrap standard CI 0.30 0.26

Standard DEB .5 Bootstrap standard CI 0.15 0.87

Univariate DEB .5 WGS Bootstrap standard CI 0.05 1.00

a
DEA: Double entry after bootstrapping; DEB: Double entry before bootstrapping; .5: bootstrap resample size was half the (double entered) sample 

size; 1: bootstrap resample size was equal to the size of the (double entered) sample size; WGS: within group sampling was used for the univariate 
bootstrap; UGS: ungrouped sampling, or sampling without regard to class membership was used for the univariate bootstrap.

b
Test for proper cases was two-tailed, test for non-liberal was one tailed. This resulted in some intervals faring poorer in the non-liberal Type I error 

case than in the expected Type I error test.
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Table IV:

Table coverage (in proportion) marginalized across different simulation settings.
c

Population Beta
Weights

MZ:DZ Twin Pair Sample
Size

Parameter Population

0 0.3 0.69 16:32 24:24 166:332 249:249 a2 c2 χ1
2 χ10

2 normal

Robust CI* 0.91 0.89 0.89 0.88 0.87 0.92 0.92 0.90 0.89 0.84 0.92 0.93

Typical CI* 0.84 0.83 0.86 0.88 0.86 0.83 0.81 0.86 0.82 0.75 0.88 0.90

Typical CI Corrected by 2 0.95 0.94 0.95 0.96 0.95 0.93 0.92 0.95 0.93 0.89 0.97 0.97

Standard DEA Bootstrap standard 
CI* 0.93 0.91 0.90 0.91 0.91 0.91 0.92 0.91 0.91 0.87 0.93 0.93

Univariate DEA WGS Bootstrap 
standard CI* 0.94 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.93 0.9 0.94 0.94

Standard DEB .5 Bootstrap 
standard CI 0.96 0.97 0.99 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Univariate DEB .5 WGS Bootstrap 
standard CI 0.97 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97

c
Significantly lower coverage than expected at p < .05 across all conditions. Note: The lowest admissible coverage varies slightly across conditions, 

however the lowest admissible rate is .949. All numbers are proportions.
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Table V:

Number of tested intervals (simulated 10,000 times each) out of 192 (with proportion in parentheses) that had 

significantly many misses 
d

Miss
Interval
too Low

Miss
Interval
too High

Robust CI 146(76) 133(.69)

Typical CI 163(.85) 159(.83)

Typical CI Correct by 2 53(.28) 44(.21)

Standard DEA Bootstrap standard CI 159(.83) 100(.52)

Univariate DEA WGS Bootstrap standard CI 130(.68) 99(.52)

Standard DEB .5 Bootstrap standard CI 40(.21) 11(.06)

d
using this method we would expect each CI method to have approximately nine or ten (0.05 × 192) cases in which the method was found to have 

too many misses due to chance [i.e., the expected value of each cell under perfect conditions is 9.6 (0.05)].

Behav Genet. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Keefe and Rodgers Page 23

Table VI:

Power to detect population deviation from zero for each method marginalized across simulation conditions.

Population
Beta

Weight

MZ:DZ Twin Pair Sample
Size

Parameter Population

0.3 0.69 16:32 24:24 166:332 249:249 a2 c2 χ1
2 χ10

2 normal

Robust CI 0.47 0.87 0.50 0.48 0.77 0.76 0.64 0.61 0.54 0.66 0.68

Typical CI 0.52 0.86 0.42 0.47 0.86 0.86 0.63 0.68 0.60 0.67 0.68

Standard Adjusted by 2 0.36 0.75 0.24 0.29 0.77 0.77 0.47 0.56 0.47 0.53 0.54

Standard DEA Bootstrap standard CI 0.44 0.84 0.45 0.43 0.76 0.76 0.64 0.56 0.50 0.64 0.66

Univariate DEA WGS Bootstrap standard
CI 0.44 0.83 0.43 0.41 0.77 0.76 0.63 0.56 0.49 0.63 0.66

Standard DEB .5 Bootstrap standard
CI 0.30 0.71 0.23 0.21 0.71 0.7 0.43 0.49 0.32 0.51 0.55

Univariate DEB .5 WGS Bootstrap 
standard CI 0.28 0.67 0.21 0.18 0.69 0.67 0.42 0.46 0.27 0.49 0.55
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Table VII:

Type I error rates for various confidence interval methods using bivariate normal data with a correlation of .3 
e

Confidence Interval Method Type I error rate

Standard Confidence interval 4.5%

Univariate Bootstrap NDE k=1 4.4%

Standard Bootstrap NDE k=1 5.5%

Univariate Bootstrap NDE k=2* 18.5%

Standard Bootstrap NDE k=2* 19.2%

Univariate Bootstrap DE k=1* 17.8%

Standard Bootstrap DE k=1* 19.2%

Univariate Bootstrap DE k=.5 5.1%

Standard Bootstrap DE k=.5 5.7%

e
(N)DE: (Not) Double Entered; k: Bootstrap resample size is that multiple of input data size (e.g., if not double entered, and k =1, bootstrap 

resample size is n, if double entered 2n).

*
Significantly greater Type I error rate than expected p < .05.
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Table VIII:

Confidence intervals for A and C components from a DF analysis of adult BMI slope

a2 lower a2 upper c2 lower c2 upper

Robust CI −0.30 0.70 −0.21 0.28

Typical CI −0.14 0.54 −0.13 0.20

Typical CI adjusted by 2 −0.20 0.76 −0.18 0.28

Standard DEA Bootstrap CI −0.30 0.68 −0.20 0.27

Univariate DEA WGS Bootstrap CI −0.28 0.65 −0.19 0.27

Standard DEB .5 Bootstrap CI −0.34 0.72 −0.22 0.29

Univariate DEB .5 WGS Bootstrap CI −0.34 0.69 −0.21 0.29
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