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Abstract

Cost-effectiveness analyses often rely on cohort state-transition models (cSTMs). The cohort trace 

is the primary outcome of cSTMs, which captures the proportion of the cohort in each health state 

over time (state occupancy). However, the cohort trace is an aggregated measure that does not 

capture information about the specific transitions among health states (transition dynamics). In 

practice, these transition dynamics are crucial in many applications, such as incorporating 

transition rewards or computing various epidemiological outcomes that could be used for model 

calibration and validation (e.g. disease incidence and lifetime risk). In this manuscript, we propose 

an alternative approach to compute and store cSTMs outcomes that capture both state occupancy 

and transition dynamics. This approach produces a multidimensional array from which both the 

state occupancy and the transition dynamics can be recovered. We highlight the advantages of the 

multidimensional array over the traditional cohort trace and provide potential applications of the 

proposed approach with an example coded in R to facilitate the implementation of our method.
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State-transition models (STM) are decision models commonly used in cost-effectiveness 

analysis (CEA) to estimate economic and health outcomes of different strategies over time in 

discrete time cycles.[1, 2] In a cohort STM (cSTM), the disease dynamics are captured by 

distributing a closed cohort among a mutually exclusive and collectively exhaustive set of 

health states.[2, 3, 4] The cohort trace is the primary outcome of cSTMs, which comprises 

the proportion of the cohort in each health state over time (i.e., it summarizes state 

occupancy).[5, 1] A limitation of the cohort trace is that it does not keep track of the 

transitions among health states over time (i.e., the transition dynamics of the cohort). As a 

consequence, it can only be used to capture outcomes that result from residing in a state for 

a full cycle by applying the so-called state rewards and does not contain a mechanism to 

assign transition rewards, which are applied only when specific transitions occur. It also 

limits the type of epidemiological outcomes that can be obtained from cSTMs. For example, 

obtaining incidence of a disease requires knowledge of the proportion of the population 

transitioning from a subset of states without disease to the state(s) representing the disease 

of interest.

To overcome the limitations of the cohort trace, we propose a multidimensional array-based 

approach that serves as a full summary of cSTM dynamics that complements the already 

useful cohort trace. The proposed approach, called the dynamics-array approach, allows 

modelers to efficiently calculate all measures of interest that rely on transition dynamics and 

at the same time to aggregate all model dynamics into a standard cohort trace.

We start by providing a formal definition of cSTM components and the cohort trace. We 

complement this standard notation with a description of the detailed transition dynamics. 

Then, we introduce the multidimensional-array structure and show how it can be easily 

generated. In addition, we illustrate its use to compute a measure of interest that depends on 

transitions among health states. Finally, we demonstrate the dynamics-array approach with 

an illustrative example of a cSTM programmed in R [9, 10] and compare this 

implementation with the traditional cohort trace approach in a simulation study. The R code 

is provided in the supplementary material and in GitHub https://github.com/DARTH-git/

state-transition-model-dynamics).

Traditional cohort trace approach

We denote the distribution of the cohort across ns health states in a cSTM at the beginning of 

cycle t for all t in 0,…, nt as the state vector mt of dimensions 1 × ns. That is, each element 

in mt represents the proportion of the cohort in health state i = 1,…, ns at time t. Thus, mt is 

written as

mt = m[t, 1] m[t, 2] ⋯ m[t, ns] , (1)
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where the initial state vector m0 contains the distribution of the cohort across all ns health 

states at the start of the simulation. The simulation begins at cycle 0 and all transitions are 

assumed to happen at the end of each cycle. The probability of transitioning from health 

state i to health state j at the end of cycle t is denoted as p[i,j,t]. This means that p[i,j,t] 

determines how the population will be distributed in cycle t + 1. The collection of transition 

probabilities across the model states over the time horizon forms the time-dependent state 

transition probability matrix, Pt of dimensions ns × ns,

Pt =

p[1, 1, t] p[1, 2, t] ⋯ p[1, ns, t]

p[2, 1, t] p[2, 2, t] ⋯ p[2, ns, t]

⋮ ⋮ ⋱ ⋮
p[ns, 1, t] p[ns, 2, t] ⋯ p[ns, ns, t]

. (2)

For any t, all rows of Pt must sum to one. Note that if Pt is equal for all t times, equation (2) 

becomes a time-homogeneous transition probability matrix, where Pt = P.

The state vector at cycle t + 1, mt+1, is then obtained by the inner product between the state 

vector at cycle t, mt, and the corresponding transition probability matrix Pt, such that

mt + 1 = mtPt for t = 0, …, (nt − 1) . (3)

Stacking the state vectors by rows for all t = 0,…, nt results in the full cohort trace matrix, 

M, of dimensions (nt + 1) × ns, where each row is a state vector (−mt−), resulting in

M =

−m0 −
−m1 −

⋮
−mnt −

. (4)

Together, the state vectors mt, the transition probability matrices Pt and the cohort trace M in 

equations (1), (2) and (4), respectively, represent the three main components of a cSTM.

Dynamics-array approach

The trace matrix M aggregates transitions from all the states to a specific state, thus loses 

details of the transition dynamics. We propose to use a multidimensional array, A, of 

dimensions ns × ns × (nt + 1) to store the proportion of the cohort that transitions between 

any two health states in each cycle over the time horizon. This array can be thought of as a 

set of two-dimensional matrices stacked along a third dimension that represents time. Below, 

we illustrate how to compute A from the three main components, the state vector mt, the 

transition probability matrices Pt and the cohort trace M, of cSTMs.

A0 represents the first "slice" of A. We compute A0 as a matrix containing the initial state 

vector m0 in its diagonal and 0s in the off-diagonal, such that
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A0 = diag(m0) =

m[0, 1] 0 ⋯ 0
0 m[0, 2] ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ m[0, ns]

. (5)

Each subsequent (t + 1)th "slice" of A is obtained by multiplying a diagonal matrix of mt, 

denoted as diag(mt), by Pt, such that

At + 1 = diag(mt) ⋅ Pt for t = 0, …, (nt − 1) . (6)

The resulting elements of the tth slice of A, At for t > 0, are

At =

a[1, 1, t] a[1, 2, t] ⋯ a[1, ns, t]

a[2, 1, t] a[2, 2, t] ⋯ a[2, ns, t]

⋮ ⋮ ⋱ ⋮
a[ns, 1, t] a[ns, 2, t] ⋯ a[ns, ns, t]

, (7)

where a[i,j,t] is the proportion of the cohort that transitions from state i to state j between 

cycles t – 1 and t, generated via

a[i, j, t] = m[t − 1, i]p[i, j, t − 1] for t = 1, …, (nt − 1), (8)

where m[t–1,i] is the proportion of the cohort in state i at cycle t – 1 and p[i,j,t–1] the 

corresponding transition probability of transitioning from state i to state j at the end of cycle 

t – 1. In other words, A stores the transition dynamics of a simulated cohort in a cSTM.

Figure 1 presents graphically the computation involved in both the traditional cohort trace 

approach (a) and the dynamics-array approach (b) and shows the structures of the resulting 

cohort trace M and dynamics-array A (c).

In R, it takes only a few lines of code to generate A complementary to M (Box 1).

The cohort trace M can be computed from A by obtaining the t-th row of M, mt, summing 

each of the columns of At as follows:

mt = 1T At = ∑
i = 1

ns
a[i, 1, t], ∑

i = 1

ns
a[i, 2, t], …, ∑

i = 1

ns
a[i, ns, t] , (9)

where 1 is a vector of ones of dimension ns × 1. Although M can be obtained from A, we 

prefer to compute both M and A simultaneously. Once generated, both M and A can be 

exported as data objects that contain all the information about the cSTM dynamics, which 

can then be used in future calculation of outcomes of interest.
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Applying state and transition rewards

One of the main advantages of A over M is the ability to incorporate transition rewards. 

Here, we demonstrate how to apply both state and transition rewards (e.g. utilities or cost) to 

the cSTM by using the dynamics array, A. Let Rt be a reward matrix of dimensions ns × ns 

that contains both state and transition rewards:

Rt =

r[1, 1, t] r[1, 2, t] ⋯ r[1, ns, t]

r[2, 1, t] r[2, 2, t] ⋯ r[2, ns, t]

⋮ ⋮ ⋱ ⋮
r[ns, 1, t] r[ns, 2, t] ⋯ r[ns, ns, t]

, (10)

where r[i,j,t] is the reward associated with transitioning from state i to state j at the end of 

cycle t. When j = i, r[i,i,t] is the reward associated with staying in the ith health state at cycle 

t. That is, the off-diagonal entries of Rt store the transition rewards and the diagonal of Rt 

stores the state rewards for cycle t. Note that if Rt is equal for all t times (i.e., neither state 

nor transition rewards vary over time), equation (10) becomes a time-homogeneous rewards 

matrix, where Rt = R.

The state and transition rewards can be applied to the model dynamics by element-wise 

multiplication between At and Rt, indicated by the ⊙ sign, which produces the matrix of 

outputs at cycle t, Yt. Formally,

Y t = At ⊙ Rt . (11)

With this approach, the state rewards are accounted for at the beginning of the cycle and the 

transition rewards -assumed to happen at the end of the cycle- are accounted for at the next 

cycle.

In R, applying these rewards required one additional line of code compared to Box 1, as 

shown in line 5 of Box 2.

The total rewards for each health state at cycle t, rt, is obtained by summing the rewards 

across all j = 1,…, ns health states.

rt = 1TY t = ∑
i = 1

ns
Y [i, 1, t], ∑

i = 1

ns
Y [i, 2, t], …, ∑

i = 1

ns
Y [i, ns, t] . (12)

Implementation in R using an illustrative example

To facilitate the implementation of the dynamics-array approach, we demonstrate its use 

with a stylistic healthy-sick-dead 3-state time-homogeneous cSTM example coded in R.[10] 

The model is used to simulate a cohort of 70-year-old individuals to compute their expected 

costs and quality-adjusted life years (QALYs) accrued over their remaining lifetime 
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accounting for several transition rewards. Accounting for transition rewards with the 

traditional cohort trace approach is possible, however this requires creating additional 

temporary health states that keep track of the transitions. For our simple 3-state model this 

already requires two additional temporary states. In more complex models, accounting for 

transition rewards will result in state explosion and consequently, it is more likely to make 

errors while coding these models. The explanation of the state expansion and the R code for 

the traditional cohort trace approaches for our stylistic model can be found in the 

supplementary material and on GitHub (https://github.com/DARTH-git/state-transition-

model-dynamics). GitHub also provides some code that shows that both approaches give 

identical results.

Comparison of methods using a simulation study

We conducted a simulation study to compare the computation time and memory 

requirements of the dynamics-array and traditional cohort trace approaches. We created a 

full factorial (13 × 110) design of experiment with the number of health states (from 2 to 62 

with increments of 5 states) and the number of cycles (from 12 to 1320 with increments of 

12 cycles) in a cSTM as the factors of the simulation study. We ran this full factorial 

experiment 10 times and took the average of the required time and memory to smooth out 

the variations in the computation time of R. Correcting for variation in R computation time 

is important, because the total required time is small (<50 seconds) and even a small 

variation (e.g. 3-5 seconds) could affect our results. Figure 2 shows that the dynamics-array 

approach is both faster (140-times with 62 health states, top part Figure 2) and requires less 

memory than the traditional cohort trace approach as the number of states increases (bottom 

part Figure 2). A more detailed description of the output of the simulation study is included 

in the supplementary material and the code is available on GitHub.

Estimation of epidemiological measures

By obtaining A, it is possible to compute epidemiological outcomes that otherwise would 

not have been easily derived from M. For example, obtaining incidence and lifetime risk 

from M would require creating additional steps, variables or health states. Epidemiological 

outcomes could be used as outputs of simulation models for calibration or validation 

purposes. A full exposition of computing epidemiological measures from A is case-specific 

and is beyond the scope of this brief report. However, we illustrate the potential application 

of our approach with an example below.

Consider a cSTM with ns > 3 health states. We are interested in calculating a ratio et of those 

that transition from health state 2 to health state ns at cycle t to those that make the transition 

to health state ns from health states 1, 2 and 3. Using the dynamics-array approach, the ratio 

et can be computed as

et =
a[2, ns, t]

a[1, ns, t] + a[2, ns, t] + a[3, ns, t]
for t = 1, …, nt . (13)
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With the traditional cohort trace approach, calculating this ratio would require adding three 

temporary health states to distinguish those that transition to ns from the health states 1, 2 

and 3.

Discussion

We propose a multidimensional-array approach to overcome a limitation of the cohort trace 

produced by cSTM in not being able to store transition dynamics. The practical application 

of our approach involves adding a simple step to the traditional cohort trace approach that 

stores all transitions among health states over time in multidimensional array A. We 

described the multidimensional-array approach for a general cSTM where transitions are 

allowed from any state to others within a cycle, but our approach can also be applied to 

models that only allow one-state transition in a cycle (i.e., where the pi,j,t are zero for those 

transitions that are not allowed).

Traditionally, researchers have dealt with this limitation of the cSTM cohort trace by 

creating temporary health states that collect the state-to-state transition information. 

However, as we showed in our method comparison section, this solution can quickly 

complicate a model and result in an explosion of the number of health states. Using an 

individual-based microsimulation STM is another alternative [1], with considerable 

implications on computational time.[11]

Another method that explicitly keeps track of state-to-state transitions is through a discretely 

integrated condition-event (DICE) simulation.[8, 7] DICE is a modeling technique that can 

free up some of the Markov restrictions that makes it possible to explicitly include many 

events occurring at various times. Although DICE simulation is a well-structured method, 

and the authors of the DICE papers provided very useful supplementary files to apply the 

method, we see the dynamics-array approach as a relatively simpler method to compute than 

DICE to overcome the limitation of the cohort trace on applying transition rewards and 

generating all the epidemiological outcomes of interest.

A potential limitation of the use of A is the additional computation needed when building 

the model. However, for many applications this may be a minor limitation given the matrix-

based computational efficiency of current computers. Another potential limitation is the 

additional storage memory required to store A, which could become a limitation in systems 

with limited memory. This could be an issue for computationally complex models with 

multiple states. However, the benefit of using A for large models is that all the complexity in 

the model dynamics is summarized into a compact structure which makes it relatively simple 

to extract information or to apply new rewards without re-running the model.

In conclusion, structuring the output of cSTMs using the dynamics-array is an efficient, 

simple and convenient approach to summarize the model dynamics. This simple structure 

allows applying state and transition rewards and obtaining epidemiological measures, while 

still being able to obtain and display the conventional cohort trace.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

R code to iteratively generate the cohort trace M and the dynamics array A.

1 for (t in 1:n.t) {  # loop through the number of cycles

2   m_M [t + 1, ]     <- m_M [t, ] %*% m_P          # estimate the state 

vector for the next cycle (t + 1)

3   a_A [, , t + 1]   <- diag (m_M [t, ]) %*% m_P   # estimate the 

transition dynamics at t + 1

4 }
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Box 2:

R code to apply time-invariant state and transition rewards to the model 
dynamics stored in array A.

1 for (t in 1:n.t) { # loop through the number of cycles

2   m_M [t + 1, ] <- m_M [t, ] %*% m_P         # estimate the state 

vector for the next cycle (t + 1)

3   a_A [, , t +1] <- diag (m_M [t, ]) %*% m_P # estimate the transition 

dynamics at t + 1

4   # element-wise-multiplication of array A with the rewards matrices to 

apply both state and transition rewards

5   a_Y [, , t + 1] <- a_A [, , t + 1] * m_R

6 }
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Figure 1: 
(a) The cohort trace approach computes each row vector mt+1 of the cohort trace M, where 

mt+1 describes the distribution of the simulated cohort among the different health states at 

time t + 1. mt+1 results from multiplying the state vector mt (gray) by the transition 

probability matrix Pt. (b) The dynamics-array approach computes matrix At+1 containing 

information regarding the transition dynamics of the simulated cohort at time t + 1. The state 

vector mt is highlighted (gray) to emphasize that the information in both approaches is 

identical. (c) Shows the resulting matrix M and array A of the approaches (a) and (b), 

respectively.
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Figure 2: 
Computation time and memory storage of the two approaches as a function of the number of 

states when running the model for 1,320 cycles. The top left panel shows the absolute 

computation time in seconds of both approaches. The top right panel shows the relative 

speedup of the dynamics-array approach compared to the traditional cohort trace approach. 

The horizontal line at y-axis equals 0 indicates when the two approached are equally fast. 

The bottom left panel shows the absolute memory storage in megabytes (MB) of the two 

approached, while the bottom right panel shows the relative required memory of the 

dynamics-array approach compared to the traditional cohort trace approach. The horizontal 

line at y-axis equals 1 indicate when both approached required the same memory storage. 

Above the line the traditional cohort trace requires less memory, while below the line the 

dynamics-array approach requires less memory. All results are based on the average of 10 

simulations. This was done to smooth out the variations caused by the computation time of 

R.
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