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Abstract

Introduction: Parkinson’s disease is a devastating neurodegenerative disorder preferentially 

involving loss of dopaminergic neurons in the substantia nigra, leading to typical motor symptoms. 

While there are still no therapeutics to modify disease course, recent work using induced 

pluripotent stem cell (iPSC) and 3D brain organoid models have provided further insight into 

Parkinson’s disease pathogenesis and potential therapeutic targets.

Areas covered: This review highlights the generation of iPSC neurons and neural organoids as 

models for studying Parkinson’s disease. It further discusses the recent work using patient-derived 

neurons from both familial and sporadic forms of Parkinson’s to study disease pathogenic 

phenotypes and pathways. It additionally provides an evaluation of iPSC neurons and organoid 

models for therapeutic development in Parkinson’s.

Expert opinion: The use of Parkinson’s disease patient-derived neurons and organoids provides 

us with the exciting opportunity to directly investigate pathogenic mechanisms and test drug 

compounds in human neurons. Future studies will involve generating more sophisticated models 

of brain organoids, studying neuronal pathways using larger patient cohorts, and routinely 

assessing therapeutics in these models.
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1. Introduction

1.1. Induced Pluripotent Stem Cells

The discovery in 2006 of four transcription factors (Sox2, Oct3/4, c-myc, and Klf4) marked 

the development of pluripotent stem cells from mouse fibroblasts [1], and was later 
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replicated in human somatic cells [2, 3]. Current research efforts have identified protocols 

for generating induced pluripotent stem cells (iPSCs) from dermal fibroblasts, hematopoietic 

stem cells, adipocytes, and peripheral blood mononuclear cells [4, 5, 6, 7]. Together, these 

findings have opened the field to new advances in patient-specific cell lines and 

circumvented the need for embryonic stem cells which require gene editing and are linked to 

ethical concerns [8, 9, 10]. Furthermore, pluripotency now allows researchers to selectively 

differentiate stem cells into any somatic cell type, resulting in the generation of disease 

relevant tissues for study. iPSCs additionally offer a strategy for disease modeling using 

patient-specific cell lines and disease-relevant genetic backgrounds, thus allowing for new 

opportunities in therapeutic development and drug screening applications (Figure 1).

1.2. IPSC-Derived Neurons

Due to the lack of access to human neuronal tissues [11] and the intrinsic differences in 

animals models from human pathologies [12, 13], iPSCs provide new methods for modeling 

disease pathology for multiple neurodegenerative diseases including Alzheimer’s, 

Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), and Huntington’s disease. Specifically, 

the identification of neural fate induction by TGFβ antagonists through dual SMAD 

inhibition [14] has led researchers to further develop protocols for differentiating iPSCs into 

multiple different neuronal subtypes (cortical, cholinergic, dopaminergic, GABAergic, 

hippocampal, hypothalamic, motor, serotonergic and Purkinje neurons) as well as glial cells 

(astrocytes and oligodendrocytes) [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31]. Furthermore, iPSC differentiation protocols have also been optimized to produce 

mature electrophysiological neurons supporting basic synaptic functions [32, 33] and have 

also been transplanted into primates for potential therapeutic applications [34]. For 

Parkinson’s disease (PD), the ability to generate patient-derived dopaminergic neurons has 

proved to be particularly insightful, with current differentiation protocols using dual-SMAD 

inhibition followed by Sonic Hedgehog and FGF8b signaling, and subsequent maintenance 

in BDNF, GDNF, ascorbic acid, and cAMP [35]. Importantly, multiple studies have been 

able to recapitulate key PD pathological features and shed light on new mechanistic 

pathways using patient-derived iPSC dopamine neurons, which will be discussed in further 

detail in this review.

1.3. IPSC-Derived Neural Organoids

Organoids are derived from stem cells in a 3-dimensional matrix such as Matrigel or animal-

derived hydrogels, which allow for efficient cell growth and differentiation. The successful 

growth of organoids further relies on the innate ability of stem cells to self-organize and 

form ordered structures and cyto-architecture [36], as well as their cell-cell interactions, and 

their ability to differentiate into diverse cellular populations [37, 38, 39]. Organoids have 

been used to model systems ranging from kidneys, liver, intestine, optic cup, cerebral, and 

midbrain regions [40, 41, 42, 43, 44, 45], reflecting the pluripotent state of iPSCs. 

Furthermore, organoids have become a critical tool in disease modeling from early stages of 

development following endogenous temporal stages within cell populations [37, 43], 

providing readily available models that can replicate disease phenotypes. Indeed, cerebral 

organoids have been used to model microcephaly, while midbrain organoids have been used 

to model sporadic PD [43, 46]. Importantly, 3D brain organoids further provide the potential 
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to model complex circuity by generating assembloids (assemblies of different region-

specific organoids) to better advance our understanding of the human brain. These include 

recent studies investigating cell migration in vitro, such as the migration of GABAergic 

neurons from the ventral forebrain to the dorsal forebrain [47] and neuronal circuity such as 

cortico-thalamic assembloids which demonstrate projections between deep layer cortical 

neurons and thalamic neurons [48, 49]. Of note, such organoids may be used to facilitate 

organ-on-a-chip technology to utilize patient-specific iPSC-derived neurons as an alternative 

to conventional preclinical models for drugs screening [50]. Thus, brain-region-specific 

organoids are a valuable asset for studying pathology of diseases during development, and 

further offer great potential for drug screening in tissue specific environments.

2. IPSC-Derived Neuronal and Organoid Modeling and Drug Discovery in 

Parkinson’s Disease

2.1. Parkinson’s Disease (PD)

Parkinson’s disease is associated with the progressive loss of A9-dopaminergic neurons in 

the substantia nigra leading to a loss of dopamine and the dysregulation of fine motor 

control localized in the basal ganglia. Ultimately, the death of dopaminergic neurons 

clinically manifests in parkinsonian symptoms including bradykinesia, muscular rigidity, 

and resting tremors [51] and pathologically involves the presence of Lewy Body aggregates 

comprised of α-synuclein [52]. PD exists as a multifaceted disease that presents itself 

clinically with some degree of heterogeneity [53, 54]. Approximately 10% of PD cases are 

familial with a genetically inherited mutation, while the rest are idiopathic and have an 

unclear etiology. At the cellular level, PD has been linked to defects in multiple pathways 

including abnormalities in mitochondrial and lysosomal function, protein accumulation, 

synaptic and axonal dysfunction, ER stress, and increased oxidative stress [51, 55]. 

Genetically, multiple genes have been linked to either dominant or recessive familial forms 

of PD including SCNA, LRRK2, PINK1, PARK2 (parkin) and GBA1, as well as additional 

genes such as DJ-1, PARK9 (ATP13A2), SJ-1 and VPS35. Thus, iPSC-derived neurons and 

organoids obtained from PD patients harboring mutations in these genes, as well as from 

idiopathic PD patients have allowed for new models for understanding PD pathology (Table 

1) and testing therapeutics.

2.2. IPSC-Derived Neuronal modeling in PD

2.2.1. α-Synuclein (SNCA) models—The SNCA gene encodes the 14kDa monomeric 

protein α-synuclein, which has been linked to multiple functions including lipid binding and 

regulation of synaptic vesicles, and is a major component of Lewy Body aggregates in PD 

patients [52, 56]. Additionally, α-synuclein is a flexible protein that takes on different 

confirmations dictated by cellular stress and ligand binding [57, 58]. Both N-terminal point 

mutations (A53E, A53T, A53V, A30P, E46K, H50Q, and G51D) [59] as well as genomic 

triplication of the SNCA locus [60] lead to autosomal dominant forms of familial PD [56].

iPSC-derived dopamine neurons (iPSC-DA neurons) generated from patients harboring 

mutant A53T α-synuclein or α-synuclein triplication have highlighted multiple pathways 

disrupted in patient neurons. These include increased nitrosative stress and mitochondrial 
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dysfunction [61], disrupted synaptic connectivity and transcriptional alterations in synaptic 

signaling genes [62] and reduced α-synuclein tetramer to monomer ratio [63] in mutant 

A53T α-synuclein neurons. In addition, iPSC-DA neurons carrying α-synuclein triplication 

which have elevated levels of α-synuclein [64] demonstrate increased oxidative stress 

markers [65], decreased lysosomal hydrolase trafficking and lysosomal GCase enzyme 

activity [66] and increased oxidized dopamine levels [12]. They have also been found to 

have increased mitochondrial permeability transition pore opening via α-synuclein 

aggregates that interact with the ATP synthase [67], increased unfolded protein response and 

ER stress [68], defective ER-mitochondria contacts via VAPB [69] and decreased neurite 

outgrowth and neuronal activity [70]. Moreover, both A53T and α-synuclein triplication 

neurons have shown defects in mitochondrial respiration, membrane potential, morphology 

and expression of genes linked to mitochondrial function [71], as well as abnormal 

accumulation of Miro on the outer mitochondrial membrane contributing to delayed 

mitophagy [72]. Additionally, α-synuclein duplication and oligomer forming mutants (E46K 

and E57K) lead to impaired axonal mitochondrial transport and synaptic degeneration [73]. 

Interestingly, iPSC-derived cortical neurons harboring A53T or α-synuclein triplication also 

result in nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated 

degradation substrates, and ER stress [74], suggesting that certain pathogenic phenotypes 

may also be present in non-dopaminergic neurons.

2.2.2. LRRK2 models—Leucine-rich repeat Kinase 2 (LRRK2) is a 285 kDa multi-

domain protein consisting of Ras-GTPase domain (Roc domain), kinase domain, and protein 

binding domains with roles in neurite development, phosphorylation of multiple proteins and 

endocytic sorting via interactions with Rab-GTPases [75, 76, 77, 78, 79, 80]. Mutations in 

LRRK2 have been identified in the kinase domain (G2019S and I2020T), GTPase domain 

(R1441G, R1441C, R1441H, and N1437H), and the Carboxy terminal of the Roc domain 

(Y1699C), leading to autosomal dominant forms of familial PD [81].

LRRK2 G2019S iPSC-DA neurons have been shown to have increased oxidized dopamine 

[12], increased levels of the lysosomal receptor for chaperone mediated autophagy [82], 

transcriptome profiles similar to that upon rotenone treatment [83], microRNA alterations 

[84] and global DNA hyper-methylation [85], and both LRRK2 G2019S and R1441G DA 

neurons also show impaired NF-κB signaling [86]. iPSC-DA neurons harboring the G2019S 

and I2020T mutations also show increased levels of apoptosis, reduced neurite outgrowth 

and length, a disruption of tau and tubulin phosphorylation, an increase in autophagosomes 

and autophagy genes, increased mitochondrial DNA damage, impaired Miro recruitment to 

the mitochondria and dysregulation of mitophagy, and upregulation of α-synuclein 

expression [77, 78, 87, 88, 89, 90, 91, 92, 93]. Interestingly, LRRK2 was also shown to 

regulate synaptic vesicle recycling, as it phosphorylates auxilin in its clathrin-binding 

domain at Ser627, leading to disrupted synaptic vesicle endocytosis and decreased synaptic 

vesicle density in LRRK2 R1441G/C mutant iPSC-DA neurons [94]. Thus, studies in iPSCs 

investigating LRRK2 function have helped to characterize its role in PD pathogenesis, and 

may identify additional targets for drug development in future studies.
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2.2.3. PINK1 and Parkin models—PINK1 (phosphatase and tensin homolog (PTEN)-

induced Putative Kinase1) is a mitochondrial Ser/Thr protein kinase, that is normally 

cleaved and released into the cytosol for degradation [95]. PINK1 localizes to the 

mitochondrial membrane upon its depolarization where it phosphorylates Parkin [96, 97, 

98]. Parkin is encoded by the PARK2 gene and is an E3 ubiquitin protein ligase which 

translocates to the mitochondria to ubiquitinate mitochondrial substrates upon PINK1 

activation. Together, PINK1 and Parkin regulate mitochondrial health and initiate mitophagy 

events, and mutations in either gene are associated with autosomal recessive and early onset 

forms of PD [97, 99, 100, 101].

iPSC-DA neurons from patients expressing PINK1 nonsense (Q456X) or missense (V170G) 

mutations show mitochondrial defects including impaired parkin recruitment to 

mitochondria, increased mitochondrial copy number, and upregulation of PGC-1α, a key 

regulator of mitochondrial biogenesis [102]. PINK1 G411S or Q456X mutant neurons also 

demonstrate reduced PINK1 kinase activity and mitochondria quality control [103]. In 

addition, S-nitrosylated PINK1 decreases Parkin translocation to mitochondrial membranes 

and disrupts mitophagy in iPSC-DA neurons [104]. Of note, partial genetic and 

pharmacological inhibition of fatty acid synthase was able to decrease toxicity in PINK1 

mutant iPSC-DA neurons, potentially by increasing levels of the mitochondrial inner 

membrane-specific lipid cardiolipin [105].

Parkin mutant iPSC-DA neurons also show mitochondrial alterations [106] which can be 

rescued by induced expression of the parkin interactor mitochondrial Stomatin-like protein 2 

(SLP-2) [107], as well as defective ER-mitochondria contacts and calcium transfer [108] and 

increased levels of soluble epoxide hydrolase which is involved in inflammation [109]. In 

addition, both Parkin A324 fsX110 and PINK1 Q456X mutant iPSC-DA neurons show 

increased α-synuclein accumulation [110] while iPSC-hypothalamic PINK1 and Parkin 

mutant neurons have excess ER-mitochondria contacts and abnormal lipid trafficking which 

may deplete phosphatidylserine from the ER to disrupt neuropeptide-containing vesicles 

production [111].

Interestingly, parkin V324A mutant iPSC-DA neurons also show increased levels of 

oxidized dopamine and decreased GCase activity [12]. Moreover, iPSC-DA neurons with 

knockout or mutant parkin have increased expression of monoamine oxidase (MAO) A and 

B and dysregulation of dopamine release and uptake via dopamine transporter (DAT) and 

aberrant dopaminergic regulation of presynaptic glutamatergic transmission [112, 113, 114]. 

Of note, mutant PINK1 Q456X neurons also show increased oxidized dopamine [12], 

suggesting a further role for both PINK1 and parkin in regulating dopamine homeostasis. 

Thus, PINK1 and Parkin contribute to a major component of mitochondrial homeostasis and 

dopamine metabolism, and their loss of function may help drive the loss of DA neurons in 

the substantial nigra.

2.2.4. GBA models—The GBA1 gene encodes a lysosomal enzyme called 

glucocerebrosidase (also known as GCase or β-glucosidase) that catalyzes the hydrolysis of 

glucosylceramide (GlcCer) to glucose and ceramide, as well as the hydrolysis of D-glucosyl-

N-acylsphingosine to D-glucose and N-acylsphingosine. Homozygous or compound 
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heterozygote GBA mutations are known to cause Gaucher disease (GD), the most common 

lysosomal storage disorder. After the first report of GD patients with symptoms of 

Parkinsonism [115], other studies confirmed the link between PD and GBA mutation 

including insertion, deletion, frame shift and point mutations in GBA [116, 117, 118, 119]. 

Approximately 5–10% of PD patients carry GBA1 mutations [120] and the two most 

common mutations in GBA (N370S and L444P) account for ~3% of GBA-liked PD [115, 

121]. Clinically, GBA mutation carriers tend to have an early onset [122, 123] and more 

cognitive symptoms in addition to severe motor symptoms [124, 125, 126].

Many studies have shown reduced protein levels and GCase activity in mutant GBA patient 

iPSC-derived neurons across multiple GBA mutations including N370S/N370S, N370S/

c0.84dupG, N370S/WT, RecNcil/WT and L444P/WT [127, 128, 129]. In particular, 

abnormal GCase post-translation has also been observed in iPSC-derived neurons from 

N370S heterozygous patients [130]. Moreover, in addition to α-synuclein accumulation in 

GD-linked GBA iPSC-derived neurons [117], increased α-synuclein levels [127, 129, 130, 

131] and its aggregation [128, 132] have also been reported in PD-linked GBA iPSC-derived 

neurons. Accumulation of lipids have also been identified as a major hallmark of mutant 

GBA iPSC-derived DA neurons including GCase substrates, glycolipids glucosylceramide 

(GlcCer) and glucosylsphingosine (GlcSph) which are increased in GBA mutant neurons 

[127, 128, 129, 130].

Additionally, defective function of cellular organelles including lysosomes, mitochondria 

and the ER have been demonstrated in mutant GBA iPSC-derived neurons. Increased size 

and number of lysosomes [129] which may result from the reported lysosomal degradation 

capacity impairment [130] have been clearly observed, along with evidence of autophagic 

defects [129, 130], potentially rendering neurons more vulnerable to apoptosis. Moreover, 

mitochondrial dysfunction including decreased oxygen consumption rate (OCR), reduced 

complex I activity and altered NAD+ metabolism together with altered mitochondrial 

morphology have also been reported in mutant GBA iPSC-DA neurons [133]. Furthermore, 

upregulation of ER stress was also observed in multiple studies, leading to defective 

downstream cellular mechanisms such as calcium homeostasis and the unfolded protein 

response (UPR) [129, 130, 133]. Lastly, the levels and uptake of dopamine were reduced in 

GBA N370S iPSC-DA neurons [127, 131], along with upregulated mRNA and protein levels 

of MAO-B [131], while 84GG/WT iPSC-DA neurons also showed elevated levels of 

oxidized dopamine [134]. Of note, single-cell transcriptomic analysis of GBA N370S iPSC-

DA neurons have highlighted the transcriptional repressor histone deacetylase 4 (HDAC4) as 

a potential upstream regulator of ER stress and disease pathogenesis [135]. Overall, 

understanding the role of GBA mutations in PD pathogenesis may further provide possible 

therapeutic strategies relevant to other forms of PD as discussed below.

2.2.5. Additional genetic PD models—Additional genes linked to familial PD such 

as DJ-1, PARK9 (ATP13A2), SJ-1 and VPS35 have also been used to model PD 

pathogenesis in patient-derived iPSC-DA neurons. DJ-1 is involved in regulating 

mitochondrial oxidant stress and its loss of function mutations result in autosomal recessive 

PD [136]. iPSC-DA neurons with mutant DJ-1 exhibit elevated mitochondrial oxidation, 

increased oxidized DA which is exacerbated over time, and decreased basal respiration, in 
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addition to decreased lysosomal proteolysis and GCase enzyme activity and α-synuclein 

accumulation [12].

PARK9 encodes a lysosomal type 5 P-type ATPase involved in cation homeostasis, 

ATP13A2. The loss of ATP13A2 function leads to lysosomal dysfunction and the 

accumulation of α-synuclein seen in Kufor-Rakeb syndrome (KRS), a rare form of juvenile-

onset PD and familial PD [137, 138]. Recently, loss of function mutations of ATP13A2 in 

iPSC-DA neurons have exhibited α-synuclein accumulation as well as impaired lysosomal 

exocytosis due to the disruption of calcium homeostasis [139, 140]. Interestingly, ATP13A2 

overexpression or activators of the lysosomal calcium channel TRPML1 (transient receptor 

potential mucolipin 1) were able to increase α-synuclein secretion and lysosomal exocytosis, 

and prevent neuronal toxicity [140]. ATP13A2 thus offers potential as a therapeutic target 

for PD-related synucleinopathies by increasing lysosomal exocytosis and neuronal secretion 

of intracellular α-synuclein.

In addition, the homozygous missense R258Q mutation in the Sac domain of Synaptojanin 

(SJ-1) results in autosomal recessive early onset PD [141, 142, 143]. iPSC neurons with the 

SJ-1 mutation exhibit accumulation of Atg18a on nascent synaptic autophagosomes, thus 

blocking autophagosome maturation and contributing to dopaminergic neuron loss [144], 

further suggesting a role for SJ-1 in synaptic macroautophagy. Finally, the D620N mutation 

in the retromer protein VPS35 leads to autosomal dominant PD [145, 146], and iPSC-DA 

patient neurons show defective synaptic transmission AMPA-type glutamate receptor 

(AMPAR) recycling [147], which may further contribute to dopaminergic neuron loss.

2.2.6. Idiopathic PD—The generation of iPSC-derived DA neurons from patients has 

for the first time, allowed for the possibility to model non-genetic forms of PD and provide 

important insights into sporadic etiology, which account for the majority of PD patients. 

Interestingly, idiopathic PD patient-derived DA neurons have been shown to have decreased 

basal mitochondrial respiration, increased oxidized dopamine levels and oxidized DJ-1, and 

decreased GCase enzyme activity [12] and maturation [132]. In addition, idiopathic DA 

neurons also demonstrate microRNA alterations [84], global DNA hyper-methylation [85], 

as well as impaired Miro degradation and mitochondrial motility [89], suggesting that 

pathways disrupted in genetic forms of PD may be similarly affected in idiopathic forms.

Of note, environmental factors have also been proposed to play a key role in driving PD 

pathogenesis [148, 149, 150, 151]. These include previous studies reporting the association 

between smoking and monoamine oxidase B (MAO-B) polymorphism [152], agricultural 

insecticides and polymorphisms in the Acetylcholinesterase/paraoxonase locus [153], 

pesticide exposure and the CYP2D6 polymorphism [154, 155], and mitochondrial toxin-

induced defects in α-synuclein A53T iPSC-derived neurons [61]. Thus, although the role of 

gene-environmental interactions (GxEs) in PD are still not completely understood, the use of 

patient neurons with mutant genetic backgrounds together with environmental risk factors 

such as toxins may be useful in further testing the two-hit (or double hit) hypothesis in PD 

progression and further used for drug discovery models.
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2.3. Neural Organoid Modeling in PD

Midbrain-like organoids were first characterized in 2016 and have been gaining interest with 

their potential to model PD [42]. In particular, organoids offer the advantage of providing a 

more appropriate 3D niche environment which can consist of multiple cell types, special 

organizational structure, and enhanced cellular maturity [156]. Further characterization of 

midbrain-like organoids have shown the presence of neuromelanin-like granules and the 

ability to form functional neural networks [42, 157]. Thus far, studies have found that 

midbrain-like organoids derived from LRRK2 G2019S iPSCs show upregulation of the 

thiol-oxidoreductase TXNIP [46] and an increase in the floor plate marker FOXA2 during 

organoid development [158]. Consequently, midbrain-like organoids need to be further 

investigated in studies of PD, as they have great potential for identifying 

neurodevelopmental and novel characteristics of PD that cannot be recapitulated in 2D 

neuronal systems.

2.4. PD Drug Discovery in iPSC Neurons

The overall drug discovery process using iPSCs has been reviewed recently [21] and our 

focus will be on discoveries made using iPSC models of PD (Table 2). Therapeutic strategies 

have currently shown potential in inhibiting overactive proteins, rescuing phenotypes with 

wildtype proteins, or using agonists to rescue the activity of associated proteins.

In particular, multiple studies have highlighted the potential use for targeting the GCase 

pathway in PD human iPSC-DA models. GBA chaperones NCGC758 and NCGC607 were 

found to restore GCase activity and reduce substrate accumulation in the lysosome in 

multiple PD models of iPSC-DA neurons [127, 132]. In addition, studies on GCase have 

identified quinazoline inhibitors that can be derived into activators that stabilize GCase 

activity within iPSC-DA and fibroblasts [159]. Moreover, inhibition of acid ceramidase 

using carmofur was shown to reduce α-synuclein accumulation in GBA-1 mutant iPSC-DA 

neurons [160], while reducing glycosphingolipids in GBA mutant (N370S/c.84dupG) or α-

synuclein triplication neurons diminished pathology and restored physiological α-synuclein 

conformers that associated with synapses [161]. Finally, recent work has identified a novel 

chemical series of GCase activators, including a new small-molecule modulator (S-181) that 

increased wild-type GCase activity in iPSC-derived dopaminergic neurons from patients 

with 84GG-GBA1, as well as in LRRK2-, Parkin-, DJ-1-linked and sporadic PD [134]. 

Thus, GCase activity represents a major target for PD therapeutic treatment that is associated 

with multiple forms of PD, including both genetic and idiopathic cases.

Additionally, other drugs have also been tested in iPSC-DA models which have been shown 

to help ameliorate several phenotypes. Mitochondrial antioxidants, mito-TEMPO and NAC, 

show reduction of oxidized dopamine leading to reduced insoluble α-synuclein levels and 

increased GCase activity in patient iPSC-DA neurons [12]. Activation of MEF2C using 

isoxasole was sufficient to rescue α-synuclein A53T iPSC-DA neurons from nitrosative 

stress via the MEF2C-PGC1α pathway by increasing mitochondria respiration and 

biogenesis [61]. In addition, LRRK2 G2019S iPSCs treated with the MEK inhibitor 

PD0325901 showed protection from oxidative stress [78], while knockdown of α-synuclein 

showed rescue of the phenotype and survival of DA neurons [92]. Interfering with α-
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synuclein oligomerization in iPSC-DA neurons with NPT100–18A, NPT100–14A, and 

ELN48228 also rescued PD pathology [62]. Moreover, upregulation of Synoflavin or the 

ubiquitin ligase NEDD4 which it affects were shown to reverse accumulation of GCase and 

other glycoproteins in the ER in α-synuclein A53T and triplication iPSC-derived cortical 

neurons [74], while inhibition of stearoyl-CoA-desaturase was also shown to reduce α-

synuclein inclusion formation caused by excess oleic acid in iPSC neurons [162]. Finally, 

treatment with coenzyme Q(10), rapamycin, or the LRRK2 kinase inhibitor GW5074 were 

previously shown to ameliorate mitochondrial dysfunction in iPSC neurons from multiple 

PD patients (LRRK2 R1441C; LRRK2 G2019S; PINK1 Q456X mutants) [163].

Of note, human iPSC-DA neurons have also been transplanted into in vivo models of PD to 

determine their ability to survive and function in future potential dopamine cell replacement 

therapy strategies for PD patients [164]. Initial studies found that human non-iPSC-derived 

DA neurons could efficiently engraft into PD rodent models [20, 165, 166], while later work 

showed that iPSC-derived DA neurons were also successful in integrating into PD rodent 

models [167, 168], including neurons derived from PD patients [169]. More recently, both 

human and non-human primate iPSC-derived DA neurons could function properly following 

transplantation back into PD non-human primate models [34, 170], highlighting the potential 

for success in future dopamine replacement studies based on iPSC-derived neurons.

3. Conclusion

iPSC-derived neurons and organoids generated from both familial and idiopathic patients 

have replicated key PD pathogenic phenotypes and are an important model for studying and 

identifying novel neuronal pathways involved in disease. While the majority of studies thus 

far have involved 2D neuronal cultures, the use of midbrain-like 3D organoids will be 

important for investigating pathologies and neuronal complexity that are not reflected in 2D 

models. Importantly, these technologies have added unique approaches to drug screens, and 

additionally provide new models to reassess current neuroprotective and neurotoxic 

compounds that are under consideration. Patient-derived cell cultures can thus play a key 

role in identifying disease mechanisms that can be therapeutic targets for multifaceted 

diseases such as PD. In addition, drug screens in iPSC-DA neurons thus far have been 

capable of identifying neuroprotective effects, and may additionally provide insight into the 

efficacy of compounds in human neurons. Finally, the use of organoids for drug discovery 

allow the possibility for studying how therapeutics modulate multiple cell types in a more 

physiological 3D model.

4. Expert Opinion

4.1. IPSC Derived Neurons for Parkinson’s Disease Modeling

Since 2006 and the discovery of the factors capable of rendering cells into a state of 

pluripotency, many advancements have been made in Parkinson’s disease research. One of 

the main benefits to using iPSCs to model disease is the genetic background of the patient 

cells, which allows for direct study of relevant disease mutations. Moreover, pluripotency 

allows for the generation of disease specific cell types, allowing for the study of disease 

mechanisms in human dopaminergic neurons. In addition, the ability to generate isogenic 
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controls from patient lines using gene corrective technologies has proven to be essential for 

identifying which phenotypes arise from specific disease mutations.

Importantly, human neurons have also provided a unique opportunity for screening and 

testing novel therapeutics that could not have been revealed by traditional cell culture or 

animal model experiments. Indeed, human PD iPSC-DA neurons in long-term culture show 

time-dependent onset of PD phenotypes such as early defects in lysosomal dysfunction 

followed by subsequent α-synuclein accumulation [140]. Patient-derived PD iPSC-DA 

neurons also exhibit multiple pathogenic phenotypes that are not observed in mouse models 

of PD, which display negligible levels of oxidized dopamine. In particular, human DJ-1 KO 

iPSC-derived neurons demonstrate decreased lysosomal GCase activity and reduced tyrosine 

hydroxylase (TH) in the SNc which are not observed in DJ-1 KO mice [12]. Thus, patient-

derived iPSC-based PD modeling may allow for the study of distinct pathogenic phenotypes 

arising over time which were not previously found in animal or traditional cell models.

Of note, one important factor in studying neurodegenerative diseases is understanding the 

role of aging. Indeed, age represents the greatest risk factor for PD, with the incidence of PD 

at ~0.5 to 1 percent in people 65 to 69 years of age rising sharply to 1 to 3 percent in people 

over 80 years of age [171, 172]. Thus, studying aging in the context of iPSC-derived 

neuronal models has represented another key angle for PD research. Previous studies have 

used long term cultures [90, 173], artificial cellular aging induced by genotoxic stress [174] 

or expression of progerin [175] to induce age-related features of PD. Indeed, long-term 

cultures grown for hundreds of days have been used to study progressive PD-linked disease 

phenotypes in human iPSC-derived neurons [173]. Interestingly, age-related PD phenotype 

such as gradual loss of tyrosine hydroxylase (TH), mitochondrial dysfunction, dendrite 

degeneration, Lewy body formation, and accumulation of neuromelanin were accelerated in 

iPSC-derived dopaminergic neurons upon progerin-induced artificial aging [175].

Another angle used to study aging phenotypes has been the generation of induced neurons 

(iNs) which involve the direct conversion from somatic cells to functional neurons. 

Importantly, this strategy overcomes the problem of rejuvenation during iPSC 

reprogramming from somatic cells [176, 177, 178] which makes it hard for iPSCs to reflect 

a donor’s age. Compared to iPSC-derived neurons, iNs maintain epigenetic features and 

aging phenotypes of donors which drive age-related pathologies in the disease of interest. 

Previous studies on PD iNs have shown that PINK1 Q456X iNs do not demonstrate pS65-

ubiquitin accumulation upon mitochondrial damage [179] and that both p.G411S and 

p.Q456X PINK1 heterozygote iNs have reduced PINK1 kinase activity and pS65-ubiquitin 

level [103]. However, the use of iNs also has several limitations including the fact that while 

iPSCs are self-renewing, the somatic cells from which iNS are derived become senescent 

after multiple passages and are thus limited in their ability to be expanded over long periods 

[180]. Thus, taken together, multiple approaches may be required to enable better modeling 

of aging in PD drug discovery.

In addition, there are currently several key points that must be considered when using iPSC 

technology. First, there exists significant batch to batch variation across patient lines and 

even within identical clonal populations taken from the same patient, which must be taken 
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into consideration when deciphering and interpreting results from drug screens aimed at 

targeting pathogenic phenotypes in patient neurons. Multiple factors account for this 

variability, including health of the neuronal culture, as well as the formation of gradients 

within media which can lead to differences in 2D neuronal differentiations. Furthermore, 

comparative studies using patient-derived and healthy donor-derived iPSCs often do not 

distinguish between general individual variations caused by different genetic background 

[181]. To address this issue, multiple studies have now used genetic editing to create 

isogenic controls by specifically correcting the known PD-linked mutation in patient-derived 

iPSCs [61, 129, 134, 175]. Addtionally, to overcome batch by batch differences, more than 3 

independent batches of differentiation are normally required for iPSC-based disease studies. 

Thus, given small sample sizes and high sample variability, there is a need to recruit multiple 

patient and healthy donors, and create extensive biobanks (ex. skin and/or blood samples) 

with multiple clonal lines with isogenic controls for each patient line that will aid in 

reducing the effect of patient to patient variability in drug screens and aid in the discovery of 

specific phenotypes.

Secondly, there is a need for standardizing differentiation protocols across researchers and 

strict guidelines for characterizing healthy and successfully differentiated neuronal cultures. 

One of the challenges of iPSC-based PD modeling is the efficient generation of high quality 

A9 DA neurons and their subsequent validation. Currently, common markers used for 

validation of iPSC-derived DA neurons are immunostaining or immunoblot levels of TH, 

FOXA2, LMX1 and NURR1 [20]. In addition, electrophysiological recordings have also 

been used to further support the functional specific characterization of DA neurons including 

oscillation of membrane potential (2~5Hz) [20] or voltage sag and short rebound delay upon 

injection of a hyperpolarizing current (−250 pA) [12]. Thus, standardizing the methods for 

validating the generation of DA neurons and further characterizing the genetic, functional 

and/or molecular similarities and differences between iPSC-derived DA neurons and actual 

DA neurons from human brains will be important for understanding both the effectiveness 

and limitations of this model in future PD drug discovery.

Thirdly, iPSC-derived neuronal cultures are extremely costly, due to the sheer cost of media, 

peptides, small molecules, supplements, and consumables that are required for iPSC 

maintenance and throughout the duration of neuronal differentiation. This is further 

exacerbated in studies on neurodegenerative and age-related phenotypes which may require 

even longer culture durations. Thus, identifying ways to decrease these costs will be 

important for moving forward. Practically, this may involve purchasing expensive media and 

growth factors in bulk at lower costs to be shared across multiple labs, or identifying 

companies which are able to generate these reagents at reduced prices. It may also be 

important to plan experiments in advance to ensure that all neurons from each differentiation 

are efficiently used to avoid wastage of cells, materials and/or incubator space. Alternatively, 

the generation of iNeurons via direct differentiation of cultured patient fibroblasts into 

neurons which bypasses the need to culture iPSCs may also help to reduce time and cell 

culture costs for patient-derived neurons [182, 183]. Of note, these difficulties further 

present a challenge for conducting high-throughput screens using iPSC-derived neurons, 

where there is a need to produce large-scale expansion of neuronal cells, which is further 
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limited by both time and cost, as well as incubator space for storing large batches of neurons 

needed for screening.

Thus, future studies and additional models may be required to further study the role of aging 

in patient neurons, how different time points in 2D cultures map to an aging patient cohort, 

and the role of epigenetic components in mediating PD onset and progression. Finally, 

further work using genome-scale networks in iPSC-derived neurons may help to further 

identify possible targets for therapies in PD [184].

4.2. Neural Organoids for Parkinson’s Disease Modeling

The use of midbrain organoids thus far for studying PD pathology has been mainly restricted 

to only a few studies. However, organoids can provide key insights into developmental 

characteristics that might be implicated in disease progression. Current studies have shown 

that organoids cultured up to two years give rise to functionally mature neurons, have 

increased cell diversity, and demonstrate time points which parallel in vivo development at 

postnatal stages [185]. Moreover, organoids may be capable of representing key time points 

in development, as seen in cerebral organoids with the appearance of astroglial cells during 

differentiation [38]. Additionally, unlike mouse models, midbrain-like organoids are able to 

produce neuromelanin [12, 42], and thus allow for possible testing of therapeutic compounds 

on multiple cell types, including both those affected in PD and those that are spared. In 

addition, the use of CRISPR technology in organoids [186] is highly relevant for studying 

the role of PD familial genes and generating isogenic controls to which to compare 

pathogenic phenotypes, as well as for the application of organoids in personalized medicine.

Importantly, neuronal organoids have previously shown drug discovery potential in other 

diseases, such as the discovery of pharmaceutical modulators of the mutated L-type calcium 

channel associated with Timothy Syndrome which can restore the migration of cortical 

interneurons [47]. Furthermore, 3D brain organoids have demonstrated promise by 

recapitulating key β-amyloid and tau pathology phenotypes seen in Alzheimer’s disease 

[187]. Finally, neuronal organoids have been able to recapitulate aspects of the blood brain 

barrier in co-cultures with endothelial cells and thus provide the potential for screening 

compounds for CNS drug targeting [188]. As assembloids offer an interesting tool for 

modeling the connections between different brain regions, this may be relevant for PD 

pathogenesis in elucidating how patient neurons might exhibit dysfunctional circuitry 

between midbrain dopaminergic and striatal neurons.

However, there still exists several limitations to the use of neuronal organoids as a model for 

drug discovery. Similar to 2D cultures, 3D neuronal organoids are also highly variable even 

if generated from the same clonal cell line. Thus, recent studies have sought to reduce the 

variability between organoids [37, 189], in addition to controlling the nutrient flow and cell 

gradient, and further reducing the spatial and temporal variability of the cell culture 

environment, as seen in organ-on-a-chip technology. Moreover, organoids present additional 

costs compared to 2D cultures, as they often require spinning bioreactors and may require 

even longer differentiation times to develop age-associated phenotypes. Additionally, as 

much of the current progress in organoid technology has been developed using cortical and 
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forebrain organoids, further work needs to be conducted characterizing and standardizing the 

differentiation of midbrain organoids which will be relevant for PD research.

Moving forward, it will thus be critical to further develop brain organoid models by 

improving vascularization to avoid neuronal death on the inside of the organoid, and to test 

the ability of compounds to cross the blood brain barrier. As organoids often represent multi-

cell type cultures, it will also be important to adapt assays from 2D cultures which are used 

to screen singular cell types to multi-cell type cultures, such as the use of fluorescence-

activated cell sorting to examine phenotypes in individual cell types after organoid 

dissociation. In addition, efforts to further optimize organoid differentiation protocols from 

patient cells may provide new insights into PD pathology.

4.3. Future of Stem Cell modeling in Parkinson’s Disease

Future work using iPSC-DA neuron and organoid modeling in PD will be highly valuable 

for elucidating neuronal pathways and identifying relevant therapeutic targets, as well as 

providing important models for testing future therapeutics. Moving forward, it will be 

imperative to develop biobanks that host iPSCs from specific patient lines and disease linked 

mutations, as well as to establish standardized differentiation protocols and markers for 

midbrain DA neuron generation. More sophisticated brain modeling including the 

incorporation of different neuronal subtypes, as well as glial cells into organoid systems will 

be important. Moreover, studies involving multiple clones and patient lines, possibly 

comparing different PD genes and mutations, will help advance our understanding of PD 

pathogenesis. Finally, further studies involving idiopathic PD patient-derived iPSC neurons 

will be crucial for shedding light on the pathways contributing to PD onset in sporadic 

patients which represent the vast majority of PD cases and aid in the development of future 

therapeutics.
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Article Highlights box

• iPSC-derived dopamine neurons represent an important model for studying 

familial and idiopathic Parkinson’s disease mechanisms.

• Parkinson’s patient-derived dopamine neurons recapitulate key pathogenic 

phenotypes including α-synuclein accumulation, decreased GCase activity 

and organelle dysfunction.

• iPSC-derived midbrain-like organoids may offer more sophisticated and 

physiologically relevant 3D models for studying Parkinson’s.

• iPSC-derived neurons and organoids are useful models for drug discovery, 

identifying therapeutic targets, and compound screening and may also be 

relevant for future dopamine replacement studies.

• Several studies have used iPSC-derived neurons as models for assessing the 

efficacy of Parkinson’s disease therapeutics.
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Figure 1. Application of human induced pluripotent stem cell-derived neurons for disease 
modeling and drug discovery in Parkinson’s disease.
Human somatic cells such as fibroblasts or peripheral blood mononuclear cell (PBMC) from 

healthy control, familial and sporadic PD patients are reprogrammed into human iPSCs. 

Human iPSCs are further differentiated into dopamine neurons or 3D brain organoid 

depending on the purpose. Differentiated tissues enable replication of Parkinson’s disease in 
vitro and can be further used for disease modeling, drug discovery and dopamine 

replacement stem cell therapy.
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Table 1:

Key Pathogenic Phenotypes associated with Parkinson’s Disease Mutant iPSC Neuron and Midbrain-like 

Organoid Models

Protein/Gene Mutation Phenotype Reference

α-synuclein /
SNCA

SNCA Triplication Increased oxidized dopamine Burbulla et al 2017 [12]

SNCA Triplication Decreased lysosomal hydrolase trafficking
Decreased lysosomal GCase enzyme activity

Mazzulli et al 2016 [66]

A53T, E46K Reduced tetramer to monomer ratio of α-synuclein
Decreased α-synuclein solubility
Increased neurotoxicity

Dettmer et al 2015 [63]

A53T Inhibition of MEF2C-PGC1α leading to mitochondrial 
dysfunction.
Increased nitrosative and oxidative stress
Increased vulnerability to mitochondrial toxins
Aggregation of α-synuclein

Ryan, SD et al 2013 [61]

A53T, SNCA 
Triplication

Increased nitrosative stress, ER stress, and UPR
GCase accumulation in the ER

Chung et al 2013 [74]

SNCA Triplication Aggregation of α-synuclein
Overexpression of oxidative stress markers
Increased sensitivity to peroxide induced oxidative stress

Byers et al 2011 [65]

LRRK2/
LRRK2

R1441C/G Decreased activity dependent synaptic vesicle endocytosis
Decreased GDP/GTP cycling
Increased auxillin phosphorylation

Nguyen et al 2018
[94]

G2019S Increased oxidized dopamine Burbulla et al 2017 [12]

G2019S Decreased neurite length
Upregulation of several autophagic markers

Borgs et al 2016 [88]

Q456X
G2019S/R1441C

Mitochondrial dysfunction and increase of mitochondrial reactive 
oxygen species
Increased sensitivity to Valinomycin

Cooper et al 2012 [190]

G2019S Accumulation of α-synuclein
Upregulation of oxidative stress response genes
Increased vulnerability to neurotoxins
Elevated kinase activity

Nguyen et al 2011 [93]

Midbrain Organoid: 
G2019S

Upregulation of TXNIP genes and a-syn accumulation Kim, H et al 2019 [46]

Midbrain Organoid: 
G2019S

Increased FOXA2 expression Smits et al 2019 [158]

Pink1/PINK1 Exon 3,5 Deletion
Exon 3 Deletion

Increased spontaneous Dopamine release
Decreased DA uptake and DAT-binding
Increased MAO transcripts and Oxidative stress

Jiang et al 2012 [112]

Q456X; V170G Impaired parkin recruitment to mitochondria
Increased mitochondrial copy number
Upregulation of PGC-1α

Seibler et al 2011 [102]

Parkin/PARK2 KO Increased sensitivity to Oxidative stress
Deficient glycolysis and lactate metabolism
Mitochondrial elongation and enlargement
Decreased Neuron Survival

Bogetofte et al 2019 [191]

V324A Increased oxidized dopamine
Decreased GCase activity

Burbulla et al 2017 [12]

GCase/GBA1 84GG/WT Increased oxidized DA Burbulla et al 2019 [134]

N370S/WT Reduced protein level and activity of GCase
Accumulation of GSL and α-synuclein

Kim et al 2018 [128]
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Protein/Gene Mutation Phenotype Reference

RecNcil/WT, 
L444P/WT, 
N370S/WT

Defective mitochondrial function:
 Altered cristae morphology
 Increased mitochondrial diameter
 Reduced oxygen consumption rate(OCR)
 Reduced complex I activity
 Altered NAD+ metabolism
Increased ER stress and UPR

Schondorf et al 2018 [133]

N370S/c0.84dupG α-synuclein accumulation in cell body and neurites Mazzuli et al 2016 [132]

N370S/WT Abnormal GCase post-translation
Lipid profile change
Upregulation of ER stress
Autophagic disturbance
Impaired lysosomal degradation capacity
Enlargement of lysosomes
Increased extracellular α-synuclein

Fernandes et al 2016 [130]

N370S/N370S 
N370S/c0.84dupG

Reduced protein level of GCase
Reduced DA uptake
Elevations in GlcSph, GlcCer
Increase α-synuclein protein level but not mRNA level

Aflaki et al 2016 [127]

PD:
RecNcil/WT, 
L444P/WT, 
N370S/WT
GD:
Type 1: N370S/
N370S
Type 3: L444P/
L444P

Reduction in GCase level and activity
Increase in GluCer and a-syn
Defected Calcium homeostasis and increased vulnerability to 
stress response
 Alteration in the autophagy
Increased size and the number of late endosome/lysosome 
(Lamp1 +)

Schondorf et al 2014 [129]

N370S/WT Increased α-synuclein level
Elevated mRNA and protein levels of Monoamine oxidase B 
(MAO-B) and lower DA level

Woodard et al 2014 [131]

DJ-1/PARK7 KO Elevated mitochondrial oxidation
Increased oxidized DA
Decreased basal respiration
Decreased lysosomal proteolysis and GCase enzyme activity
α-synuclein accumulation

Burbulla et al 2017 [12]

ATP13A2/
PARK9

1550 C>T
3176 T>G and 3253 
del C

Disruption of lysosomal Ca2+ homeostasis
Reduced lysosomal Ca2+ Storage
Increase in cytosolic Ca2+ levels
Overall impaired lysosomal exocytosis

Tsunemi et al 2019 [140]

Synaptojanin/S
J1

R258Q Accumulation of Atg18a on nascent synaptic autophagosomes
Decreased autophagosome maturation
Dopaminergic neuron loss

Vanhauwaert et al 2017 [144]

VPS35/VPS35 D620N Defective synaptic transmission AMPA-type glutamate receptor 
(AMPAR) recycling

Munsie et al 2015 [147]
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Table 2:

Drug Discovery in Parkinson’s Disease iPSC DA Neurons

Tested drug Target Mode of action Reference

NCGC758 NCGC607 β-Glucocerebrosidase (GCase) Small-molecule chaperone Aflaki et al 2016; Mazzulli et al 2016) [127, 
132]

Quinazoline inhibitors β-Glucocerebrosidase (GCase) Selective stabilization of GCase Zheng et al 2019 [159]

Carmofur Acid ceramidase Inhibitor Kim et al 2018 [160]

S-181 β-Glucocerebrosidase (GCase) Increased wild-type GCase 
activity

Burbulla et al 2019 [134]

mito-TEMPO NAC Mitochondria Antioxidants Burbulla et al. 2017 [12]

Isoxasole MEF2C Activator Ryan et al. 2013 [61]

PD0325901 MEK Inhibitor Reinhardt et al 2013 [78]

NPT100–18A NPT100–
14A ELN48228

α-synuclein Interfering oligomerization Kouroupi et al 2017 [62]

Expert Opin Drug Discov. Author manuscript; available in PMC 2021 April 01.


	Abstract
	Introduction
	Induced Pluripotent Stem Cells
	IPSC-Derived Neurons
	IPSC-Derived Neural Organoids

	IPSC-Derived Neuronal and Organoid Modeling and Drug Discovery in Parkinson’s Disease
	Parkinson’s Disease (PD)
	IPSC-Derived Neuronal modeling in PD
	α-Synuclein (SNCA) models
	LRRK2 models
	PINK1 and Parkin models
	GBA models
	Additional genetic PD models
	Idiopathic PD

	Neural Organoid Modeling in PD
	PD Drug Discovery in iPSC Neurons

	Conclusion
	Expert Opinion
	IPSC Derived Neurons for Parkinson’s Disease Modeling
	Neural Organoids for Parkinson’s Disease Modeling
	Future of Stem Cell modeling in Parkinson’s Disease

	References
	Figure 1.
	Table 1:
	Table 2:

