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Temporal circuit of macroscale dynamic brain activity 
supports human consciousness
Zirui Huang1*, Jun Zhang2*, Jinsong Wu3, George A. Mashour1,4, Anthony G. Hudetz1,4

The ongoing stream of human consciousness relies on two distinct cortical systems, the default mode network 
and the dorsal attention network, which alternate their activity in an anticorrelated manner. We examined how the 
two systems are regulated in the conscious brain and how they are disrupted when consciousness is diminished. 
We provide evidence for a “temporal circuit” characterized by a set of trajectories along which dynamic brain 
activity occurs. We demonstrate that the transitions between default mode and dorsal attention networks are 
embedded in this temporal circuit, in which a balanced reciprocal accessibility of brain states is characteristic of 
consciousness. Conversely, isolation of the default mode and dorsal attention networks from the temporal circuit 
is associated with unresponsiveness of diverse etiologies. These findings advance the foundational understanding 
of the functional role of anticorrelated systems in consciousness.

INTRODUCTION
Evidence from noninvasive functional neuroimaging studies has pointed 
to two distinct cortical systems that support consciousness. The default 
mode network (DMN) is an internally directed system that correlates 
with consciousness of self, and the dorsal attention network (DAT) 
is an externally directed system that correlates with consciousness 
of the environment (1–7). The DMN engages in a variety of internally 
directed processes such as autobiographical memory, imagination, 
and self-referencing (6–8). The DAT, on the other hand, mediates 
externally directed cognitive processes such as goal-driven attention, 
inhibition, and top-down guided voluntary control (2, 6, 9). Moreover, 
the DMN and DAT appear to be in a reciprocal relationship with 
each other such that they are not simultaneously active, i.e., they are 
“anticorrelated.” This anticorrelation is presumed to be vital for 
maintaining an ongoing interaction between self and environment 
that contributes to consciousness (5). Conversely, diminished anti-
correlation between DMN and DAT activity has been reported in 
humans when consciousness was suppressed by general anesthesia 
(10, 11) and in neuropathological patients with disorders of con-
sciousness (4, 12), supporting the hypothesis that a balance of the 
internally and externally directed systems is important for waking 
consciousness.

Despite some evidence for this temporal relationship, the anti-
correlation of DMN and DAT over time has not been conclusively 
demonstrated. First, the anticorrelation of functional magnetic 
resonance imaging (fMRI) signals is generally inferred from tempo-
rally averaged functional connectivity, which does not allow a direct 
assessment of the temporal dynamics of networks. Second, the criticism 
has been raised that the anticorrelation of fMRI signals may be a by-
product of global signal regression (GSR)—a necessary preprocessing 
step that most such studies have used (13–15). Therefore, the controversy 
about GSR characteristic of conventional static connectivity analysis 
prevents the unequivocal conclusion that the disruption of anticorrelation 

between DMN and DAT is a cause of disrupted consciousness. 
Furthermore, even assuming anticorrelation, the dynamic relationship 
of DMN and DAT to other networks of critical relevance to consciousness 
has not been elucidated.

To fill this gap of knowledge, an analysis of dynamic brain activity 
is necessary. Although the brain appears to engage in an ongoing 
exploration of its repertoire of distinct states (16–20), i.e., dynamic 
shaping and reshaping of functional brain configurations, it remains 
largely unknown if there is a structured exploration of its repertoire 
that is specific to the conscious versus unconscious brain. Accordingly, 
we hypothesized that the alternation of DMN and DAT over time is 
embedded in the ongoing exploration of all functional brain networks 
and that a disruption of this exploration may account for the diminished 
DMN-DAT anticorrelation when consciousness is suppressed. We 
also hypothesized that, in the conscious brain, the dynamic switching 
of networks including the DMN and DAT occurs along a set of 
structured transition trajectories, what might be conceived of as a 
“temporal circuit,” and that this temporal circuit is disrupted during 
diminished consciousness.

We tested our hypotheses by analyzing resting-state fMRI (rs-fMRI) 
signals from a cohort of 98 participants and patients in condi-
tions that included conscious resting state and various unresponsive 
states induced by pharmacological (propofol and ketamine anes-
thesia, with distinct molecular targets) and neuropathological [un-
responsive wakefulness syndrome (UWS)] etiologies. Although these 
conditions involve different molecular mechanisms, neural circuits, 
and brain functions, they share a common behavioral end point, i.e., 
a general unresponsiveness to external voice commands. Here, we 
conservatively use the term “unresponsiveness” instead of “uncon-
sciousness” to allow for the possibility that covert or disconnected 
consciousness could occur in the absence of behavioral response. 
Combining data from different conditions allowed us to examine both 
the common and specific (anesthetic agent– and neuropathology-
dependent) alterations of macroscale brain dynamics. We adopted 
an unsupervised machine learning approach to capturing transient, 
momentary coactivation patterns (CAPs) (21–24). The temporal dy-
namics of CAP transition trajectories were then analyzed as a Markov 
process, and the transition probability, persistence, and accessibility 
of CAPs were quantified. Last, we explored the stimulus modulations 
of CAPs during different conditions in a subset (n = 37) of the main 
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cohort and evaluated the specificity of our results in an independent 
cohort of 248 participants consisting of healthy control participants 
and patients with psychiatric disorders (schizophrenia, bipolar dis-
order, and attention deficit/hyperactive disorder), who might have 
altered brain networks but who were nonetheless conscious.

RESULTS
We recorded fMRI data at two independent research sites in Shanghai 
(SHH) and Wisconsin (WI), which generated four datasets (i.e., 
propofol-SHH, propofol-WI, ketamine, and neuropathological 
patients) containing both control and test results (Fig. 1A). CAPs of 
brain activity, i.e., sets of voxels simultaneously activated, were ex-
tracted from the entire dataset by k-means clustering algorithm (see 
more details in Materials and Methods). We determined an optimized 
number of CAPs (k = 8; from a search between 2 and 30) based on 
the non-GSR data for our main analysis scheme, and other selections 
of k (both with and without GSR) served as control analysis. This was 
achieved by evaluating the clustering performance, trading off the 
interdataset similarity (fig. S1) and visually inspecting the spatial pat-
terns corresponding to major known functional networks (fig. S2). 
The eight CAPs were classified as DMN+, DAT+, frontoparietal net-
work (FPN+), sensory and motor network (SMN+), visual network 
(VIS+), ventral attention network (VAT+), and global network of 
activation and deactivation (GN+ and GN−) (Fig. 1B). The eight CAPs 
could be divided into four pairs of “mirror” motifs, with a strong 
negative spatial similarity (Pearson correlation coefficient: r = −0.97 
to −1.00; Fig. 1C). For instance, the DMN+ was accompanied by 
codeactivation of DAT (DAT−) and vice versa for DAT+ (DMN−). 
The “antiphasic” relationship between those mirror motifs is to be 
expected. Assuming that fMRI signals exhibit block correlation 
structure and that voxels fluctuate in their amplitude over time, 
then voxels will be “active” or “inactive” at different times with 
respect to the correlation structure and moving in blocks. In addition, 
the DMN+ and DAT+ were more spatially segregated (consisting 
of 18 and 14 clusters), distributed across widespread cortical and 
subcortical regions, compared to other CAPs (fig. S3). As expected, 
the CAPs could capture the instantaneous phase synchronizations at 
single-volume temporal resolution of fMRI (fig. S3).

Suppression of DMN+ and DAT+ in various forms 
of behavioral unresponsiveness
We first tested whether there are common associations between the 
occurrence rates of CAPs (i.e., dividing the number of fMRI volumes 
belonging to a given CAP by the total number of volumes per scan) 
and level of responsiveness across various conditions. We found 
significant positive correlations between the occurrence rates of 
DMN and DAT (joint DMN+ and DAT+) and level of responsive-
ness for all datasets together (all pooled, rho = 0.58, P < 0.0001), 
and individual datasets [propofol-SHH, rho = 0.64, P < 0.0001; 
propofol-WI, rho = 0.43, P = 0.0017; ketamine, rho = 0.55, P = 0.0002; 
neuropathological patients, rho = 0.73, P < 0.0001; false discovery 
rate (FDR)–corrected at  < 0.05] (Fig. 2A). The correlations for 
DMN+ and DAT+ alone yielded similar results. In contrast, for 
instance, the occurrence rates of VIS+ and VAT+ (for propofol-SHH, 
propofol-WI, and neuropathological patients) and GN+ and GN− 
(for ketamine and neuropathological patients) showed negative 
correlations with the level of responsiveness (see fig. S4 for scatterplots 
and statistics).

We next examined the differences of CAP occurrence rates 
between conditions. During unresponsive conditions, the occurrence 
rates of DMN+ and DAT+ were significantly reduced (a summary 
of statistics in table S1). As anticipated by the above correlation 
analysis, this phenomenon was reproducible in two independent 
datasets of propofol-induced unresponsiveness (propofol-SHH and 
propofol-WI) and generalizable from propofol-induced unrespon-
siveness to ketamine-induced unresponsiveness and to patients with 
minimally conscious state (MCS) and UWS (Fig. 2B). In addition, 
the results were robust with respect to the choice of k in the k-means 
clustering method and to the option of GSR or not during data 
preprocessing (fig. S5).

We also found specific changes of CAP occurrence rates during 
various unresponsive conditions. Comparing to the conscious 
condition, an increased prevalence of VIS+ and VAT+ was seen 
during propofol-induced unresponsiveness (Fig. 2C). An increased 
prevalence of GN+ and GN−, as well as a decreased prevalence of 
FPN+ and SMN+, respectively, was observed during ketamine-
induced unresponsiveness (Fig. 2, D and E). The patients with UWS 
shared those effects with propofol and ketamine anesthesia. Last, we 
measured the state entropy characterizing the uniformity of the 
occurrence rates of different CAPs. We found that the state entropy was 
significantly reduced in all unresponsive conditions (P = 0.048 for 
conscious condition versus propofol-induced unresponsiveness; 
P = 0.005 for conscious condition versus ketamine-induced un-
responsiveness; P = 0.022 for conscious condition versus patients 
with UWS). This suggests that the distribution of CAP occurrence 
rates tends to be less uniform (or imbalanced), and therefore more 
stereotypic, during unresponsive conditions.

Persistence and transitions between CAPs distinguish 
conscious from behaviorally unresponsive conditions
To advance the field beyond the typical approach of describing static 
patterns, we sought to delineate the temporal dynamics of these 
CAPs and compare fully unresponsive conditions to baseline con-
sciousness (Fig. 3, A and B, and see movie S1 for an illustration of 
CAP temporal dynamics). First, we observed distinct characteristics 
across different conditions in terms of preferred transitions (i.e., the 
probability of transitioning between two distinct CAPs is higher 
than a null model; see more details in Materials and Methods) and 
nonpreferred transitions (i.e., lower than null). During the conscious 
condition, the CAPs seemed to follow structured transition trajectories 
with relatively balanced preferred and nonpreferred paths. Second, 
in contrast, there were fewer trajectories reaching DMN+ and DAT+, 
and the trajectories were monopolized by a few specific “hosts” such 
as VIS+ and VAT+ during propofol-induced unresponsiveness 
and patients with UWS and VIS+, VAT+, GN+, and GN− during 
ketamine-induced unresponsiveness (Fig. 3C). Last, the CAP per-
sistence probabilities, i.e., the probability of remaining in a given 
CAP, for all conditions occurred significantly above the level of 
chance (higher than a null model). However, compared to the 
conscious condition, the persistence probabilities of the CAPs 
were overall weaker during the unresponsive conditions (Fig. 3C). 
Ketamine-induced unresponsiveness was associated with an increased 
persistence of globally activated and deactivated brain states (GN+ 
and GN−).

These observations were supported by examining the entropy of 
Markov trajectories (25, 26). This approach measured the descriptive 
complexity of trajectories (in bits) between each pair of CAPs (Fig. 4A). 
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A lower descriptive complexity from a starting point (initial CAP) 
to its destination (final CAP) indicates a higher accessibility for the 
destination. For example, if the transition probability from CAP i to 
CAP j equals 1, then the entropy of trajectory from CAP i to CAP j 
is 0 bits, reflecting the conditional determinism (i.e., high accessibility) 
of that path. In contrast, if the transition probability from CAP i to 
CAP j equals to 0, then CAP i must first transition to other CAPs to 
end at CAP j. In this scenario, the entropy of trajectory from CAP i 
to CAP j is higher (needs more bits), thus reflecting a higher uncertainty 
or lower accessibility of that path. The key finding across these 
various conditions is that unresponsiveness was associated with an 
isolation (i.e., less accessibility) of DMN+ and DAT+ from the tra-
jectory space, which is monopolized by a few giant attractors. More 
specifically, compared to the conscious condition, propofol-induced 
unresponsiveness and patients with UWS were characterized by 
increased accessibility of VIS+ and VAT+ and decreased accessibility 
of DMN+ and DAT+. Ketamine-induced unresponsiveness was 
characterized by increased accessibility of GN+, GN−, VIS+, and VAT+ 
and decreased accessibility of DMN+, DAT+, FPN+, and SMN+ 
(Fig. 4, B and C). The main finding regarding the decreased acces-

sibility of DMN+ and DAT+ during unresponsive states was robust 
with respect to the choice of k and to the option of GSR or not 
during data preprocessing (fig. S6).

Furthermore, the transition probability and entropy of Markov 
trajectory matrices estimated from individual participants showed 
predictive value in distinguishing conscious versus unresponsive 
states. We did so by constructing a feature space based on these 
matrices and subsequently training a classifier of support vector 
machine (SVM; using sklearn.svm with default settings) by the 
leave-one-participant-out cross-validation procedure. We found that 
the SVM classifier achieved reliable performance. The mean clas-
sification accuracies for propofol versus conscious, ketamine versus 
conscious, and patients with UWS versus conscious were, respec-
tively, 0.81 (P < 0.001, permutation test), 0.83 (P < 0.001), and 0.93 
(P < 0.001) based on the transition probability matrices and 0.77 
(P < 0.001), 0.75 (P = 0.028), and 0.88 (P < 0.001) based on the 
entropy of Markov trajectory matrices (fig. S7). We considered the 
above machine learning analyses as exploratory in supporting 
our major conclusions. Future investigations may be needed such as 
comparing different machine learning models, parameter optimization, 

Fig. 1. Level of behavioral responsiveness across datasets and CAPs. (A) Dataset 1 (propofol-SHH) adopted Ramsay scale. Dataset 2 (propofol-WI) adopted observer’s 
assessment of alertness/sedation (OAAS). Dataset 3 (ketamine) adopted a button press task for every 30 s. Reaction time (RT) in milliseconds with respect to each instruction 
was recoded. By comparing the timing of verbal instruction and actual responsiveness during and after ketamine infusion, the periods during which a participant retained 
responsiveness (PreLOR), loss of responsiveness (LOR), and recovery of responsiveness were determined. Dataset 4 (neuropathological patients) adopted Coma Recovery 
Scale–Revised (CRS-R). Level of responsiveness is shown by the total score of six subscales (auditory, visual, motor, verbal, communication, and arousal). MCS, minimally 
conscious state. Error bars indicate ±SD. (B) Spatial maps of eight CAPs. The CAPs consist of DMN+, DAT+, FPN+, SMN+, VIS+, VAT+, GN+, and GN−. (C) The eight CAPs 
are composed of four pairs of mirror motifs with a strong negative spatial similarity, including DMN+ versus DAT+, VIS+ versus VAT+, FPN+ versus SMN+, and GN− 
versus GN+.
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or multiclass classification, which are beyond the scope of the 
current study.

Antiphasic coactivation accounts for anticorrelation
The reduced occurrence rates of antiphasic coactivation of DMN+ 
and DAT+ are consistent with the previously reported decreased 
DMN-DAT anticorrelation in various unresponsive conditions 
(4, 10–12). First, in line with those studies, we observed significantly 
weakened DMN-DAT anticorrelation (GSR procedure was applied), 
as well as weakened within-network functional connectivity for both 
DMN and DAT, during propofol-induced unresponsiveness, ketamine-
induced unresponsiveness, and in both MCS and UWS (Fig. 5A and 
see fig. S8 for results of other CAPs). We observed a strong negative 
correlation between the joint occurrence rates of DMN+ and DAT+ 
and the strength of DMN-DAT functional connectivity (r = −0.72, 
P < 0.0001) across all participants, suggesting that the lower the CAP 
prevalence in DMN+ and DAT+, the weaker the anticorrelation of 
DMN-DAT (Fig. 5B). As expected, positive correlations were seen 
between the joint occurrence rates of DMN+ and DAT+ and the 
within-network functional connectivity for both DMN (r = 0.71, 
P < 0.0001) and DAT (r = 0.65, P < 0.0001).

Note that the anticorrelation relationship between DMN and 
DAT, as measured by conventional static functional connectivity, 
was only seen when GSR was applied (fig. S8). Given that neither 
the identification of antiphasic CAPs of DMN+ and DAT+ (Fig. S2) 
nor the strong association between the occurrence rates of the two 
CAPs and their anticorrelations relies on the GSR procedure (fig. S9), 
it is plausible to assume that the anticorrelation structure underlying 
fMRI signals is not an artifact due to GSR; instead, it is inherent 

in the data and likely derives from the transient antiphasic CAPs. 
Therefore, our results may provide a more dynamic (i.e., reflecting 
transient neural events) and unbiased (i.e., avoiding the controversial 
methodology of GSR) account for the anticorrelation phenomenon 
commonly seen in fMRI signals and their associations with levels 
of consciousness.

Stimulus modulations of CAPs and control analysis 
in psychiatric patients
Next, we sought to provide additional support for the functional 
and cognitive relevance of DMN+ and DAT+. Prior work suggests 
that the DMN is associated with internally focused awareness and 
can be suppressed when attention is shifted to external stimuli. The 
suppression of DMN’s activation may be triggered by the activation 
of other functional networks such as DAT and VAT during top-down 
allocation of attention and/or detection of unexpected stimuli (9). 
We thus hypothesized that, upon receiving external stimuli, the 
CAP occurrence rates of DMN+ would be attenuated, while the 
occurrence rates of other CAPs involved in stimulus processing would 
be elevated during conscious wakefulness. We also hypothesized 
that this modulation would be disrupted during reduced levels of 
responsiveness, which are presumably accompanied by reduced 
internal and/or external awareness. Accordingly, we investigated 
the effect of stimulus modulations on the CAP occurrence rates 
during different levels of responsiveness. We examined a subset 
of participants in dataset 1 (propofol-SHH) and dataset 4 (neuro-
pathological patients) that received auditory stimuli (e.g., verbal 
names in propofol-SHH and verbal sentences in neuropathological 
patients) without any requirement of motor response (27, 28). We 

Fig. 2. Occurrence rates of CAPs. (A) Spearman rank correlations between the occurrence rates of joint mirror motifs or individual CAPs and the level of responsiveness. 
(B to E) The CAP occurrence rates in different conditions (conscious, intermediate, unresponsive, and recovered) and in different datasets. Intermediate conditions refer 
to propofol light sedation, PreLOR of ketamine induction, and patients with MCS; unresponsive conditions refer to propofol general anesthesia and deep sedation, 
LOR due to ketamine, and patients with UWS. Red squares in (A) and lines in (B) to (E) indicate significance at FDR-corrected  < 0.05. See fig. S4 and table S1 for full sta-
tistics. Error bars in (A) indicate 95% confidence interval, and error bars in (B) to (E) indicate ±SD.
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assigned each time point of the task dataset to a particular CAP 
based on its maximal similarity to the CAP centroids derived from 
the main cohort resting-state data. The purpose of doing this was to 
make the results comparable and generalizable across datasets. As 
predicted, auditory stimuli were associated with an attenuation of 
CAP occurrence rates of DMN+ (as well as VIS+), with an elevated 
CAP occurrence rate of VAT+ in both datasets only during conscious 
conditions (Fig. 6, A and B). The results support that the DMN+ 
identified in our main cohort could be suppressed when the brain 
attends to external stimuli, whereas this stimulus modulation was 
corrupted during unresponsiveness (propofol-induced and patients 
with UWS).

Last, we extended our observations from pharmacological and 
neuropathological data to an open access dataset from a cohort 
of patients with psychiatric disease (29). We assessed whether the 
suppression of DMN+ and DAT+ is specific to the reduced level 
of responsiveness as opposed to disorders of cognitive function 
in general. Another motivation was to further understand the 
ketamine-specific alterations in the CAP occurrence rates, as altered 
states of consciousness induced by ketamine are often associated 
with psychoactive effects and unique brain dynamics (30–32). Using 
the same method applied in the task dataset (i.e., maximal similarity 
to the predefined CAP centroids from the main cohort), we identified 
eight comparable CAPs in the psychiatric cohort (Fig. 6C). There 

were two main observations. First, we did not find any significant 
difference between healthy control participants and patients with 
schizophrenia, bipolar disorder, or attention deficit/hyperactive disorder 
in the occurrence rates of DMN+ and DAT+. Second, we found that 
the occurrence rates of GN+ and GN− were both significantly increased 
in schizophrenic patients, while the occurrence rates of FPN+ and 
SMN+ were both significantly decreased in patients with bipolar 
disorder (Fig. 6D). Patients with attention deficit/hyperactive disorder 
did not show any significant difference compared to healthy control 
participants. Therefore, altered occurrence rates of DMN+ and DAT+ 
are specific to unresponsiveness (likely reflecting unconsciousness 
in these experimental groups) and do not simply occur as a result of 
any brain disorder. Furthermore, the results suggest that alterations 
of the occurrence rates of FPN+, SMN+, GN+, and GN− induced by 
ketamine are similar to those found in patients with schizophrenia 
and bipolar disorder.

DISCUSSION
The goal of this study was to determine the spatiotemporal dynamics 
of prevalent functional brain networks in the conscious state and 
their potential modification during unresponsiveness. Our results 
revealed both common and distinct characteristics of brain activity in 
anesthetized participants and neuropathological patients as compared 

Fig. 3. Transition probabilities among CAPs. (A) Full transition probability matrix for conscious condition (conscious), propofol-induced unresponsiveness (propofol), 
ketamine-induced unresponsiveness (ketamine), and patients with UWS. The on-diagonal entries are referred to as the persistence probabilities. (B) Diagonal-free transition 
probability matrix, where the off-diagonal entries are referred to as transition probabilities by controlling for autocorrelation due to the CAP’s persistence. (C) Schematic 
illustration of the significant preferred paths (>null) and nonpreferred paths (<null) for conscious versus null, propofol versus null, ketamine versus null, and patients with 
UWS versus null (all gray arrows). Red (higher than conscious condition) and green (lower than conscious condition) arrows indicate significant differences of persistence 
probabilities and transition probabilities comparing to baseline consciousness. The null model for each condition and the differences between conditions were generated 
by 1000 permutations across the entire dataset (see more details in Materials and Methods). Significance level was determined at P < 0.001 by considering multiple 
comparison corrections (99.9th and 0.1th percentile of the null distributions; two-sided).
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to conscious conditions. The temporal prevalence of two CAPs, 
DMN+ and DAT+, was suppressed in both propofol- and ketamine-
induced unresponsiveness as well as in patients with UWS. The 
changes specific to various unresponsive conditions included an 
increased prevalence of antiphasic activation of VIS+ and VAT+ 

with propofol and an increased prevalence of global network activity 
with ketamine. Patients with UWS shared the latter two effects. We 
demonstrate that conscious brain activity is characterized by a set of 
structured dynamic transition trajectories in which the accessibility 
of distinct brain states is relatively balanced. In contrast, during 

Fig. 4. Descriptive complexity of trajectories among CAPs and their in-degree accessibility. (A) Descriptive complexity of trajectories (in bits) between each pair of 
CAPs in the conscious condition (conscious), propofol-induced unresponsiveness (propofol), ketamine-induced unresponsiveness (ketamine), and in patients with UWS. 
(B) Significant differences of the descriptive complexity of trajectories for propofol versus conscious, ketamine versus conscious, and patients with UWS versus conscious. 
The null models were generated by 1000 permutations across the entire dataset. Significance level was determined at P < 0.001. (C) Schematic illustration for (A). The 
accessibility of each CAP is defined as the inverse of descriptive complexity. The node size is proportional to in-degree accessibility. The Gephi Force Atlas layout algorithm 
(https://gephi.org) was used.

Fig. 5. Antiphasic coactivation accounts for anticorrelation. (A) Conventional static functional connectivity between DMN and DAT and within-network connectivity 
of DMN and DAT in different conditions (conscious, intermediate, unresponsive, and recovered) and in different datasets. Red lines indicate significance at FDR-corrected 
 < 0.05. Error bars indicate ±SD. (B) Pearson correlations between the joint occurrence rates of DMN+ and DAT+ and the strength of DMN-DAT functional connectivity 
(FC) (left), as well as within-network functional connectivity of DMN (middle) and DAT (right) across all participants.

https://gephi.org
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unresponsiveness, the trajectories are substantially altered such that 
the DMN and DAT become isolated, and the trajectories become 
monopolized by the visual, ventral attention, and global networks.

Common spatiotemporal characteristics during  
behavioral unresponsiveness
A key finding of our study is the suppression of antiphasic activation of 
DMN+ and DAT+ that occurred in various conditions of behavioral 
unresponsiveness. Given that this result was obtained with different 
anesthetic agents with distinct molecular targets and in nonanes-
thetized neuropathological patients, we are inclined to tentatively 
conclude that DMN+ and DAT+ are two fundamental signatures 
of consciousness. Our results provide a dynamic account of the 
suppression of DMN+ and DAT+ prevalence during unresponsiveness. 
First, the sequential maintenance of the CAPs (measured by their per-
sistence probabilities) was overall weaker in the unresponsive con-
ditions compared to the conscious condition. This suggests that, during 
unresponsiveness, the brain states of DMN+ and DAT+ were less 
stable. Second, during unresponsiveness, the DMN+ and DAT+ were 
dissociated from the reciprocal relationship of CAPs that were instead 
monopolized by VIS+, VAT+, GN+, and GN− (e.g., Fig. 3C). That is, it 
became difficult, along with the increased complexity of trajectories 

(less accessible), for the other CAPs to transition to DMN+ or DAT+ 
(e.g., Fig. 4C). This finding provides new understanding, in terms of 
spatiotemporal brain dynamics, of how the previously known anticor-
relation of DMN and DAT is diminished in unconsciousness (4, 10–12).

According to prior evidence from functional neuroimaging of 
disorders of consciousness (4, 12) and anesthesia (10, 11), an anti-
correlated activity of the DMN and DAT is associated with internal 
versus external awareness (sometimes also referred to as disconnected 
and connected consciousness, respectively). In addition, a behavioral 
and neuroimaging experiment in healthy volunteers reported a 
periodic shift from internal to external awareness associated with 
the periodic neural activity in the DMN and DAT (8). Consequently, 
in our results, the suppression of both DMN+ and DAT+ may indicate 
a lack of both forms of awareness (internal and external) during 
unresponsiveness. The observation that the degree of suppression 
of the DMN+ and DAT+ was similar across the pharmacological 
and neuropathological unresponsive conditions suggests that internal 
and external awareness may be tightly interacting and the give-and-
take relationship of the two systems may be particularly important 
for normal levels of consciousness.

This interpretation is further supported by the results of stimulus 
modulation at different levels of responsiveness. Upon receiving 

Fig. 6. Stimulus modulations of CAPs and control analysis in psychiatric patients. (A) Stimulus-induced CAP occurrence rate changes (against stimulus onset, t = 0) 
in baseline conscious condition, light sedation, and general anesthesia (n = 15). Student’s t tests (against zero) for the CAP occurrence rate changes were performed 
during the peak period of stimulus-evoked fMRI signal activity (4 to 6 s). Asterisks indicate significance at  < 0.05 after FDR correction. (B) Stimulus-induced CAP occur-
rence rate changes in healthy controls (n = 12), patients with MCS (n = 4), and patients with UWS (n = 6). (C) Spatial similarity of the eight CAPs between the main cohort 
and psychiatric cohort data. (D) Comparisons of the CAP occurrence rates for healthy control participants (CONTROL) versus schizophrenic (SCHZ), bipolar disorder 
(BIPOLAR), and attention deficit/hyperactive disorder (ADHD) patients by Student’s t tests. Red solid lines indicate significant group differences at  < 0.05 after FDR cor-
rection, and red dash lines indicate uncorrected significance at P < 0.05. Error bars indicate ±SD.
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auditory stimuli, the CAP occurrence rate of DMN+ was attenuated, 
while the occurrence rate of VAT+ (involved in auditory stimulus 
processing) was elevated only during conscious conditions. This 
is consistent with our expectation that the DMN+, associated with 
internal awareness, is suppressed when attention is shifted to external 
stimuli. The occurrence rate of stimulus-related attenuation of the 
DMN+ was not found in the unresponsive conditions (propofol-
induced and patients with UWS). Although the DAT+ occurrence 
rate was not increased by the auditory stimulus, this may be expected. 
The DAT mediates top-down guided voluntary allocation of attention, 
whereas the VAT is involved in detecting unattended or unexpected 
stimuli and triggering shifts of attention (9). As the stimulus applied 
in our study did not require voluntary execution, it did not, as 
would be predicted, activate the DAT+ system.

Distinct spatiotemporal characteristics during  
behavioral unresponsiveness
In addition to the common effects across unresponsive conditions, 
we observed some specific changes of CAP prevalence and transition 
dynamics. During propofol-induced unresponsiveness, VIS+ and 
VAT+ played a dominant role, where the prevalence of both CAPs 
was increased compared to the conscious condition. They served as 
attractors into which other CAPs transformed (e.g., Figs. 3C and 
4C). As the VIS+ and VAT+ are at a relatively low or intermediate 
level of hierarchical cortical functional organization (33), we speculate 
that propofol may shift the hierarchical cortical functional organization 
to a lower order. However, the validity of this speculation will 
require more detailed investigations such as measuring the functional 
gradient of networks under propofol anesthesia.

During ketamine-induced unresponsiveness, GN+ and GN− 
increased their prevalence and persistence probabilities compared 
to the conscious condition and served as attractors. The changes 
were analogous to those of schizophrenic patients (e.g., Fig. 6D). 
Prior studies have reported global hyperconnectivity of fMRI signals 
in schizophrenic patients (34), as well as shared phenomenology 
between schizophrenic symptoms and ketamine’s dissociative/
psychoactive effects (30, 32). All participants receiving ketamine 
reported having dreams, and 8 of 12 participants in our study could 
recall their hallucinations (e.g., flying on a cloud, weird smells, 
taking an elevator, and thick mist) after recovery from anesthesia. 
Therefore, we speculate that the dominance of GN+ and GN− in the 
dynamic brain states may be associated with psychoactive effects.

In patients with UWS, the alterations of brain state dynamics 
seemed to be situated in between propofol and ketamine anesthesia. 
If we assume that the arousal of patients with UWS was relatively 
preserved, unlike the suppression of arousal in propofol-induced 
unresponsive participants, then the GN+ and GN− in UWS may 
reflect, to some extent, arousal fluctuations (35, 36).

Spatial characteristics of CAPs
We identified six CAPs encompassing the DMN+, DAT+, FPN+, 
SMN+, VIS+, and VAT+ that resembled canonical resting-state 
networks in agreement with previous studies (24, 37, 38). We also 
identified two other CAPs with globally activated and deactivated 
patterns (GN+ and GN−), which have been related to arousal or 
vigilance fluctuations in the context of the global brain signal (35, 36). 
GN+ and GN− were present without applying GSR (e.g., fig. S2). 
Note that, compared to other CAPs, the DMN+ and DAT+ showed 
the highest within-network anatomical segregation as they consisted 

of 18 and 14 clusters, respectively, distributed across widespread 
cortical and subcortical regions (e.g., fig. S3). We speculate that spatial 
segregation is relevant for the higher-order abstract representations 
necessary for conscious processing. This is supported by evidence 
that the DMN and DAT are at a high position of a representational 
hierarchy, with a widespread backbone, relatively far from the sensory 
and motor systems in terms of both functional connectivity and 
anatomical distance (33). This hierarchical disposition is thought to 
allow the two systems to process transmodal information in a way 
that is unconstrained by immediate sensory input.

Methodologic strengths and limitations
Our approach has unique strengths. First, the k-means clustering 
method can capture transient, temporally localized coactivations, 
which reflect the underlying brain activity in a rather direct way 
when compared to conventional time-averaged analysis. The clustering 
procedure itself does not perform any transformation of the data, 
holds a minimal set of assumptions and constraints, and is free from 
the controversial aspects of GSR (21). The method thus allowed us to 
reframe the known neural phenomenon—i.e., diminished, temporally 
averaged DMN-DAT anticorrelation in unresponsiveness—into a 
dynamic picture of brain activity where the DMN and DAT are 
embedded in a chain of transient explorations among distinct brain 
states. Second, the temporal dynamics of brain states were analyzed 
as a Markov process. This method allowed us to quantify temporal 
dependencies of brain states and their trajectories, leading us to form 
the concept of a temporal circuit. Third, we combined an unsupervised 
machine learning approach (k-means clustering) with a supervised 
machine learning approach (i.e., maximal similarity to predefined 
cluster centroids), when comparing our results from the main cohort 
with another cohort. This method, with relatively low computational 
cost, may have the potential for “big data” analysis rendering the 
observations comparable and generalizable across multiple datasets 
or research sites. This idea may be analogous to the seed-based 
(supervised) functional connectivity analysis with a priori knowledge 
of seed regions.

A few limitations of our study are recognized. First, coactivation 
at the temporal resolution of 2 s is, at best, an indirect measure of 
large-scale brain connectivity. Second, the neural origin of transient 
CAPs remains unclear. Third, the richness of mental content and 
cognitive process seems far beyond the repertoire of CAPs we can 
detect. The functional association and the causal relationship between 
CAPs and cognitive functions remain unclear. Fourth, the relationship 
of CAP transitions to the fast transient topographical patterns of 
electroencephalography (EEG) (39) and magnetoencephalography 
(40), such as “microstates” on the order of 100 ms, remains to be 
determined. However, recent studies of EEG during anesthetic-
induced unresponsiveness have used k-means clustering and Markov 
analysis, suggesting that addressing the neurophysiologic time scale 
with these techniques is tractable (41, 42). Fifth, the choice of k (the 
number of CAPs) for clustering analysis was somewhat challenging. 
Arguably, any reasonable choice would far underestimate the actual 
diversity of meaningful brain states. The choice of k, in general, 
is limited by the experimental approach and fMRI methodology. 
Sixth, we found that the reduced occurrence rates of DMN+ and 
DAT+ were accompanied by the decreased trajectory accessibility 
of the two CAPs during unresponsiveness. This coincidence may be 
expected. For instance, if other CAPs do not prefer to transition 
to DMN+ or DAT+, then the occurrence rates of the two CAPs 
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(regardless of its own repetitions or persistence) will be likely lower 
than that of others. In this sense, the occurrence rates and transition 
probabilities may offer two views of the same temporal dynamics, 
whereas the information gained from the two quantities is partially 
overlapped. Furthermore, if we assume that the transition probabilities 
between CAPs are caused by certain neural mechanisms, then the oc-
currence rates are just statistical descriptions resulting from the 
transition probabilities. The precise neural mechanisms and the 
regulation of state transitions may be an important question for fu-
ture investigations. Last, although our observations yield predictions 
that can guide future work, an important caveat is that the specific 
characteristics of CAPs in different states of consciousness were de-
rived from rs-fMRI signals without subjective report of mental con-
tent. Therefore, the exact associations between those CAPs and 
conscious contents remain to be systematically studied.

CONCLUSIONS
This study suggests that human consciousness relies on a specific 
temporal circuit of dynamic brain activity characterized by balanced 
reciprocal accessibility of functional brain states. The disruption of 
this temporal circuit, exhibiting limited access to the DMN and DAT, 
appears to be a common signature of unresponsiveness of diverse 
etiologies.

MATERIALS AND METHODS
The fMRI data were recorded at two independent research sites 
(Shanghai and Wisconsin), which generated four datasets containing 
both control and test results. Dataset 1 included 23 participants during 
baseline conscious condition, propofol light sedation, and propofol 
general anesthesia collected in Shanghai, hereafter referred to as 
propofol-SHH. Dataset 2 included 14 participants during baseline 
conscious condition, propofol light sedation, propofol deep sedation, 
and recovery, which was collected in Wisconsin, hereafter referred 
to as propofol-WI. Dataset 3 included 12 participants during baseline 
conscious condition, ketamine induction period before loss of respon-
siveness (PreLOR), loss of responsiveness (LOR) period, and recovery 
of responsiveness period, hereafter referred to as ketamine. Dataset 
4 includes 28 healthy controls (conscious condition), 8 patients 
diagnosed in an MCS, and 13 patients diagnosed in an UWS/vegetative 
state. This dataset, with patients of disorders of consciousness, was 
referred to as neuropathological patients. To minimize misdiagnosis, 
these states were defined by validated, objective scales as opposed to 
clinical interpretation alone.

Dataset 1: Propofol-SHH
The dataset has been previously published using analyses different 
from those applied here (28, 43). The study was approved by the 
Institutional Review Board (IRB) of Huashan Hospital, Fudan 
University. Informed consent was obtained from all participants 
(n = 26; right-handed; male/female, 12/14; age, 27 to 64 years), who 
were undergoing an elective transsphenoidal approach for pituitary 
microadenoma resection. The pituitary microadenomas were diagnosed 
by their size (<10 mm in diameter without growing out of the sella) 
based on radiological examinations and plasma endocrinal parameters. 
The participants were American Society of Anesthesiologists (ASA) 
physical status I or II, with no history of brain dysfunction, vital organ 
dysfunction, or administration of neuropsychiatric drugs. They had 

no contraindication to an MRI examination, such as vascular clips 
or metallic implants. Among them, 3 participants had to be excluded 
from the study and further data analysis because of excessive movements, 
resulting in 23 participants for the following analysis.

Participants fasted for at least 8 hours from solid foods and 2 hours 
from liquids before the study. Vital signs including blood pressure, 
electrocardiography, pulse oximetry (SpO2), and partial pressure 
of carbon dioxide were continuously monitored during the fMRI 
study. The participants received propofol light sedation (17 of 23) 
and general anesthesia (n = 23), during which intravenous anesthetic 
propofol was infused through an intravenous catheter placed into a 
vein of the right hand or forearm. Propofol was administered using 
a target-controlled infusion (TCI) pump to obtain constant effect-
site concentration, as estimated by the pharmacokinetic model of 
propofol (Marsh model). Remifentanil (1.0 g/kg) and succinylcholine 
(1.5 mg/kg) were administered to facilitate endotracheal intubation 
under general anesthesia. TCI concentrations were increased in 0.1 g/ml 
steps beginning at 1.0 g/ml until reaching the appropriate effect-site 
concentration. A 5-min equilibration period was allowed to ensure 
equilibration of propofol distribution between compartments.

The TCI propofol was maintained at a stable effect-site concentration 
for light sedation (1.3 g/ml) and for general anesthesia (4.0 g/ml). 
Behavioral responsiveness was assessed by the Ramsay scale. The 
participants were asked to strongly squeeze the hand of the investigator. 
The participant was considered fully conscious if the response to 
verbal command (“strongly squeeze my hand!”) was clear and strong 
(Ramsay 1 and 2), in mild sedation if the response to verbal command 
was clear but slow (Ramsay 3 and 4), and in deep sedation or general 
anesthesia if there was no response to verbal command (Ramsay 
5 and 6). For each assessment, the Ramsay scale verbal commands were 
repeated twice. The participants continued to breathe spontaneously, 
with supplemental oxygen via nasal cannula, during conscious resting 
state and light sedation. During general anesthesia, the participants 
were ventilated with intermittent positive pressure ventilation, setting 
a tidal volume at 8 to 10 ml/kg, a respiratory rate of 10 to 12 beats/min, 
and maintaining partial pressure of end tidal CO2 at 35 to 45 mmHg. 
Two certified anesthesiologists were present throughout the study and 
assured that resuscitation equipment was always available. Participants 
wore earplugs and headphones during the fMRI scanning.

rs-fMRI data acquisition consisted of three 8-min scans in baseline 
conscious condition, light sedation, and general anesthesia. The 
participant’s head was fixed in the scan frame and padded with 
spongy cushions to minimize head movement. The participants 
were asked to relax and assume a comfortable supine position with 
their eyes closed during scanning (an eye patch was applied). They 
were instructed not to concentrate on anything in particular during 
the resting-state scan. A Siemens 3T scanner (Siemens MAGNETOM, 
Germany) with a standard eight-channel head coil was used to acquire 
gradient-echo echo-planar imaging (EPI) images of the whole brain 
[33 slices; repetition time/echo time (TR/TE), 2000/30 ms; slice 
thickness, 5 mm; field of view, 210 mm; flip angle, 90°; image matrix, 
64 × 64]. High-resolution anatomical images were also acquired for 
rs-fMRI coregistration.

Dataset 2: Propofol-WI
The dataset has been previously published using analyses different 
from those applied here (44). The IRB of Medical College of Wisconsin 
(MCW) approved the experimental protocol. Fifteen healthy participants 
(male/female, 9/6; age, 19 to 35 years) received propofol sedation. 
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The OAAS (observer’s assessment of alertness/sedation) was applied 
to measure the levels of behavioral responsiveness. During baseline 
conscious and recovery conditions, participants responded readily to 
verbal commands (OAAS score, 5). During light sedation, participants 
showed lethargic response to verbal commands (OAAS score, 4). 
During deep sedation, participants showed no response to verbal 
commands (OAAS score, 2 and 1). The corresponding target plasma 
concentrations vary across participants (light sedation, 0.98 ± 0.18 g/ml; 
deep sedation, 1.88 ± 0.24 g/ml) because of the variability in individual 
sensitivity to anesthetics. At each level of sedation, the plasma con-
centration of propofol was maintained at equilibrium by continuously 
adjusting the infusion rate to maintain the balance between accumulation 
and elimination of the drug. The infusion rate was manually controlled 
and guided by the output of a computer simulation developed for 
target-controlled drug infusion (STANPUMP) based on the pharmaco-
kinetic model of propofol. Standard ASA monitoring was conducted 
during the experiment, including electrocardiogram, noninvasive 
blood pressure cuff, pulse oximetry, and end-tidal carbon dioxide gas 
monitoring. Supplemental oxygen was administered prophylactically 
via nasal cannula. One participant had to be excluded from the study 
and further data analysis because of excessive movements, resulting 
in 14 participants for the following analysis.

rs-fMRI data acquisition consisted of four 15-min scans in baseline 
conscious condition, light and deep sedation, and recovery. A 3T 
Signa GE 750 scanner (GE Healthcare, Waukesha, WI, USA) with a 
standard 32-channel transmit/receive head coil was used to acquire 
gradient-echo EPI images of the whole brain (41 slices; TR/TE, 
2000/25 ms; slice thickness, 3.5 mm; field of view, 224 mm; flip 
angle, 77°; image matrix, 64 × 64). High-resolution anatomical 
images were also acquired for rs-fMRI coregistration.

Dataset 3: Ketamine
The study was approved by the IRB of Huashan Hospital, Fudan 
University. Informed consent was obtained from all participants. 
Twelve right-handed participants were recruited (male/female, 7/5; age, 
32 to 66 years), who were undergoing an elective transsphenoidal 
approach for resection of a pituitary microadenoma. The patient 
inclusion, anesthesia procedure, fMRI setting-up and scanning 
parameters, and vital sign monitoring were the same as those of 
propofol-SHH.

Ketamine was infused through an intravenous catheter placed 
into a vein of the left forearm. Continues fMRI scanning was con-
ducted throughout the whole experiment for about 1 hour, ranging 
from 44 to 62 min (means ± SD, 54.6 ± 5.9 min). A 10-min baseline 
conscious condition was first acquired (except for two participants 
in which baseline condition was for 6 and 11 min). Then, 0.05 mg/
kg per min of ketamine was infused for 10 min (0.5 mg/kg in total), 
and 0.1 mg/kg per min was infused for another 10 min (1.0 mg/kg 
in total), except for two participants who only received 0.1 mg/kg 
per min infusion for 10 min. After that, the ketamine infusion 
was discontinued, and participants regained their responsiveness 
spontaneously.

Behavioral responsiveness (button press) was assessed throughout 
the entire fMRI scan. Specifically, participants were asked to press a 
button using their right index finger after hearing a verbal instruction 
“press the button.” The instruction was programmed to play every 
30 s using E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA) 
and was delivered via earphones designed for an MRI environment. 
The volume of the headphones was adjusted for participant comfort. 

By comparing the timing of verbal instruction and actual responsiveness 
during and after ketamine infusion, the periods during which a 
participant retained responsiveness (PreLOR), LOR, and recovery 
of responsiveness were determined. The duration (means ± SD in 
minutes) for each period across participants was 9.8 ± 1.0 for 
baseline conscious condition, 12.5 ± 4.5 for PreLOR, 18.2 ± 7.6 for 
LOR, and 14.1 ± 6.0 for recovery. In addition, reaction time with 
respect to each instruction was recoded for quantitative analysis of 
behavioral responsiveness.

Dataset 4: Neuropathological patients
The dataset has been previously published using analyses different 
from those applied here (27, 43). The study was approved by the 
IRB of Huashan Hospital, Fudan University. Informed consent was 
obtained from the patients’ legal representatives and from the 
healthy participants. The dataset included 21 patients (male/female, 
18/3) with disorders of consciousness and 28 healthy control partic-
ipants (male/female, 14/14). The patients were assessed using the 
Coma Recovery Scale–Revised (45) on the day of fMRI scanning. Of 
those assessed, 13 patients were diagnosed as having UWS, and 8 patients 
were diagnosed as being in MCS. None of the healthy controls had 
a history of neurological or psychiatric disorders nor were they 
taking any kind of medication.

rs-fMRI data were acquired on a Siemens 3T scanner (Siemens 
MAGNETOM, Germany). A standard eight-channel head coil was 
used to acquire gradient-echo EPI images of the whole brain (33 slices; 
TR/TE, 2000/35 ms; slice thickness, 4 mm; field of view, 256 mm; 
flip angle, 90°; image matrix, 64 × 64). Two hundred EPI volumes 
(6 min and 40 s) and high-resolution anatomical images were acquired.

Data preprocessing
Preprocessing steps were implemented in AFNI (Analysis of Functional 
NeuroImages; http://afni.nimh.nih.gov/). (i) The first two frames of 
each fMRI run were discarded; (ii) slice timing correction; (iii) rigid 
head motion correction/realignment within and across runs; frame-wise 
displacement (FD) of head motion was calculated using frame-wise 
Euclidean norm (square root of the sum squares) of the six-dimensional 
motion derivatives (46). A frame and its each previous frame were 
tagged as zeros (ones, otherwise) if the given frame’s derivative value 
has a Euclidean norm above 0.4 mm of FD (44); (iv) coregistration 
with high-resolution anatomical images; (v) spatial normalization into 
Talairach stereotactic space; (vi) using AFNI’s function 3dTproject, 
the time-censored data were high-pass filtered above 0.008 Hz. At 
the same time, various undesired components (e.g., physiological 
estimates and motion parameters) were removed via linear regression. 
The undesired components included linear and nonlinear drift, time 
series of head motion and its temporal derivative, binarized FD 
time series (output data included zero values at censored time 
points), and mean time series from the white matter and cerebrospinal 
fluid; (vii) spatial smoothing with 6-mm full width at half maximum 
isotropic Gaussian kernel; (viii) the time course per voxel of each 
run was normalized to zero mean and unit variance, accounting for 
differences in variance of non-neural origin (e.g., distance from head 
coil). GSR was not applied for our main analysis, as we were motivated 
to provide a dynamic and unbiased account for the anticorrelation 
phenomenon commonly seen in conventional static functional 
connectivity with GSR procedure. However, to evaluate the robustness 
of our results against different processing schemes, we also performed 
control analyses both with and without the GSR procedure.

http://afni.nimh.nih.gov/
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CAP analysis
We adopted an unsupervised machine learning approach using 
k-means clustering algorithm. It is a procedure for classifying a set 
of objects (e.g., fMRI volumes) into different categories (e.g., patterns) 
such that within category differences are smaller than across category 
differences. Accordingly, we classified fMRI volumes into k clusters 
based on their spatial similarity and thus produced a set of CAPs or 
brain states (22, 24). Hence, the original fMRI (three-dimensional + time) 
data were translated into a one-dimensional time series of discrete 
CAP labels.

The above analysis was performed on the concatenated data of 
69,010 fMRI volumes acquired from all 98 participants. There were 
7.1% of the total volumes tagged as zeros based on the above motion 
censoring procedure, which were not included in the following 
analysis. Then, k-means clustering was performed to partition the 
all fMRI volumes of the matrix (64,118 volumes × 6088 voxels) into 
k clusters, which returned a 64,118 × 1 vector containing cluster 
indices (i.e., CAP labels) for each fMRI volume. The distance between 
two fMRI volumes was defined as one minus their Pearson’s correlation 
coefficient of the intensity values across voxels (22, 24). The computa-
tional load of the k-means clustering increases quickly with the 
number of fMRI volumes. As a trade-off between computational 
cost and spatial resolution, the preprocessed fMRI data were down-
sampled to the spatial resolution of 6 mm by 6 mm by 6 mm while 
preserving the original temporal resolution (2 s) before k-means 
clustering.

After clustering, the fMRI volumes assigned to the same cluster 
were simply averaged, resulting in k maps that we defined as CAPs. 
These CAPs were then normalized by the SE (within cluster and 
across fMRI volumes) to generate z-statistic maps, which quantify 
the degree of significance to which the CAP map values (for each 
voxel) deviate from zero (22). The spatial characteristics of those 
CAPs were examined by counting the number of spatial clusters as 
a function of threshold (z values; ranging from 1 to 100). A single 
spatial cluster was defined as the nearest-neighbor clustering (faces 
touching) encompassing at least six voxels, where positive and 
negative voxels in each CAP were calculated separately. In addition, 
we calculated the instantaneous phase synchrony for each CAP. For 
each voxel’s time series, the instantaneous phase traces were calculated 
using Hilbert transform. The phase synchrony across voxels as a 
function of time was quantified by the Kuramoto order parameter. 
Then, the phase synchrony values were sorted into k bins according 
to the time series of CAP labels. The phase synchrony values within 
each bin were averaged yielding the mean phase synchrony for 
each CAP.

For each participant or each condition, the occurrence rate of 
each CAP was quantified by the ratio of the number of volumes that 
appeared versus the total number of volumes per scan. A challenge 
for clustering analysis is the choice of k, i.e., the number of CAPs to 
be extracted from the data. We evaluated the clustering performance 
using a few indices including Silhouette, Calinski-Harabasz, Davies-
Bouldin, and Dunn for the data with and without GSR (fig. S1). 
Broadly speaking, higher values of the Silhouette, Calinski-Harabasz, 
and Dunn and a lower value of the Davies-Bouldin indicate a better 
separation of clusters and more tightness inside the clusters. In line 
with a previous study by Liu et al. (22), who used the dataset from 
the 1000 Functional Connectomes Project, we also observed that 
different clustering evaluation criteria yielded inconsistent recom-
mendations. We next sought to adopt an alternative strategy by 

identifying a k with the best reliability of consistently identifying 
conscious conditions across datasets and the best distinction of 
conscious versus unresponsive conditions. Specifically, we determined 
an optimized k (from a search between 2 and 30) by trading off the 
interdataset similarity (measured by Euclidean distance) of the 
averaged CAP occurrence rate distributions in each dataset. We 
derived an index, (CC + UU)/(2 × CU), as the ratio of interdataset 
similarity among conscious conditions (CC) and among unresponsive 
conditions (UU) versus the interdataset similarity among conscious 
and unresponsive conditions (CU) across the four datasets. We found 
that k = 8 (non-GSR) yielded a high interdataset similarity among 
conscious conditions and among unresponsive conditions, with a 
low interdataset similarity among conscious and unresponsive 
conditions. In addition, to further evaluate the choice of k, we 
inspected the spatial patterns in terms of consistency and redundancy 
from k = 2 to k = 16 with a step of two (fig. S2).

Transition matrix
For each condition, we concatenated all participants’ CAP time 
series and computed the transition probability between each pair of 
CAPs. These transition probability matrices can be described by a 
Markov process, where the probability of CAP j (at time t + 1) is 
determined by the CAP i (at time t). That is, we defined transition 
probability between two CAPs to be the probability of transitioning 
from state CAP i to CAP j, given that the current state is CAP i. 
Those probabilities was encoded in a transition matrix with row 
sums equal to 1 and the ijth elements of the matrix equal to the 
number of transitions from CAP i to CAP j divided by the number 
of occurrences of CAP i. We referred to the diagonal entries in the 
full transition probability matrix as the persistence probabilities, 
i.e., the probability of remaining in a given CAP. We referred to the 
off-diagonal transition probability matrix as the transition probabilities, 
i.e., the probability of transitioning between two distinct CAPs. The 
off-diagonal transition probability matrix was calculated by removing 
repeating CAPs in the time series to control for autocorrelation due 
to the CAP’s persistence (24). Note that the censored time point of 
head motion and the joint point between participants were tagged 
with zeros, such that the transition from a CAP to zero or from zero 
to a CAP was discarded in the above calculation. This may minimize 
the head motion effect and avoid the contamination of noncontinued 
data derived from concatenation.

Entropy of Markov trajectories
On the basis of the above off-diagonal transition probability matrices, 
we quantified the entropy of Markov trajectories (25, 26). This 
approach measured the descriptive complexity of trajectories (in bits) 
between each pair of CAPs, e.g., routes starting from a particular 
CAP and ending to another. A lower descriptive complexity from a 
starting point (initial CAP) to its destination (final CAP) indicates a 
higher accessibility for the destination. More specifically, the entropy 
of Markovian trajectories is considered as a finite irreducible 
Markovian chain with transition matrix P and associated entropy 
rate H(X) = −∑i,j i Pij log Pij, where  is the stationary distribution 
given by the solution of  = P. A trajectory Tij of the Markov chain 
is a path with initial state i, final state j, and no intervening states 
equal to j. The entropy H(Tii) of the random trajectory originating 
and terminating in state i is given by H(Tii) = H(X)/i. Therefore, 
the entropy of the random trajectory Tii is the product of the expected 
number of steps 1/i to return to state i and the entropy rate H(X) 
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per step for the stationary Markov chain. The entropies H(Tij) is given 
by H = K − K′ + H, where H is the matrix of trajectory entropies 
Hij = H(Tij); K = (I − P + A)−1 (H* − H); K′ is a matrix in which the 
ijth element Kij′ equals the diagonal element Kij of K; A is the matrix 
of stationary probabilities with entries Aij = j; H* is the matrix of 
single-step entropies with entries Hij* = H(Pi) = −∑k Pik log Pik; and 
H is a diagonal matrix with entries (H)ii = H(X)/i. For further 
details, see the seminar work by Ekroot and Cover (25), and the 
MATLAB code is available at https://github.com/stdimitr/Entropy_
of_Markov_Trajectories.

Conventional static functional connectivity analysis
We defined functional networks based on the identified CAPs. As a 
CAP may include antiphasic coactivations (e.g., voxels with positive 
or negative values), presumably representing two anticorrelation 
networks, we thus only extracted the positive voxels within each 
CAP and binarized them to form a mask of a given network. Within-
network connectivity was defined as the averaged Pearson correlation 
coefficients (Fisher’s z-transformed) between all pairs of voxels 
within the network, and between-network connectivity was calculated 
by averaging the Pearson correlation coefficient between all pairs of 
voxels from different networks (i.e., excluding within-network voxel 
pairs). Both measurements were calculated for data with and without 
GSR procedure.

Stimulus modulation
A subset of participants in propofol-SHH (n = 15) and neuropatho-
logical patients (n = 22; 12 healthy controls, 4 MCS, and 6 UWS) 
received auditory stimuli. For propofol-SHH, an event-related design 
was adopted with 60 names delivered in a pseudorandom order [see 
more details in (28)]. Each audio clip (0.5 s) was followed by intertrial 
intervals (ITIs) ranging unpredictably from 15.5 to 25.5 s (2-s step). 
The participants were required to pay attention and passively listen 
to the names without behavioral response or judgment. Three 18-min 
fMRI scans were acquired for each level of responsiveness (baseline 
conscious condition, light sedation, and general anesthesia). For 
neuropathological patients, an event-related design was applied 
with 160 sentences delivered in a pseudorandom order [see more 
details in (27)]. Each audio clip (2 s) was followed by ITIs ranging 
unpredictably from 8.0 to 12.0 s (2-s step). All participants were 
instructed to silently answer the questions. Four 18-min fMRI scans 
were acquired for each participant.

After applying the same fMRI data preprocessing pipeline, we as-
signed each time point of the task dataset to a particular CAP based on 
its maximal similarity to the predefined CAP centroids from the main 
cohort data. The purpose of doing this was to make the results com-
parable and generalizable across datasets. This also avoided the po-
tential stimulus-evoked contamination in the definition of CAPs, if 
otherwise resting state and task state were combined during k-means 
clustering. The CAP occurrence rate was calculated across trials for 
each time point following stimulus onset (t = 0) within the time win-
dow of 0 to 16 s for propofol-SHH and 0 to 10 s for neuropathological 
patients. The CAP occurrence rates for each time point (per condition 
and per participant) was corrected by subtracting the CAP occurrence 
rate at t = 0, yielding a relative change against the stimulus onset.

Psychiatric dataset
The data were obtained from the OpenfMRI database. It is a shared 
neuroimaging dataset from the University of California, Los Angeles 

Consortium from Neuropsychiatric Phenomics (29). The original 
dataset included 272 participants encompassing healthy individuals 
(n = 130) and individuals with psychiatric disorders including 
schizophrenia (n = 50), bipolar disorder (n = 49), and attention 
deficit/hyperactivity disorder (n = 43). Participants were excluded if 
they had no T1 images or resting-state data, the overall head motion 
range was above 3 mm, or the data had insufficient degree of freedom 
after band-pass filtering and motion scrubbing. This resulted in 116, 
44, 49, and 39 participants for healthy individuals, schizophrenia, 
bipolar disorder, and attention deficit/hyperactivity disorder, respectively, 
in our analysis (248 in total).

As mentioned above, using maximal similarity to the predefined 
CAP centroids, we classified individual fMRI volumes into eight 
CAPs informed by the k-means clustering approach from main cohort 
data. Accordingly, this produced a time series of discrete CAP labels 
per participant. The occurrence rates of each CAP per participant 
were calculated.

Statistical analysis
We performed Spearman rank correlations between the occurrence 
rates of joint mirror motifs and individual CAPs, with the level of 
responsiveness. Conscious and recovery conditions were ranked 
at 3, intermediate conditions (propofol light sedation, PreLOR of 
ketamine induction, and patients with MCS) were ranked at 2, and 
unresponsive conditions (propofol general anesthesia and deep 
sedation, LOR due to ketamine, and patients with UWS) were ranked 
as 1. In addition, Student’s t tests (paired sample for propofol-SHH, 
propofol-WI, and ketamine; unpaired sample for neuropathologi-
cal patients; two-sided) on the CAP occurrence rates were performed 
between conditions in each dataset. FDR correction ( < 0.05) was 
applied to correct for multiple comparisons.

To examine whether the persistence probabilities significantly 
deviated from uniformly random sequences, we generated null 
CAP time series by 1000 permutations, randomly and uniformly 
exchanging CAP positions in time, across the entire dataset. This 
null model was only used for assessing the statistical significance of 
CAP persistence for each condition alone (e.g., conscious state) but 
not for between conditions (see below). Because of the strong auto-
correlation of fMRI signals, the CAP persistence probability shall be 
expected to be significantly higher than the null distribution. Therefore, 
this permutation test served as a proof of principle, which is not of 
interest in this study. To examine whether the transition probabilities 
and entropies of Markov trajectories significantly deviated from 
uniformly random sequences for a given condition (e.g., conscious 
state) and to examine the differences between conditions (e.g., 
conscious versus propofol) for transition probabilities, entropies of 
Markov trajectories, and persistence probability, we generated 
another null CAP time series by controlling the autocorrelation of 
fMRI signals (24). That is, we preserved dwell times (approximately 
preserved autocorrelative properties) but otherwise permutated 
CAP cluster labels 1000 times across the entire dataset. Accordingly, 
the transition probabilities, entropies of Markov trajectories, and 
persistence probabilities for each surrogate condition (corresponding 
to the null time series) were calculated 1000 times to form null 
distributions for each condition. The deviation of each condition 
from null (except for the persistence probability that was tested 
by the first null model) and the deviation of differences between 
conditions from the null differences were determined at the significance 
level of P < 0.001 by considering multiple comparison corrections 
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(99.9th and 0.1th percentile of the null distributions; two-sided). 
Considering that our focus was the common and specific alterations 
between conscious and various unresponsive conditions, we did not 
assess the intermediate conditions (e.g., propofol light sedation, 
PreLOR during ketamine induction, and patients with MCS) and 
recovery conditions. We also collapsed the conscious conditions 
across the four datasets, and collapsed propofol-induced unrespon-
siveness of propofol-SHH and propofol-WI, to reduce the complexity 
of comparisons. These yielded four conditions with one conscious 
and three unresponsive conditions: propofol, ketamine, and patients 
with UWS.

For conventional static functional connectivity analysis, group-
level t tests (two-sided) on the functional connectivity values were 
performed, and significance was determined at FDR-corrected  < 0.05. 
For stimulus modulation analysis, Student’s t tests (against zero;  < 0.05, 
FDR corrected; two-sided) for the CAP occurrence rate changes 
were performed during the peak period of stimulus-evoked fMRI 
signal activity (4 to 6 s) at the group level. For psychiatric dataset, com-
parisons of the CAP occurrence rates for healthy individuals versus 
schizophrenia, healthy individuals versus bipolar disorder, and healthy 
individuals versus attention deficit/hyperactivity disorder were per-
formed at the group level by independent sample t tests (two-sided; 
 < 0.05, FDR corrected).
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Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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