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S Y S T E M S  B I O L O G Y

A statistical inference approach to reconstruct 
intercellular interactions in cell migration experiments
Elena Agliari1, Pablo J. Sáez2, Adriano Barra3, Matthieu Piel2,  
Pablo Vargas2, Michele Castellana4,5*

Migration of cells can be characterized by two prototypical types of motion: individual and collective migration. 
We propose a statistical inference approach designed to detect the presence of cell-cell interactions that give 
rise to collective behaviors in cell motility experiments. This inference method has been first successfully tested 
on synthetic motional data and then applied to two experiments. In the first experiment, cells migrate in a 
wound-healing model: When applied to this experiment, the inference method predicts the existence of cell-cell 
interactions, correctly mirroring the strong intercellular contacts that are present in the experiment. In the second 
experiment, dendritic cells migrate in a chemokine gradient. Our inference analysis does not provide evidence for 
interactions, indicating that cells migrate by sensing independently the chemokine source. According to this pre-
diction, we speculate that mature dendritic cells disregard intercellular signals that could otherwise delay their 
arrival to lymph vessels.

INTRODUCTION
Cell migration is a dynamic process, which may be characterized by 
two prototypical kinds of motion: a collective motion in which cells 
communicate with each other, e.g., by means of biochemical or me-
chanical signals, and an individual motion, where each cell migrates 
independently (1, 2). Among the notable examples of cell migration 
in pathological contexts are cancer cells during metastasis, where 
collective migration generally results from physical contacts between 
cells, which adhere to each other via specific adhesion molecules. De-
spite the fact that both individual and collective motions have been 
observed, for cancer cells, collective migration is believed to result in 
more efficient metastatic spreading (3, 4).

On the other hand, immune cells do not exhibit cell-cell adhesion 
during migration: For these cells, the existence of physical cell-to-cell 
communication is induced by specific signaling pathways (5) and is 
restricted to slow migratory phases. This direct cell-to-cell communi-
cation allows immune cells to share pathogenic information or to co-
ordinate the arrival of other cells (6, 7), while it does not result in a 
collective motion. As a consequence, in the context of fast migration of 
immune cells, such cells have been suspected to migrate as single cells.

However, immune cells respond to a large variety of biochemical 
signals. They release cytokines, chemokines, and small molecules that 
control cell migration and may send signals to adjacent cells without 
the need of physical interactions (7, 8). This paracrine signaling might 
constitute an alternative mechanism to achieve cell-to-cell communi-
cation, which, as shown in other cellular systems (9), may ultimately 
lead to cellular coordination. As a result, the existence of these signal-
ing mechanisms raises the question of whether immune cells may 
ultimately migrate “collectively,” regardless of physical interactions.

Among the difficulties in answering this question is the fact that 
immune cells are often guided by extracellular signals produced by 
tissues (10): As a result, they may be exchanging biochemical signals 

with each other but still appear to migrate individually because they 
all move toward the same signal source. In addition, the number of 
potential molecules that could be responsible for cell-to-cell signal-
ing is so large that molecular perturbation approaches could not rule 
out the existence of cell-to-cell communication through some of 
these molecules. Moreover, molecular perturbation approaches rely 
on an a priori knowledge of the signaling involved and/or the devel-
opment of new experimental tools, which are, in general, both time 
consuming and expensive.

In this study, we propose a statistical inference method to over-
come the issues mentioned above. Unlike the classical molecular 
perturbation approaches, our procedure is statistically rather than 
biologically driven and does not rely on any a priori knowledge of 
the biochemical interactions among the migrating cells. Instead, our 
method leverages the statistical information stored in empirical ob-
servations on cell motility, e.g., statistics of cells’ speeds and directions 
of motion (11, 12). We designed this statistical inference method so 
as to take account of a variety of experimental sources of error that 
are specific to cell motility experiments, e.g., limited tracking reso-
lution, missing trajectories, and tracking anomalies, and thus effi-
ciently exploit the information contained in the cell-tracking data.

Given a set of data for a cell migration experiment, the resulting 
statistically inferred model allows one to single out cell-cell interac-
tions. While the method cannot assess the nature of these interac-
tions, e.g., the signaling protein that is responsible for it, it makes a 
clear prediction on the existence, or absence, of such interaction. In 
particular, the model allows us to tell apart a population of indepen-
dent cells, which may appear to migrate collectively only because they 
all follow the same cue from a population that migrates in a truly 
collective manner.

We first tested the inference method on two benchmark datasets, 
i.e., synthetic cell trajectories generated from a mean-field model of 
interacting spins and from a non–mean-field model of self-propelled 
(SP) particles. In both cases, the method correctly reconstructs the mi-
croscopic features of the models, e.g., the spin-spin couplings, and the 
strength of the external signal to which the SP particles are subject.

Next, we applied the inference framework to two experiments: 
In the first, cells migrate toward a “wound” and physically interact 
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with each other via cell-cell adhesion resulting from cellular crowding. 
The inference method predicts the existence of cell-cell interactions, 
and this prediction correctly reflects the presence of intercellular con-
tacts in the experiment, thus yielding a proof of concept for our in-
ference framework.

We then applied the inference method to a population of dendritic 
cells migrating in a chemokine gradient. Our inference analysis does 
not provide evidence for the existence of cell-cell interactions, indi-
cating that dendritic cells migrate independently and sense only the 
chemokine source. This prediction is supported by an exhaustive 
analysis of the raw motional data, which indicates the absence of 
cell-cell correlations.

We then present the biological applications of our results and 
discuss how the absence of instantaneous cell-cell interactions 
detected by our inference method may constitute an indication of a 
strategy to efficiently trigger the immune response. Last, we discuss 
how our inference method may be applied to a wide variety of bio-
logical systems, where it could be used to reconstruct the maximum-
entropy (ME) probability distribution while handling multiple sources 
of error.

RESULTS
ME methods
Here, we will describe the statistical inference method that we de-
signed for the analysis of motional features of cell-tracking experiments. 
Given a dataset X = {x1, ⋯, xT} composed of multiple observations of 
a quantity x, ME models provide a fundamental principle to model 
and reconstruct the probability distribution P(x) from a limited num-
ber of empirical observations, which would be too small to reconstruct 
such distribution directly from the data. Specifically, given a set of 
features f1(x), f2(x), ⋯ related to the observable x, their experimental 
and model estimates are, respectively

	​​ 〈 ​f​ i​​(x ) 〉​ ex​​  = ​  1 ─ T ​ ​ ∑ 
t=1

​ 
T
 ​​ ​f​ i​​(​x​ t​​)​	 (1)

	​​ 〈 ​f​ i​​(x ) 〉​ P​​  =  ∫ dxP(x ) ​f​ i​​(x)​	 (2)

The ME method then constructs P as the least-structured probabil-
ity distribution that matches the experimental averages above. Given 
that the amount of “structure” in P is quantified by the entropy (13)

	​ S [P ] = − ∫ dxP(x ) log P(x)​	 (3)

i.e., the higher S, the less structured P, the ME model is formulated in 
terms of the following constrained optimization problem

	​​ max​ 
P
​  ​  S[P]​	 (4)

subject to

	​​ 〈 ​f​ i​​(x )〉​ P​​  = ​ 〈 ​f​ i​​(x )〉​ ex​​ for i  =  1, 2, ⋯​	 (5)

	​ ∫ dxP(x ) = 1​	 (6)

ME models have attracted growing interest in the past few years 
and have been used for a wide variety of domains and of biological 
systems. Notable examples are the inference of motional order in flocks 

of birds (14), collective behavior in networks of neurons (15, 16), 
interaction structures resulting from amino acid sequences in protein 
families (17, 18), and interaction structure of genetic networks (19).

In the specific problem under consideration in this study, the po-
sitions of N moving cells are imaged and tracked in time with a camera 
on a pixel grid (see Fig. 1). Given that the precision with which the cell 
position is determined cannot exceed the pixel size, at any instant of 
time t, every cell, labeled by index i, is assigned a nominal position 
ri(t), which coincides with the center of the pixel (see section S5 for 
details). The nominal cell positions ri(t) and ri(t + t) at time t and 
at a subsequent observation t + t, respectively, yield the velocity 
vi(t) = [ri(t + t) − ri(t)]/t, where we use boldface for vector quan-
tities. We compute the direction of motion, i.e., the normalized ve-
locity, of each cell at time t

	​​ s​ i​​(t ) = ​  ​v​ i​​(t) ─ ∣​v​ i​​(t )∣ ​​	 (7)

which we rewrite in terms of its polar angle as

	​​ s​ i​​  =  (cos ​​ i​​, sin ​​ i​​)​	 (8)

We then obtain the full set of motional directions of the popula-
tion, St = {s1(t), ⋯, sN(t)}, which we regard as the empirical observa-
tions for the ME problem, i.e., xt = St (14). We select as features the 
average pairwise correlation and polarization

	​​ f​ 1​​(x) = ​ 1 ─ ​N​ p​​ ​ ​ ∑ 
i<j=1

​ 
N

  ​​ ​s​ i​​ · ​s​ j​​  ≡  C(S)​	 (9)

	​​ f​ 2​​(x) = ​ 1 ─ N ​ ​ ∑ 
i=1

​ 
N

 ​​ ​s​ i​​  ≡  M(S)​	 (10)

respectively, where Np ≡ N(N − 1)/2 is the number of cell pairs, and 
in the classical ME approach, the ME distribution is obtained by 

Fig. 1. Motivation for ME models with bound constraints in cell-tracking ex-
periments. (A) Two cells (whose boundaries are the red and green closed curves) 
and their centers of mass (red and green disks) are tracked through a grid of pixels 
(gray). Each center is assigned a nominal position, i.e., the center of the pixel where 
it is located (dashed red and green circles, respectively). (B) At a subsequent time, 
the green cell has moved to a neighboring pixel (curved black arrow). The nominal 
position of the cell has changed, and its displacement is the vector difference be-
tween the nominal position in (B) and in (A) (dashed black arrow), resulting in a 
well-defined direction of motion. Because the red cell has moved within the pixel, 
its nominal position is the same as in (A), its nominal displacement is null, and its 
direction of motion is not defined, thus leading to an uncertainty in all physical 
observables that involve directions of motion.
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solving the optimization problem (Eqs. 4 to 6) (see section S1.1 
for details).

We recall the fundamental difference between correlation, C, and 
cell-cell interaction, which will be denoted by J (14, 20). A nonzero 
correlation does not necessarily imply a nonzero interaction—a pop-
ulation of cells attracted by an external source may display a nonzero 
correlation C, even if cells do not interact with each other. In this 
regard, the ME method allows one to extract cell-cell interactions, 
which are, in general, encoded in a nontrivial way in the motional 
data, e.g., correlation and polarization. If the resulting ME distribu-
tion factors out as the product of distribution of independent direc-
tions of motion, we obtain that cells behave independently; if not, 
we conclude that an interaction between cells exists. The feature 
choice (Eq. 9) sets the type of interaction that the ME method will 
probe. For instance, the experimental average 〈〉ex of Eq. 9 involves 
directions of motion si(t) · sj(t) of cells i and j evaluated at the same 
instant of time t: It follows that the resulting cell-cell interaction 
inferred by the ME model will necessarily be an instantaneous one, 
i.e., its propagation time is much shorter than all other time scales 
(15). Alternative types of interactions could be probed by choosing 
other features, e.g., by introducing a lag between times at which si 
and sj are evaluated.

Despite its wide use in a variety of systems, the ME method above 
may suffer from a fundamental limitation when applied to data af-
fected by strong uncertainties (14, 15, 18). If the empirical data con-
tain significant errors or a limited amount of information, complete 
satisfaction of the equality constraint is known to be too strict a crite-
rion and may lead to data overfitting (21, 22). A prototypical example 
of this issue comes from ME models for language modeling (22), where 
the observations x = (w, w′) are pairs of consecutive words, w and w′, 
in a corpus of text, which constitutes the dataset X. Given two words, 
e.g., “saint” and “George,” we consider as features the frequency with 
which George occurs in the text ​​f​ 1​​(w, ​w ′ ​) = 𝕀(​w ′ ​=  George)​, and the 
frequency of the bigram “saint George,” ​​f​ 2​​(w, ​w ′ ​ ) = 𝕀(w  =  saint, ​
w ′ ​=  George)​, where the indicator function ​𝕀​ is one if both the condi-
tions in its argument are satisfied, and zero otherwise. Given a limited 
amount of empirical information, e.g., a short corpus of text where the 
word George occurs only after saint, if we impose these constraints 
in their equality form (Eq. 5), it is straightforward to show that P(w, 
George) = 0 if w ≠ ‘ saint′. These zero-frequency events in the ME 
model may not only cause numerical instability in ME estimation (21) 
but also result in poor performance of the ME model in a variety of 
applications, e.g., text recognition, where any word pair (w, George) 
in which w ≠ ‘ saint′ would not be recognized as a bigram.

The effect of data uncertainties may be even more dramatic in 
cell-tracking experiments. As shown in Fig. 1, if the cell motion is slow 
compared to the rate at which the observations are collected, the 
nominal position r(t + t) at time t + t may coincide with r(t), and 
the direction of motion (Eq. 7) is not defined. As a result, any empir-
ical average that involves the directions of motion, e.g., the polariza-
tion (Eq. 10), will be affected by an error and will not be uniquely 
determined from the data, thus making the classical ME formula-
tion pointless.

A potential workaround for this issue would be to measure the 
positions at intervals larger than t in such a way that two subse-
quent measurements of the cell position r(t) lie in different bins for 
all cells and times: The resulting empirical averages could then be 
analyzed with the classical ME formulation (see section S1.1). How-
ever, this strategy would throw away a large number of the original 

measurements r(t), r(t + t), ⋯ and thus use only a fraction of the 
experimental data available. In what follows, we discuss a ME for-
mulation with bound constraints (MEb) (21, 22) that efficiently ex-
ploits all the information contained in the experimental data (see 
section S1.2 for details). In addition to the uncertainty above on the 
directions of motion, this MEb method may be used to handle a 
variety of other experimental sources of error, such as missing 
tracks, tracking anomalies, and others.

Let us suppose that, because of the experimental uncertainty de-
scribed in Fig. 1, the tracking data do not provide a precise value for 
the empirical averages but a confidence interval in which these av-
erages lie: Namely, if we let each unknown direction of motion si vary 
between 0 and 2, then 〈C〉ex and 〈M〉ex will fluctuate between a lower 
bound and an upper bound, which define a confidence interval. As a 
result, in the MEb approach, we introduce explicitly such confidence 
interval by smoothening (22) the equality constraints in the ME 
model (Eqs. 4 to 6): The equality constraint (Eq. 5) is replaced by

	​​ 〈 ​f​ i​​(x)〉​ex​ min​  ≤ ​ 〈 ​f​ i​​(x)〉​ P​​  ≤ ​ 〈 ​f​ i​​(x)〉​ex​ max​​	 (11)

where ​​〈 ​f​ i​​(x)〉​ex​ min,max​​ are the lower and upper bounds for the empirical 
average of feature fi, respectively (21).

Statistical inference analysis
In what follows, we will describe the main features of the MEb 
method and refer to section S1.2 for details. The joint distribution 
of velocities resulting from the MEb construction has the shape of a 
Boltzmann distribution

	​ P(S) = ​ 1 ─ Z ​ ​e​​ −H(S)​​	 (12)

with Hamiltonian

	​​ ℋ​(​​S​)​​  =  − N​[​​J C​(​​S​)​​ + H ∙ M​(​​S​)​​​]​​​​	 (13)

where J reflects the “interaction” between cell velocities, the “exter-
nal field” ℋ represents the overall tendency of the cells to flow in one 
particular spatial direction, and the partition function Z ensures that 
P is normalized.

The Hamiltonian (Eq. 13) is the one of the mean-field XY 
model—a statistical-mechanical model originally introduced to de-
scribe ferromagnetic systems (23). In the XY model, the larger J, the 
higher the energetic cost for si and sj to be misaligned; similarly, the 
larger H, the higher the energy cost for si to misalign with respect to 
the direction of the external field. The mean-field structure of the 
Hamiltonian (Eq. 13) follows from the choice of the feature (Eq. 9), 
which involves an average over all cell pairs. This mean-field struc-
ture makes the model analytically tractable: Its partition function 
(eq. S32) can be expressed exactly in terms of a one-dimensional 
integral and Bessel functions even for a finite number of cells N (see 
section S1.2).

The solution of the MEb problem is determined by a set of equal-
ity and inequality conditions, also denoted by bound constraints, 
known as the Karush-Kuhn-Tucker (KKT) conditions (24, 25). Given 
that each of the three parameters that appear in P, i.e., J and the two 
components of H, can be either positive, negative, or zero, we obtain 
a set of candidate MEb solutions, where each solution corresponds 
to a sign configuration of the parameters above. The MEb solution is 
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then given by the solution with the largest entropy, and that satisfies 
all equality and inequality constraints (see the “Statistical inference 
analysis: Wound-healing experiment” and “Statistical inference anal-
ysis: Dendritic cell experiment” sections for details).

Tests of the ME method with bounds on synthetic data
To test the predictive capabilities of the MEb method, we generate 
synthetic data for a system of N moving units that evolve according 
to a given dynamics. We will consider two different models for the 
synthetic dynamics: The XY model and a model of SP particles. 
We denote by P the set of parameters that determine the dynamics, 
generate samples of the configurations of the N elements for dif-
ferent choices of P, and analyze them with the MEb.
XY model
As shown in the “Statistical inference analysis” section, the Hamiltonian 
(Eq. 13) of the MEb model coincides with the one of the mean-field 
XY model. As a result, the simplest fundamental test for the MEb 
method consists of generating samples of the spin configurations with 
the XY model for a given choice of the model parameters P = {J, H}, 
analyzing these configurations with the MEb model, and inferring 
back the same values of the model parameters.

To achieve this, for a given set of parameters P = {J, H}, we ini-
tialize the XY model in a configuration S and let it evolve with a 
single spin-flip Glauber dynamics, reaching equilibration after a 
large enough number of spin flips. Then, we collect T = 100 configu-
ration samples S1, ⋯, ST, with which we compute the configuration 
averages 〈C(S)〉ex and 〈M(S)〉ex (see Eq. 1). Given that the averages 
above are estimated from a finite number of samples, they are sub-
jected to a statistical error. We thus estimate the confidence interval 
for these averages in terms of this statistical error, which we denote 
by , setting ​​C​ex​ max(min)​  = ​ 〈C(S)〉​ ex​​ ± ​ (see Eq. 11 and section S1.2 
for details). Last, we use these bounds in the MEb method and ob-
tain the inferred values of the interaction and external field, Jinf and 
Hinf, respectively.

The procedure above is repeated Q = 100 times for each param-
eter configuration, resulting in a mean value and error bar for Jinf, 
Hinf (see fig. S1): Overall, the agreement between the inferred and 
original parameter values is very good, even for small N.
SP model
In the SP model, we consider N particles moving on a plane with no 
boundaries. The dynamics of the particles’ velocities and positions 
is set by the following rules

	​​ v​ i​​(t + t) = ​v​ 0​​  [​ ∑ 
j∈​n​c​ 

i ​
​​​ ​v​ j​​(t) + ​ ∑ 

j∈​n​c​ 
i ​
​​​ ​f​ ij​​ +  h + ​n​ c​​ ​​ i​​(t)]​	 (14)

	​​ x​ i​​(t + t ) = ​x​ i​​(t ) +  ​v​ i​​(t )t​	 (15)

where  is a normalization operator (y) = y/∣ y∣ which keeps the 
velocity modulus fixed at ∣v∣ = v0, and the sum in Eq. 14 runs over 
the nc nearest neighbors of particle i, according to a topological 
definition of distance. The first term in the square bracket in the 
right-hand side of Eq. 14 makes particles that are close to each other 
move in the same direction; the second term involves an interaction 
force fij, which accounts for excluded volume (vide infra); and the 
third term represents a uniform gradient in the direction of the unit 
vector h. The fourth term represents noise and includes a random 
unit vector i(t), which is independent for each particle and instant 
of time. This noise term physically represents the uncertainty with 

which particle i feels the force fij exerted by particle j, which appears 
in the second term: Given that the second term involves a sum over 
the nc nearest neighbors of particle i, the noise term is proportional 
to nc (26).

The parameters , ,  set the magnitude of the terms which they 
multiply. The distance-dependent force fij acts along the direction 
between i and j, eij = rij/∣ rij∣, with rij = ri − rj, and is defined as

	​​ 

​f​ ij​​(​r​ ij​​  < ​ r​ b​​ ) = − ∞ ​ e​ ij​​ ,

​  
​f​ ij​​(​r​ b​​  < ​ r​ ij​​  < ​ r​ a​​ ) = ​ 1 ─ 4 ​ ​ 

​r​ ij​​ − ​r​ e​​ ─ ​r​ a​​ − ​r​ e​​ ​ ​e​ ij​​ ,​  
​f​ ij​​(​r​ a​​ < ​r​ ij​​ < ​r​ 0​​ ) = ​e​ ij​​ ,

​  

​f​ ij​​(​r​ ij​​  > ​r​ 0​​ ) = 0

 ​​	

with ra, rb, re, r0 suitable length scales. More precisely, rb rep-
resents the particle size, and r0 sets the interaction range in such a 
way that particles are insensitive to each other when their distance 
exceeds r0. The radii ra and re set the magnitude and direction of the 
force fij, which is attractive and repulsive when rij > re and rij < re, 
respectively.

We set the parameters , , , nc, ra, rb, re, r0 and the direction of 
the field h, and then we initialize the system by placing all the parti-
cles in a two-dimensional area and by associating to each particle a 
(normalized) velocity given by the angle i, i = 1, …, N randomly 
and uniformly drawn in [0,2] (see Eq. 8). Next, we let the particles 
move according to Eqs. 14 and 15. In an effort to emulate the posi-
tional uncertainty due to the camera pixels in the experiments above, 
for each simulation, we assumed that the positions are affected by 
an error  = 0.02 and rounded off the cell positions according to this 
error (see section S5 for details). The numerical value of  has been 
chosen so as to obtain a fraction of nondefined directions of motion 
roughly comparable with the experimental ones. After a large enough 
number of iterations, we collect the resulting configurations of ve-
locities vi(t), t = 1, ⋯, T, the related normalized velocities, and the 
lower and upper bounds for 〈C〉 and 〈M〉, which we then used in the 
MEb method.

We would like to stress that, unlike the XY model where the 
Hamiltonian has the same form and parameter structure as the 
MEb model (Eq. 13), for the SP model, a direct comparison be-
tween P = {, , } and the output Jinf, Hinf of the MEb is no longer 
possible. In particular, the former model is built out of mean-field 
interactions, while the latter involves a non–mean-field inter-
action structure. Despite the fact that there is no one-to-one map-
ping between the parameters of the two models, the interaction 
parameter J in the MEb Hamiltonian (Eq. 13) can be related to the 
parameter  in the SP dynamics, which sets the strength of the 
alignment between particle velocities. In fact, the inferred value of J 
appears to be positively correlated with  (see fig. S2), indicating 
that the MEb model correctly captures the tendency of SP parti-
cles to align their directions of motion. More precisely, in fig. S2, 
we set  = 0 and vary , and we correctly infer a vanishing field H, 
while the inferred value of J is non-null. However, we observe that 
Jinf seems to depend also on N, and its dependence on  appears to 
be nonlinear. On the other hand, by setting  = 1.2 and varying  
by fixing h directed in the direction −/4, we correctly infer a linear 
relation between Hinf and , while Jinf still exhibits a slight depen-
dence on N and .
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In addition, we performed the inference analysis of fig. S2 with a 
mean-field SP model with nc = N − 1, where each particle interacts 
with all the other ones, and found that the resulting level of accuracy 
of the inference analysis is similar to the one for an SP model with 
short-range interactions, i.e., fig. S2. This indicates that the accuracy of 
the inference analysis for the SP model is not directly related to the 
mean-field structure of the MEb model (Eq. 13), but it may depend 
on a variety of features of the SP model, e.g., its out-of-equilibrium 
dynamics, topological interaction structure, and the form of inter-
particle forces.

Last, we present an additional test of the MEb method. For a given 
parameter configuration  = 1.2,  = 4,  = 2.2, and nc = 9, we 
performed Q = 100 simulations of the SP with N = 60 particles and 
collected T = 360 snapshots of their positions. For each simulation, 
we rounded off the cell positions as discussed above and, by using 
this positional uncertainty, we obtained the lower and upper bounds 
for the feature averages 〈C〉 and 〈M〉, which we used to infer J and H 
with the MEb. Furthermore, we considered the connected correla-
tion function between motional correlation and polarization 〈CM〉 − 
〈C〉〈M〉. We compute this quantity both from the inferred MEb 
model above and from the data and compare them in fig. S3. The MEb 
model is based on the average correlations and polarization 〈C〉 and 
〈M〉 only, not on their cross correlation 〈CM〉 − 〈C〉〈M〉: As a result, 
the MEb prediction for the connected correlation involves no free 
parameters. First, fig. S3 shows a good agreement between model 
and empirical connected correlation. Second, the MEb method re-
produces quantitatively the negative correlation between the x and 
y components of 〈CM〉 − 〈C〉〈M〉 across multiple simulations—the 
larger the x component, the smaller the y component. Overall, the 
analysis above indicates that the MEb method, which is based on 
averages of empirical features only, is able to describe and capture 
also more complex statistical properties, e.g., the cross correlation 
between two of such experimental features (14). Given the satisfactory 
results of the MEb on these benchmark datasets, in what follows, we 
will present the experimental data of our study, discuss their statis-
tical features, and analyze them with the MEb.

Experiments
In the wound-healing experiment, a population of human cancer-
ous epithelial cells migrates in a planar device in which we realized 
a wound (see Fig. 2 and the “Wound-healing experiment” section 
for details). In the dendritic cell experiment, cells move in a spatially 
varying concentration of chemokines built along the horizontal axis 
of the device (see Fig. 3 and the “Dendritic cell experiment” section 
for details).
Analysis of cellular trajectories
For both experiments, the data consists of the nominal coordinates 
ri(t), t = 1, …, Ti, where the length Ti of track i is cell dependent 
because the tracks may lie in the observation window for different 
periods, and the time lapse between two measurements is t = 5 min 
and t = 2 min for the wound-healing and dendritic cell experiment, 
respectively (see the “Wound-healing experiment” and “Dendritic 
cell experiment” sections for details). Therefore, tracks are regarded 
as discrete-time random walks, where the ith walker at time t takes 
a step ri(t) = ri(t + t) − ri(t), with length ri(t) = ∣ ri(t)∣ and 
velocity vi(t). In addition to the Cartesian coordinate system above, 
we describe the motion in a polar system where, at the tth time step, 
the ith track performs a step of length ri(t) in the direction described 
by the angle i(t) with respect to the horizontal axis.

In the remainder of this section, we introduce the fundamental 
motional features of the cells tracked in the two experiments, in 
view of the statistical analysis of the “Statistical inference analysis: 
Wound-healing experiment” and “Statistical inference analysis: 
Dendritic cell experiment” sections. First, we introduce the displace-
ment of cell i, i.e., Ri(t) = ri(t) − ri(0) and its square average ​​   ​R​​ 2​(t)​​ 
over all available tracks

	​​  ̄  ​R​​ 2​(t)​  = ​  1 ─ ​N​ t​​
 ​ ​ ∑ 
i=1

​ 
N

 ​​𝕀(​T​ i​​  ≥  t) ​∣​R​ i​​(t)∣​​ 2​​	 (16)

where the normalization Nt is the number of cells whose tracks 
have length larger or equal than t, i.e., ​​N​ t​​  = ​ ∑ i=1​ N  ​​ 𝕀(​T​ i​​  ≥  t)​. Also, 
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Fig. 2. Wound-healing experiment. (A) Fluorescence image showing the nuclei 
(red, H2B-mCherry) of HeLa cells migrating toward a wound located at the right edge 
of the image (scale bar, 100 m). (B) Tracked cell trajectories: The instantaneous 
position of each cell is marked with a circle, and the respective time is specified by 
the color code. Only a few representative cells are shown for clarity. (C) Polar histo-
grams for the angle  and (D) mean-squared displacement ​​ ̄  ​R​​ 2​(t)​​ versus time show 
that the motion is affected by a strong bias, which yields a mean-squared displacement 
growing quadratically in time: Experimental data are shown in dark color, and the 
best fit y = p1 + p2t + p3t2 with p1 = 33, p2 = 0.5, p3 = 0.01 is shown in bright color. 
The inset in (D) shows the number of tracks recorded at each instant of time to 
figure out the statistically significant time window. (E) Angle pairwise correlation ​​
ˆ ​(R)​ for the wound-healing experiment.
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we introduce the pairwise correlation of the angle  versus the dis-
tance R between cells, i.e.,

	​​   ​(R) = ​  1 ─ ​N​ R​​ ​ ​ ∑ 
i,j=1

​ 
N

  ​​​  ∑ 
t=1

​ 
min (​T​ i​​,​T​ j​​)

​​𝕀(∣​r​ i​​(t) −  ​r​ j​​(t)∣= R) ​​ i​​(t) ​​ j​​(t)​	 (17)

where the normalization NR is the total number of pairs at distance 
R, namely, ​​N​ R​​  = ​ ∑ i<j=1​ N  ​​ 𝕀(∣​r​ i​​(t) − ​r​ j​​(t)∣= R)​.

In what follows, we will discuss shortly the results of the analysis 
of motional data and refer to section S4 for details. In the wound-
healing experiment, the trajectories show a strong bias along the 
horizontal direction, evidenced by a sharply peaked polar histogram 
for the angle  (Fig. 2C) and a ballistic-like mean-squared displace-
ment ​​   ​R​​ 2​(t)​  ∝ ​ t​​ 2​​ (Fig. 2D). In addition, the angle pairwise correlation 
among cells is non-null, and it decays with respect to cell-cell dis-
tance (Fig. 2G). In the dendritic cell experiment, we found differ-
ent behaviors depending on the proximity to the chemokine-rich 
region (27). In chemokine-free region (zone 1), cells exhibit an iso-
tropic random walk with a uniform polar histogram for the angle 
of migration  (Fig. 3C) and a diffusive-like mean-squared displace-
ment ​​   ​R​​ 2​(t)​  ∝  t​ (Fig. 3D). On the other hand, in the region where there 
is a chemokine gradient (zone 2), cells perform a biased walk with 
a peaked polar histogram for the angle  (Fig. 3E) and a ballistic-
like mean-squared displacement ​​   ​R​​ 2​(t)​  ∝ ​ t​​ 2​​ (Fig. 3F). Moreover, 
Fig. 3G shows that angle pairwise correlation is absent in zone 1 and 
non-null in zone 2 and that, in both cases, no statistically significant 
dependence on R is found. Figure 3G shows that the correlation 
decay with distance is peculiar to the wound-healing experiment, 
and it suggests that diverse migratory mechanisms may be at work in 
the two experiments, possibly indicating the existence of a collective 
behavior in the wound-healing experiment. In this regard, in fig. S4, 
we show a visual comparison between the cell tracks of the wound-
healing and dendritic cell experiment, demonstrating that a naked-
eye inspection of the tracks does not allow to confirm or to rule out 
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Fig. 3. Dendritic cell experiment. (A) Microscope image of cells showing chemokine-
poor and chemokine-rich regions, i.e., zones 1 and 2, respectively, separated by green 
dashed lines (scale bar, 100 m). (B) Tracked cell trajectories in zones 1 and 2: The 
instantaneous position of each cell is marked with a circle, and the respective time 
is specified by the color code. Only a few representative cells are shown for clarity. 
Cells in zone 1 (C and D) move isotropically and diffusively (best fit y = p1 + p2t with 
p1 = − 90, p2 = 31), while cells in zone 2 (E and F) feel a drift and move ballistically 
(y = p1 + p2t + p3t2 with p1 = − 306, p2 = 99, p3 = 0.6). The insets in (D) and (F) show the 
number of tracks recorded at each time. (G) Angle pairwise correlation ​​  ​(R)​ for the 
three experimental instances above.
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Fig. 4. Analysis of the wound-healing experiment via ME method with bound 
constraints. (A) Full set of solutions of the KKT conditions in order of increasing 
entropy from left to right. Each solution is labeled with an integer shown on the 
abscissa, and the corresponding value of J (top), Hx (middle), and Hy (bottom) is 
represented with the color in the box. (B) Entropy per cell for each solution. 
(C) Modulus of the relative residual ineq of the inequality KKT conditions shown 
for each solution, where residuals that are positive and negative are marked in blue 
and red, respectively. (D) Modulus of relative residual eq of the equality KKT con-
ditions, shown for each solution. The numerical precision used in the calculation, ϵ, 
is marked in (C) and (D). Only the solutions with ineq ≥ 0 [blue columns in (C)] are 
admissible, i.e., solutions 12 and 19. Among these two solutions, solution 12 is the 
only one with eq ∼ ϵ, see (D), and it thus constitutes the only admissible, ME solution 
(green rectangle). In (B), unphysical solutions with negative probability are ruled 
out and not shown.
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the existence of a collective behavior in either of the two experiments. 
In fact, in both experiments, cells appear to be moving toward a 
source, and the existence of genuine collective effects is encoded in 
their trajectories in a nontrivial way. To unveil the presence of these 
mechanisms, in what follows, we will leverage the MEb method and 
find out whether cell motion is simply gradient driven or whether a 
collective migration is also at play.
Statistical inference analysis: Wound-healing experiment
To analyze the cell trajectories with the MEb, we estimated the un-
certainty on cell positions resulting from the finite pixel size (see 
Fig. 1 and section S5 for details), incorporated this uncertainty in the 
lower and upper bounds of empirical averages as described in the 
“ME methods” section, and used the MEb with these bounds.

First, we observe that the spread of the correlation average due to 
the experimental error, i.e., ​(​〈C〉​ex​ max​ − ​〈C〉​ex​ min​ ) / (​〈C〉​ex​ max​ + ​〈C〉​ex​ min​)​, can 
be as large as ∼50% (see table S1). Such a large spread indicates that 
it would be pointless to rely on the empirical averages only by using 
the classical ME method (14), thus demonstrating the need for a MEb 
formulation. The MEb solution is depicted in Fig. 4: A visual 
inspection of the full set of candidate solutions shows that there is a 
unique solution that has the largest entropy per cell s = S/N and 
which satisfies all constraints within numerical precision. As shown 
in Fig. 4, the results of the MEb analysis are J = 1.1, H = (0.018,0). 
Because J and H are multiplied by O(N) terms in the Hamiltonian 
(Eq. 13), these parameters should be considered to be significantly 
different from zero as long as they are of order unity: It follows that 
the MEb solution yields an interaction parameter J significantly dif-
ferent from zero, thus indicating the presence of a collective behavior 
in the cell migration of Fig. 2. In addition, the nonzero value of the 
x component of the external field may be ascribed to the attractive 
effect of the wound located on the right edge of the observation 
window (see Fig. 2A). Last, the null y component of the external 
field reflects the spatial homogeneity of the experiment with respect 
to the vertical direction.

It is important to point out that the result J ≠ 0 is consistent with 
the analysis of motional data of the “Analysis of cellular trajectories” 
section and section S4.1. The analysis shows that the empirical dis-
tribution of the cell velocities is exponential in the y direction, but it 
markedly differs from an exponential distribution in x direction, thus 
indicating that cells do not migrate as independent units. The exis-
tence of a cell-cell cooperation is also indicated by the analysis of angle 
correlations between cell pairs, ​​  ​(R)​, which decays with the intercellular 
distance R (see Fig. 2E) and by the pairwise correlation coefficient 
between the directions of motion, ​​ ~ ​​, whose mean is clearly different 
from zero (see fig. S5F).
Statistical inference analysis: Dendritic cell experiment
Proceeding along the lines of the wound-healing experiment, we 
estimated the uncertainty on cell positions resulting from the finite 
pixel size as described in section S5. This uncertainty results in 
broad confidence intervals for the feature averages: Indeed, table S2 
shows that the relative spread for the empirical average of the cor-
relation ​(​〈C〉​ex​ max​ − ​〈C〉​ex​ min​ ) / (​〈C〉​ex​ max​ + ​〈C〉​ex​ min​)​ can be as large as 100% 
and similarly for the polarization averages, thus confirming the 
need for the MEb approach.

Figures 5 and 6 show the MEb solution for the dendritic cell ex-
periment in the high- and low-density case and chemokine-poor and 
chemokine-rich regions, i.e., zones 1 and 2, respectively, and the 
resulting values of J and H are shown in table S2. First, we observe 
that the y component of the external field H is very small and that 

the x component vanishes in zone 1, while it is different from zero 
in zone 2 for all densities: This dependence of the inferred external 
field on the zone reflects the chemokine gradient built in the device 
in the horizontal direction (see Fig. 3).

Second, for all densities and zones, the MEb indicates that the 
interaction parameter, J, is null. This result is supported by the motional 
data analysis of the “Analysis of cellular trajectories” section. In fact,  
Fig. 3G demonstrates that the angle correlations between cell pairs, 
​​  ​(R)​, do not depend on the intercellular distance, and figs. S7F and S9F 
indicate that the pairwise correlation coefficient between the direc-
tions of motion, ​​ ~ ​​, has zero mean. Overall, these results are markedly 
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Fig. 5. Statistical inference analysis of the dendritic cell experiment with high 
cell density with the ME method with bound constraints. (A to D) Analysis for 
data in zone 1, where we use the same notation and the same procedure to select 
the ME solution as in Fig. 4. (E to H) Analysis for zone 2. The numerical values of 
J and H for the MEb solutions are shown in table S2.
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different from the ones obtained for the wound-healing experiment 
in the “Statistical inference analysis: Wound-healing experiment” 
section, and they indicate that these dendritic cells migrate individ-
ually in the chemokine gradient.

DISCUSSION
Motivated by the recent ubiquitous applications of inference methods 
to biological systems (14–19) and by the importance of cell migra-
tion phenomena in both physiological and pathological contexts 
(3, 4), we proposed a statistical inference method to detect and single 
out cell-cell interactions in a population of migrating cells. In fact, while 

there is a variety of cases of collectively moving biological entities 
that do not have direct physical interactions, it is often unclear whether 
migrating cells, such as immune cells, could interact remotely, e.g., 
by means of diffusible factors or other intercellular signals, and thus 
display collective behaviors. This issue is particularly important when 
cells migrate in the same direction toward an external attractor, e.g., 
a biochemical signal: It is difficult to tell whether cells all go in the 
same direction independently of each other simply because they are 
all attracted by the same cue or whether they also interact with each 
other through some signals.

To address this question, we proposed a statistical inference 
method specifically designed for cell-tracking experiments, which is 
capable of handling the empirical uncertainties specific to tracking 
processes, such as the errors resulting from finite camera resolution, 
missing tracks, and others. In addition, the mean-field structure of 
our inferred statistical model allows an explicit solution even for a 
finite number of cells—a feature that may prove to be particularly 
useful for, say, experiments on lab-on-a-chip technology, where the 
number of tracked cells can be small.

To check the soundness of our inference approach, we first tested 
it on synthetic datasets, i.e., trajectories generated from an XY model 
of spins, and on tracks generated from a non–mean-field SP model 
of particles. We find, overall, a good agreement between the original 
and inferred values of the model parameters, e.g., the spin-spin couplings 
and the strength of the external field to which the SP particles are 
subject.

Building on the results above, we applied our method to two 
prototypical cell migration experiments: Mesenchymal migration 
toward a wound and amoeboid migration of immune cells, i.e., dendritic 
cells, following a chemokine gradient. The inference analysis gives 
strong evidence of intercellular interactions for the wound-healing 
experiment, which served as a stereotypical case of collective migration, 
thus providing a positive control for detection of cell-cell interactions 
by our method. As far as the dendritic cell experiment is concerned, 
immune cells release molecules toward the extracellular milieu, 
which could steer the migration of adjacent cells (7). The release of 
vesicles or small molecules to extracellular milieu as a mechanism 
of paracrine cell communication allows coordinated migration in a 
contact-independent manner in other cellular systems (9, 28). Sim-
ilarly, dendritic cells release adenosine triphosphate (ATP), which 
acts in an autocrine manner (8), but it is unknown whether it can 
affect the migration of adjacent cells. Nonetheless, our inference 
method did not provide evidence of cell-cell interactions during 
dendritic cell chemotaxis, revealing that these cells move inde-
pendently toward the gradient.

From the statistical inference standpoint, the results above sup-
port the validity of a mean-field ME model (Eq. 13). First, the ME 
with bound constraints yields qualitatively correct results for the SP 
model, which contains non–mean-field interactions, and the non-
zero interaction inferred in the wound-healing experiment correctly 
mirrors the existence of actual cell-cell contacts. Second, the prediction 
of a null interaction in the dendritic cell experiment is in agreement 
with the statistical analysis in the “Analysis of cellular trajectories” 
section (see the absence of a correlation decay with distance in 
Fig. 3G). In sum, these results indicate that the mean-field ME model 
yields, at the least, qualitatively correct results on the existence or 
absence of cell-cell interactions.

In addition, it is important to point out that the statistical inference 
method that we proposed detects cell-cell interactions that are 
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Fig. 6. Statistical inference analysis of the dendritic cell experiment with low 
cell density with the ME method with bound constraints. (A to D) Analysis for 
data in zone 1, where we use the same notation and the same procedure to select 
the ME solution as in Fig. 4. (E to H) Analysis for zone 2. The numerical values of 
J and H for the MEb solutions are shown in table S2.
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instantaneous, i.e., whose propagation time is much shorter than all 
other time scales: The observables that have been chosen in the ME 
method (Eq. 9) involve directions of motion si(t) · sj(t) of cells i and 
j evaluated at the same instant of time t (see the “ME methods” 
section). Despite the fact that such instantaneous interactions have 
been used in a variety of statistical inference studies for biological 
systems (14, 15), other types of interactions may be present in cell 
migration experiments. For example, cell i may locally release a 
chemical compound along its migratory path, and cell j may cross 
the former path of i at a later time and thus feel a delayed interaction 
with i mediated by this compound. The implementation of a time-
lagged ME model goes beyond the scope of this work, but it may be 
studied by introducing, in the present model, features in which the 
directions of motion si and sj appear at different instants of time (29). 
The existence of a time-lagged interaction would denote a type of 
collective migration that is markedly different from the one addressed 
in this study. While instantaneous interactions characterize a genuinely 
collective behavior, time-lagged interactions would be rather an 
indirect effect due to the fact that cell i alters the environment in 
which cell j moves. As a result, the absence of instantaneous cell-cell 
interactions resulting from our analysis indicates the lack of a genuinely 
collective behavior in the dendritic cell experiment.

An additional interesting extension of our analysis would consist 
of introducing further observables in the ME model. For instance, 
while the correlation and polarization (Eqs. 9 and 10) involve averages 
over the entire cell population, one could restrict these averages to 
cells lying in a specific spatial region, e.g., zone 1 or 2 in the dendritic 
cell experiment. While this complex feature structure goes beyond 
the minimal ME model that we propose in our analysis, it may pro-
vide additional insights on cell-cell interactions in relation to their 
proximity to the signaling source.

From a biological standpoint, our statistical method may provide 
unprecedented insights on the strategy by which dendritic cells per-
form their function. Indeed, to trigger the immune response, dendritic 
cells need to uptake an antigen in the peripheral tissues and then quickly 
reach the lymph nodes via the lymphatic vessels (30): In this regard, 
our statistical inference analysis suggests that dendritic cells indi-
vidually follow signals from the lymphatic vessels (i.e., CCL21 
chemokine), disregarding any other signal. It is conceivable that such 
absence of cell-cell interactions during dendritic cell migration may 
correspond to a mechanism to undergo their main function. In fact, 
dendritic cell migration markedly differs from the one of other 
immune cells, e.g., neutrophils, which, when receiving an attractive 
signal from a pathogen, emit secondary signals to attract other neutro-
phils on site (31). For dendritic cells, only the cells activated directly 
by the pathogen should leave the tissue to reach the lymph nodes: 
As a result, the fact that these cells should not emit such signal to 
attract other cells allows a natural interpretation of our statistical 
inference results. Last, the individual migratory mechanism that we 
inferred may allow the cells to disregard not only intercellular but also 
external signals that might delay their arrival toward the lymphatic 
vessels and ultimately to the lymph nodes, thus constituting a strategy 
to reach the vessels as efficiently as possible. Further studies should 
be done in this direction to corroborate these hypotheses.

Overall, the statistical inference method presented in this analy-
sis may be applied not only to cell-tracking experiments but also to 
a wide variety of biological systems, some of which have attracted 
growing interest in the past few years. Notable examples are the in-
ference of motional order in flocks of birds (14), collective behavior 

in networks of neurons (15, 16), interaction patterns resulting from 
amino acid sequences in protein families (17, 18), and interaction 
structure of genetic networks (19). In all these instances, both the 
experimental and data analysis procedure may introduce a variety 
of errors in the estimates of experimental features, which can be 
naturally handled with the ME method with bound constraints pre-
sented in this analysis.

MATERIALS AND METHODS
Wound-healing experiment
For the wound-healing experiment, human cancerous epithelial cells 
(HeLa) from adenocarcinoma were used. HeLa cells stably trans-
fected with H2B-mCherry that allows live imaging of the nucleus were 
cultured in DMEM (Dulbecco’s modified Eagle’s medium containing 
glutamax), 10% fetal bovine serum, and 1% penicillin-streptomycin. 
Once confluence was reached, HeLa H2B cells were detached with 
trypsin and 0.5 × 106 cells were plated in a FluoroDish 24 hours 
before the experiment. Then, a monolayer was formed, and four 
scratches were done (two in the vertical axis and two in the horizon-
tal one) using a 200-l pipette tip. Medium was changed twice after 
the scratching to remove detached and dead cells. The dishes were 
left in the incubator at 37∘C for 4 hours before starting the experi-
ment. Phase-contrast images were acquired every 5 min overnight 
with a DMi8 inverted microscope (Leica), at 37∘C with 5% CO2 
atmosphere using a 10× dry objective [numerical aperture (NA) 
0.40 phase], binning 2. In addition to phase contrast, mCherry flu-
orescence was also imaged.

Dendritic cell experiment
Bone marrow–derived dendritic cells (BMDCs) were prepared as 
previously described (8). Briefly, mouse bone marrow precursors were 
obtained from wild-type C57/B6 mice and were differentiated in vitro 
for 10 days with granulocyte-macrophage colony-stimulating factor–
containing culture medium, obtained from transfected J558 cells. 
At day 10, cells were stimulated with a pulse bacterial lipopoly-
saccharide (LPS; 100 ng/ml), as previously described (32). The 
migration experiments in collagen gels were performed as previously 
described (27). LPS-stimulated BMDCs were mixed with bovine 
collagen type I at 3 mg/ml and loaded in a custom-made chamber of 
polydimethylsiloxane. After 30 min of incubation at 37∘C, gel poly
merization was reached and samples were bathed with a medium 
containing CCL21 (200 ng/ml). Last, imaging was done as for the 
wound-healing experiment, but the period of acquisition was 2 min.
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Fig. S1. Test of ME method with bound constraints on synthetic data for the XY model.
Fig. S2. Test of ME method with bound constraints on synthetic data for the SP model.
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Fig. S6. Empirical distributions for cell velocities in the wound-healing experiment.
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