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Abstract

Autism spectrum disorder (ASD) is genetically heterogeneous with convergent symptomatology, 

suggesting common dysregulated pathways. We analyzed brain transcriptional changes in five 

mouse models of Pitt-Hopkins Syndrome (PTHS), a syndromic form of ASD caused by mutations 

in TCF4 (transcription factor 4, not TCF7L2 / T-Cell Factor 4). Analyses of differentially 

expressed genes (DEGs) highlighted oligodendrocyte (OL) dysregulation, which we confirmed in 

two additional mouse models of syndromic ASD (Ptenm3m4/m3m4 and Mecp2tm1.1Bird). The PTHS 

mouse models showed cell-autonomous reductions in OL numbers and myelination, functionally 

confirming OL transcriptional signatures. Next, we integrated PTHS mouse model DEGs with 

human idiopathic ASD postmortem brain RNA-seq data, and found significant enrichment of 

overlapping DEGs and common myelination-associated pathways. Importantly, DEGs from 

syndromic ASD mouse models, and reduced deconvoluted OL numbers, distinguished human 

idiopathic ASD cases from controls across three postmortem brain datasets. These results 

implicate disruptions in OL biology as a cellular mechanism in ASD pathology.

Introduction

Autism spectrum disorder (ASD) affects approximately 1:68 individuals and has 

uncountable burdens on affected individuals, their families, and health care systems. While 

the genetic contributions to idiopathic ASD are heterogeneous and largely unknown, the 

causal mutations for syndromic forms of ASD, including truncations and copy number 

variants, provide a genetic footing with which to gain mechanistic insights 1–3. Models of 

these syndromic disorders have been used to characterize the downstream molecular and 

physiological processes disrupted by these mutations with the expectation these phenotypes 

will translate to idiopathic forms of ASD 4.

One form of syndromic ASD is caused by autosomal dominant mutations in the transcription 

factor 4 (TCF4; not TCF7L2 / T-Cell Factor 4) gene and results in Pitt-Hopkins syndrome 

(PTHS), a rare neurodevelopmental disorder characterized by intellectual disability, failure 

to acquire language, deficits in motor learning, hyperventilation, gastrointestinal 

abnormalities, and autistic behavior 5. TCF4 is a basic helix-loop-helix (bHLH) transcription 

factor that is highly expressed during cortical development, is regulated by neuronal activity, 

and regulates many aspects of neuronal development including neuronal excitability, 

pyramidal cell positioning, and neurite outgrowth 6–9. In addition, animal models of PTHS 

have behavioral deficits related to ASD including deficits in learning and memory, reduced 

ultrasonic vocalizations, and social isolation 10,11.
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Two leading hypotheses for the underlying pathophysiology in ASD are abnormal neuronal 

connectivity and imbalances in excitation and inhibition 12,13, and these broad hypotheses 

likely overlap. In support of these hypotheses, several neuroimaging studies have identified 

defects in white matter (WM) tracts, with a reduction in corpus callosum (CC) volume being 

the most consistent finding 14,15. However, resolution restraints of these imaging techniques, 

preclude their ability to define the exact cellular structure responsible 16. Therefore, a deeper 

understanding of whether axons and/or myelin, the two major components of WM tracts, are 

altered in ASD is critical to our understanding of disease etiology and for the development 

of targeted treatments.

Here, we attempt to address several fundamental questions about the relevance of animal 

models for the study of human ASD and endeavor to identify a common pathophysiology 

that bridges across the ASD spectrum. To address these questions, we performed integrative 

transcriptomic analyses of seven independent mouse models covering three syndromic forms 

of ASD generated across five laboratories, and assessed dysregulated genes and their 

pathways in human postmortem brain from patients with ASD and neurotypical controls. 

These cross-species analyses converged on shared disruptions in myelination across both 

syndromic and idiopathic ASD, and we biologically validate OL and myelination defects in 

our PTHS mouse model. Together, these results highlight both the face validity of mouse 

models, while also identifying novel convergent molecular phenotypes amenable to potential 

rescue with therapeutics.

Results

Tcf4 expression is developmentally regulated across the lifespan

We first assessed molecular convergence across five independent mouse models of Pitt-

Hopkins syndrome (PTHS), which model TCF4 protein haploinsufficiency and/or 

translation of dominant-negative TCF4 proteins 17. We first generated RNA-seq data from 

prefrontal cortex (PFC) of a PTHS mouse line that shows heterozygous expression of a 

truncated TCF4 protein with dominant-negative properties (Tcf4+/tr) 17. The Tcf4+/tr mouse 

showed significant blunted expression of full-length Tcf4 transcript (Extended Data Fig. 

1a,b) and protein (Extended Data Fig. 1c,d) in the brain between embryonic day 16 and 

postnatal day 4 (E16, P4) and smaller difference in expression in adulthood (Extended Data 

Fig. 1a,b,d). This mirrored a similar expression pattern across the human lifespan 6, 

suggesting there may be a critical period for the genesis of PTHS that coincides with early 

cortical development, which is consistent with other syndromic and idiopathic forms of 

human ASD 18. In addition to the Tcf4+/tr PFC RNA-seq and published Tcf4+/tr 

hippocampal dataset10, we further created and processed RNA-seq data from four additional 

mouse lines harboring heterozygous Tcf4 mutations or deletions: Tcf4+/D574−579, 

Tcf4+/R579W, Actin-Cre::Tcf4+/floxed and Nestin-Cre::Tcf4+/floxed 11. Given that Tcf4 is 

developmentally regulated and plays a role in gene regulation, we assessed the effects of 

heterozygous Tcf4 mutations (Tcf4+/mut) on the mouse transcriptome from the prefrontal 

cortex, CA1 region of hippocampus, and hemi-brain at P1 and in adulthood (Fig. 1a).
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RNA-seq of multiple Tcf4 mutations reveals age-specific differential gene expression.

Differential expression analysis of each Tcf4+/mut mouse model by age showed differentially 

expressed genes (DEGs) in both the P1 and adult brain, with overall high concordance and 

replication rates across these varied models and tissue sources (Fig. 1d, Extended Data Fig. 

2, Supplementary Table 1). Combined analysis across the RNA-seq data from these multiple 

models of PTHS revealed widespread transcriptional dysregulation in the adult mouse brain 

in Tcf4+/mut versus wild-type (WT) (Fig. 1c, Supplementary Table 2). Gene ontology (GO) 

analysis of the DEGs identified from Tcf4+/mut mice showed age-specific processes (Fig. 1e, 

Supplementary Table 3). Genes upregulated in adult brains were enriched for processes 

associated with forebrain development, neuron projection, axon development, excitatory 

synapses, and postsynaptic density, while downregulated genes were enriched in processes 

associated with axon ensheathment, and myelination. Together, these bioinformatic analyses 

suggest that TCF4 mutation leads to upregulation of genes associated with neuronal function 

while downregulated genes are associated with oligodendrocytes and myelination.

Cell-type specific expression analysis identifies DEGs are enriched in oligodendrocytes

Cell type-specific analysis (CSEA) using expression levels from microarrays (Extended Data 

Fig. 3) and RNA-seq of purified mouse cell types further implicated OLs as the candidate 

cell type implicated in Tcf4+/mut mice (Fig. 2a). For example, adult mouse lines across all 

Tcf4+/mut models showed OL enrichment at all developmental stages with the most 

significant enrichment found in myelinating OLs, where more than 55% of cell type-specific 

genes were differentially expressed in our mega-analysis. These results confirm our gene set 

enrichment analyses, where enrichment was primarily observed in adult samples and from 

biological and cellular processes associated with neurons and OLs. We further applied RNA 

deconvolution using RNA-seq of purified mouse cell types to obtain the estimated 

proportion of RNA signal attributed to each cell type, and identified a significant increase in 

the proportions of RNA coming from neurons and astrocytes and a significant decrease in 

the proportion of RNA coming from myelinating OLs in adult Tcf4+/mut mice. Moreover, 

cell type deconvolution analyses showed new OL proportions were decreased in P1 brains 

and myelinating OL proportions were decreased in adult brain (Fig. 2b), matching the 

expected developmental trajectory of the OLs. These findings together suggest Tcf4 
mutation leads to deficits in myelination due to fewer mature OLs and/or less active 

expression of OL-specific genes.

Shared myelination gene regulation between mouse models of syndromic ASD

Syndromic forms of ASD are caused by varying mutations yet share significant overlap in 

their symptomatology, suggesting that dysregulation of convergent biological processes may 

underlie syndromic ASD. We therefore compared DEGs in adult Tcf4+/mut mouse brains to 

genes dysregulated in mouse models of PTEN-associated autism (Ptenm3m4/m3m4; 19) and 

Rett syndrome (Mecp2tm1.1Bird; 20) to characterize shared gene regulation between these 

three mouse models of syndromic ASD. Remarkably, we found significant overlap of DEGs 

in Tcf4+/mut vs. Ptenm3m4/m3m4and Tcf4+/mut vs. Mecp2tm1.1Bird mutations (Fig. 3a), with 

Tcf4 mutations inversely regulating DEGs in Pten and Mecp2 models (Fig. 3b,c). Overall, 

34 DEGs were common to all three mouse models, herein referred to as “convergent ASD 
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genes” (CAGs; Fig. 3a,d, Supplementary Table 4). The CAGs were strongly enriched for 

several myelination-related GO terms, representing up to 15% of the genes involved in 

processes related to myelination (Fig. 3d). The CAGs are generally down-regulated in the 

Tcf4 mice while being up-regulated in mice harboring Pten and Mecp2 mutations (Fig. 

3b,c). The inverse directionalities of the CAGs between Tcf4 and both Mecp2 and Pten are 

consistent with prior studies demonstrating that decreased PTEN and MeCP2 protein 

expression promoted OL expansion, maturation and myelination in animal and cell models 
21,22. The mixed directionalities of the CAGs across these three models of syndromic ASD 

suggests that either hypo- or hyper-myelination have potentially negative consequences on 

brain function. More generally, we found strong enrichment between the genes dysregulated 

by TCF4 and other genes implicated in syndromic forms of ASD. Of the 234 ASD risk 

genes listed in the SFARI Animal Model Module, 28.2% (72/255) were differentially 

expressed in our mega-analysis (odds ratio [OR]=3.14, hypergeometric p-value=1.23e-12). 

The significant overlap of differential expression between these mouse models of syndromic 

ASD and their apparent correlational effects on myelination suggests deficits in OL 

development and function is potentially a common molecular pathway disrupted in 

syndromic ASD.

Functional validation of myelination deficits in the PTHS mouse model.

To confirm the presence of myelination deficits in our PTHS mouse model and validate our 

RNA-seq signatures, we performed ex vivo and in vitro experiments to quantify OLs and 

myelination. First, we performed Western blots from adult mouse brain lysates and 

measured expression of the myelinating OL proteins CNP and MOG, and OL precursor cell 

(OPC) marker NG2. CNP and MOG were significantly decreased in Tcf4+/tr mice compared 

to Tcf4+/+ littermates, while NG2 protein expression was similar (Fig. 4a,b).

Next, to determine if decreased RNA and protein levels of OLs markers were due to 

decreased numbers of mature OLs, we performed immunohistochemical (IHC) cell counts 

on brain sections from Tcf4+/tr and Tcf4+/+ mice. We quantified the population of OPCs and 

mature OLs using antibodies against PDGFRα and CC1 (anti-APC), respectively. To control 

for heterogeneity in OL density in the gray matter, we performed blinded cell counts on 

anatomically equivalent brain sections and normalized our counts using the pan-OL marker, 

OLIG2. At P24, we observed a significant decrease in the proportion of CC1-positive OLs 

(Fig. 4c,d) and a significant increase in the proportion of PDGFRα-positive OPCs in the 

cortex of Tcf4+/tr mice compared to Tcf4+/+ littermates. A similar result was observed in 

brain sections from adult mice (P42; Fig. 4e,f), suggesting TCF4-dependent myelination 

defects are present by P24 and are preserved through adulthood.

Next, we used transmission electron microscopy (TEM) to visualize myelination in the CC 

of Tcf4+/tr and Tcf4+/+ littermates. Blinded to genotype, TEM images were taken of the CC 

directly above the dorsal hippocampus from anatomically equivalent tissue sections between 

littermates. Using blinded quantification, we did not observe a genotype difference in the 

gRatio, axonal area, or myelin area (Extended Data Fig. 4). However, we did observe a 

significant decrease in the proportion of myelinated axons in the CC of Tcf4+/tr mice 
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compared to Tcf4+/+ littermates (Fig. 5a,b), which is consistent with our Western blot and 

IHC results (Fig. 4).

We next determined if the reduction of myelinated axons in the CC of the Tcf4+/tr mice is 

physiologically relevant to the propagation of compound action potentials (CAPs) in the CC 

by performing electrophysiological recordings. Acute coronal brain slices were obtained 

from P29–32 Tcf4+/tr and Tcf4+/+ littermates. CAPs were evoked by a bipolar stimulating 

electrode and recorded by a field electrode placed at varying distances across the CC (Fig. 

5c). The N1 nad N2 peaks represents CAPs traveling down myelinated unmyelinated axons, 

respectively 23. Tcf4+/tr brain slices showed a significant reduction in the N1/N2 proportion 

suggesting more CAPs are traveling down unmyelinated axons in these animals (Fig. 5d). 

We also calculated conduction velocity of CAPs, and observed no difference between 

Tcf4+/tr and Tcf4+/+ littermates (Extended Data Fig. 5), suggesting that when axons are 

myelinated in Tcf4+/tr mice, the process appears to occur normally. In summary, our TEM 

and electrophysiology results indicate that the PTHS mouse has a pathological reduction in 

the proportion of myelinated axons that leads to a greater proportion of neuronal activity 

being transmitted down unmyelinated axons.

To further investigate the role of TCF4 in regulating the differentiation and/or maturation of 

OLs, we performed several in vitro studies to monitor the growth and differentiation of 

primary OPCs and OLs that were dissociated from the brains of Tcf4+/tr and Tcf4+/+ mice. 

First, we generated primary neuronal cultures from P0 cortices and performed 

immunocytochemistry (ICC) to quantify the population of OLs in our cultures. After 

arresting mitosis with Ara-C treatment, we observed a significant reduction in the number of 

CNP-positive OLs in primary cultures derived from Tcf4+/tr mice compared to Tcf4+/+ 

littermates (Fig. 6a,b). Moreover, cultures derived from Tcf4tr/tr mice, which typically die 

hours after birth, but can produce viable primary neuronal cultures, failed to produce any 

CNP-positive OLs (Fig. 6b). This further confirms Tcf4 plays a role in producing/

maintaining the number of mature OLs in our cortical cultures. However, because of the 

diverse cell populations in these cortical cultures, it is unclear whether the reduction of OLs 

is due directly to Tcf4 mutation within OL lineage or arises from a non-cell autonomous 

mechanism.

To determine if TCF4 protein directly regulates differentiation and/or survival of OLs we 

first confirmed Tcf4 transcript is expressed in the OL lineage. Fluorescent in situ 
hybridization experiments in mouse cortical brain sections showed Tcf4 transcripts are 

present in both OPCs and OLs (Extended Data Fig. 6a), and this result matches previously 

published single-cell sequencing data (Extended Data Fig. 6b) 24. We next asked if Tcf4 
mutation affects OL development in a cell-autonomous manner by dissociating OPCs from 

neonatal Tcf4+/tr and Tcf4+/+ mice using a protocol that generates a 98% pure population of 

cell-types within the OL lineage 25. We confirmed the purity of these cultures using ICC for 

the neuronal markers Tuj1 and NeuN, and the astrocyte marker GFAP. We observed only 

rare Tuj1+, NeuN+ or GFAP+ cells within our cultures (Extended Data Fig. 7). After a 

period of OPC expansion, primary OPC cultures were differentiated for two days, and ICC 

was performed using antibodies against PDGFRα, MOG, and OLIG2 to measure the 

proportions of OPCs and OLs present in the culture. Similar to ex vivo IHC results, blinded 
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quantification of cultures derived from Tcf4+/tr mice cortices showed a significant increase 

in the proportion of OPCs compared to Tcf4+/+ mice (Fig. 6c,d). Although Tcf4+/tr mice 

produced more OPCs in culture, we observed a significant decrease in the proportion of 

MOG-positive OLs compared to Tcf4+/+ cultures (Fig. 6c,d). This result was replicated 

using antibodies against MBP and CNP (Extended Data Fig. 8a,b). In addition, protein 

lysates from these cultures were positive for both full-length and truncated TCF4 protein 

(Fig. 6e). These results indicate this phenotype appears to result directly from Tcf4 mutation 

within the OL population because there are no other cell types present within these cultures 

that could provide a non-cell autonomous signal. As an additional confirmation of a cell 

autonomous role for Tcf4 in regulating OL differentiation and/or survival, we genetically 

deleted a single Tcf4 allele in the OL lineage by crossing the Olig2-Cre+/− mouse with the 

Tcf4+/flox mouse. We performed blinded quantification of OPCs and OLs in the cortex of 

P24 mice, and observed a significant reduction in the proportion of CC1-positive OLs (Fig. 

7a,b) and a significant increase in the proportion of PDGFRα-positive OPCs (Fig. 7a,c) in 

the cortex of Olig2-Cre+/−; Tcf4+/flox mice compared to Olig2-Cre+/−; Tcf4+/+ littermates. 

These results not only indicate that OL lineage-specific deletion of Tcf4 successfully 

phenocopied OL defects observed in animals with Tcf4 germline mutations, but also confirm 

that TCF4 regulates OPC differentiation and/or OL survival in a cell autonomous manner.

Human-mouse convergence of gene expression in idiopathic and syndromic ASD

Lastly, we examined the role of OL disruption in idiopathic ASD, which are more prevalent 

in the human population, but due to their polygenic nature are more difficult to model in 

animals. First, we found significant enrichment of adult Tcf4+/mut mice DEGs in the SFARI 

Human Gene Module of ASD candidate risk genes. Approximately one fifth of the 

homologous SFARI Human Gene module genes were DEGs in the Tcf4+/mut mice 

(N=190/992) and 46 of these are causal for syndromic ASD (Supplementary Table 5, 

Fisher’s exact test, OR = 2.12, p=2.2 e-16), suggesting TCF4 may be an upstream regulator 

of a variety of previously identified ASD risk genes. Sensitivity enrichment analyses of 

overlapping adult Tcf4+/mut mice DEGs with SFARI Human Genes with higher scientific 

evidence to contribute to ASD (i.e. scores 1–3 or Syndromic) demonstrated significant 

enrichment (Fisher’s exact test, OR = 2.96, p=2.2 e-16). We next tested our adult Tcf4+/mut 

mice DEGs with human homologs implicated in ASD by two large, unbiased de novo 
variant analyses 26,27 to replicate the enrichment signal with human ASD (Sanders et al. N= 

25/61, Fisher’s exact test OR = 5.92, p=7.33 e −10; Satterstrom et al. N = 35/97, Fisher’s 

exact test OR = 4.83, p= 2.33 e-16). Of note, TCF4 is one of the 102 ASD risk genes 

identified by Satterstrom et al. that contributes more to the neurodevelopmental delay 

ascertained cohort. We further identified significant enrichment of DEGs in the Tcf4+/mut 

mice among published WGCNA co-expression modules from microarray of human ASD 

postmortem brain 28, BrainSpan RNA-seq of developing human neocortex 29, and RNA-seq 

from human postmortem prefrontal and temporal cortex 30 (Supplementary Table 6). 

Specifically, we found the strongest enrichment of Tcf4+/mut DEGs among human genes 

involved in myelination, axon ensheathment, and gliogenesis (asdM14, adjusted 

hypergeometric p-value=5.6e-20). In addition, we observed Tcf4+/mut DEGs showed 

enrichment in other previously identified co-expression modules involved in synaptic 

transmission and mRNA processing (Supplementary Table 6). Enrichment in these gene co-
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expression modules supports the idea that gene networks disrupted in Tcf4+/mut mice are 

similar to gene networks disrupted in human ASD, and further identifies myelination as an 

additional pathway disrupted in ASD.

To better characterize phenotypes identified in mouse models with human illness, we 

directly integrated RNA-seq data fromTcf4+/mut mice with postmortem human brain tissue 

from ASD and 15q duplication postmortem brain from frontal cortex, temporal cortex, and 

cerebellar vermis 30 (Extended Data Fig. 9a). Differential expression between PTHS mouse 

and human ASD or 15q duplication was significantly concordant (Extended Data Fig. 9b). 

Tcf4+/mut DEGs strongly overlapped with human ASD and 15q duplication at replication, 

displaying slightly more overlap with the 15q duplication diagnosis (Extended Data Fig. 9c). 

Comparing replication of DEGs with a more stringent cutoff (p<0.01), gene regulation 

became more correlated with higher concordance rates, suggesting these groups of genes 

better represent the shared pathways affected in both PTHS and human ASD. GO analysis of 

DEGs in frontal and temporal cortex overlapping with PTHS mouse DEGs enriched for 

processes related to axon and dendrite projection development and postsynaptic regulation 

and signaling (Extended Data Fig. 9e).

Next, we evaluated the ability of our mouse-derived CAG gene set to distinguish patients 

with ASD and 15q duplication from unaffected individuals. We found significant differences 

in patients with ASD from controls among the 34 human homologs of the CAGs via its 

eigengene using linear mixed effects modeling that incorporated observed and latent 

confounders (Fig. 8a, linear mixed effects regression p-value =8.35e-4). This association 

was relatively robust, as sensitivity analyses only adjusting for brain region (linear mixed 

effects regression, two-sided p=0.044) and then the larger set of observed confounders 

(linear mixed effects regression, two-sided p=0.021) remained significant. The gene 

rotations that created this CAG eigengene were directionally consistent between the human 

and mouse samples, as OL marker genes (e.g. MBP and CNP) had positive loadings for an 

eigengene that was decreased in ASD samples. We subsequently replicated this CAG 

eigengene discrimination of 13 ASD patients from 39 unaffected controls in the frontal 

cortex from independent data 31 (Fig. 8b). This discrimination of patients from controls 

appeared unique to ASD, as similar analyses in patients with schizophrenia and neurotypical 

controls 32 showed no differences in the expression of these CAG genes (Extended Data Fig. 

10a). Similarly, while myelination has previously been implicated in Down syndrome (DS) 
23, the CAG eigengene in microarray data did not show separation between a small number 

of patients with DS and unaffected controls across a large number of brain regions and ages 

(Extended Data Fig. 10b), suggesting the dysregulation of these specific 34 genes may be 

unique to ASD.

We lastly sought to confirm differences in the relative proportion of OLs in human ASD. We 

tested for differences in cellular composition between patients with ASD and 15q 

duplication estimated using cell type-specific single cell RNA-seq data from adult samples 

as reference profiles. We found significant decreases in the fraction of RNAs from OLs 

across samples from all three brain regions in ASD (Fig. 8c), which was robust to the linear 

mixed effects regression model employed (region-adjusted: p=0.011, observed covariate-

adjusted: p=0.005). We again replicated these RNA fraction shifts using data from Wright et 
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al 31, with decreased expression signal from OLs (Fig. 8d). We further found suggestive 

evidence for increased OPC fractions in both the Parikshak (region-adjusted: p=0.041, 

observed covariate-adjusted: p=0.086, observed and latent-adjusted: p=0.056) and Wright 

datasets (observed and latent-adjusted: p=0.045) even though this cell population is rarer and 

thus more difficult to deconvolute from bulk tissue. This deconvolution approach further 

showed suggestive evidence for the previously-reported increase in astrocyte (region-

adjusted: p=0.007, observed covariate-adjusted: p=0.0013, observed and latent-adjusted: 

p=0.019) fractions in ASD 33, and suggestive evidence for increased microglia when not 

adjusting for latent variables (region-adjusted: p=0.098, observed covariate-adjusted: 

p=0.055, observed and latent-adjusted: p=0.42) 34. As these RNA deconvolution calculate 

the RNA fraction and not necessarily the fraction of each cell type, we used a third dataset 

consisting of single nuclei RNA-seq (snRNA-seq) from 15 patients with ASD and 16 

neurotypical controls 35, and identified a significant decrease in the fraction of nuclei that 

were OLs (Supplementary Table 7) and increase in the fraction that were protoplasmic 

astrocytes, in line with our RNA deconvolutions from bulk data above.

These analyses together provide further evidence that implicate inefficient maturation from 

OPCs to OLs and/or altered survival of OLs in the etiology of ASD. Together, these data 

strongly support the hypothesis that defects in myelination are a prevalent pathophysiology 

in syndromic and idiopathic ASD.

Discussion:

Starting with RNA-seq generated from five independent mouse models of PTHS as well as 

two additional mouse models of PTEN-related disorders and Rett’s syndrome, we identified 

a consistent transcriptional signature indicating syndromic ASD is associated with altered 

gene expression related to OL maturation and myelination. CSEA demonstrated DEGs are 

significantly enriched in OPCs and OLs, and these signatures were biologically validated in 

our PTHS mouse model. Lastly, we demonstrated that DEGs in our PTHS mouse models 

represents ~20% of the genes in the SFARI Human Gene Module for ASD, and that these 

myelin-associated DEGs can be used to distinguish human idiopathic ASD cases from 

neurotypic controls. Together, these results provide strong support that oligodendrocyte 

defects are prevalent in both syndromic and idiopathic ASD.

Myelination defects in monogenic ASD mouse models

Myelin pathologies are previously reported in several animal models of syndromic ASD 
21,22,36–41. We combined the transcriptomes of three models of syndromic ASD that harbor 

mutations in Tcf4, Pten, or Mecp2, and showed a significant convergence of differential 

gene expression. We identified 34 DEGs (termed CAGs) that are common to all three 

models which were significantly enriched in biological functions associated with 

myelination (Fig. 3). Interestingly, these CAGs showed anti-correlated gene expression 

between the Tcf4 model and Pten and Mecp2 models. This expression directionality predicts 

that both hypo- and hyper-myelination respectively, which we hypothesize may partially 

relate to the heterogeneity of causal mutations and symptoms between individuals with 

ASD. Here, in two independent postmortem human datasets, we showed decreased RNA 
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fractions attributed to OLs. The dichotomy between myelination defects in mice with Tcf4 
compared to Pten and Mecp2 mutations was biologically validated. We observed 

hypomyelination in our PTHS mouse model (Figure 4,5), while hypermyelination was 

previously reported in a Pten mouse model 21 and Mecp2 knockdown was shown to 

upregulate myelin-associated genes 22.

We showTcf4 mutation alters the population of OLs by increasing the proportion of OPCs 

while reducing the population of mature OLs (Fig. 4, 6). This reduction in mature OLs was 

confirmed by TEM imaging of the CC, where the percentage of myelinated axons was 

significantly reduced in PTHS mice. These structural phenotypes led to functional 

consequences, as a greater proportion of CAPs propagated down unmyelinated axons within 

the CC of PTHS mice (Fig. 5). Furthermore, reduced myelination in the PTHS mouse model 

is due directly to Tcf4 mutation within the OL lineage, as TCF4-dependent reduction in OL 

numbers was observed in pure OL-lineage cultures (Fig. 6) and after OL-lineage specific 

deletion of Tcf4 (Fig. 7). However, further experiments are required to fully understand how 

TCF4 mechanistically regulates the OL lineage.

Numerous other ASD mouse models have reported myelination defects. Tsc2 mutant mice 

that model Turberous Sclerosis display hypomyelination 36. FMRP mutant mice, which 

model Fragile X, and Cntnap2 mutant mice, which model Pitt Hopkins-Like Syndrome 1, 

show delayed myelination 37,38. Chd8 mutant mice showed sexually dimorphic response, 

such that myelin genes were upregulated in male mice and downregulated in female mice 39, 

and CHD8 is shown to directly regulate OL development42. Together, these studies indicate 

that both hyper- and hypo-myelination defects are prevalent in monogenic forms of ASD.

Myelination defects in idiopathic ASD—In humans, the process of CNS myelination 

begins early in the first year of life and continues throughout development which 

immediately precedes the first appearances of ASD clinical abnormalities and temporally 

coincides with the progression of the disorder 43. Numerous neuroimaging studies report 

differences in WM in ASD patients, with a reduction of CC volume being the most 

consistent finding 14,15. However, due to resolution constraints, movement artifacts, and/or 

variability in methods employed, the exact source WM abnormalities cannot be directly 

discerned 16,43.

In agreement with human imaging studies, an EM and immunohistochemistry study of 

prefrontal axons from postmortem brains of idiopathic autism patients showed that the ASD 

brain has a larger proportion of thin axons and decreased myelin thickness in certain brain 

regions 16. Moreover, single-cell sequencing of postmortem brains from 15 ASD and 16 

neurotypical controls showed that ASD cases had more protoplasmic astrocytes compared to 

controls 35. From our analysis of this dataset, we also observed a significant decrease in OLs 

present in these ASD samples compared to controls (Supplementary Table 7) 35. Using a 

similar deconvolution strategy we employed in Fig. 2 and 8, Wang et al., (2019) showed 

ASD was associated with a significant decrease in OLs 44. Together, these results indicate 

white matter tract defects are a consistent pathological finding in ASD and are in part due to 

myelin defects.
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Hypo- and hypermyelination in ASD—To gain insight into more genetically complex 

forms of ASD in humans, we compared transcriptional profiles from mouse models of 

monogenic forms of ASD to RNA-seq from the cortex and cerebellum of human 

postmortem ASD patients and controls. Using an RNA deconvolution strategy, we show 

hypomyelination is present in two independent sets of human ASD cases (Fig. 8). However, 

given that hypo- and hyper-myelination is observed and predicted in various monogenic 

mouse models 21,22,36,37,39 and by our RNA-seq analysis, we predict some human cases of 

ASD would present with hyper-myelination, and several lines of evidence support this 

prediction. First, EEG studies measuring event-related potentials in ASD patients have 

observed heterogeneity in response latency due to auditory stimulation 45, and this result 

could be due to varying levels of myelination across ASD cases. In addition, there may be 

region specific myelination defects in ASD, with single individuals showing both hypo- and 

hyper-myelination within a single individual depending on the brain region examined 46,47. 

Evidence of region specificity of myelination defects is supported by neuroimaging studies, 

which show highly specific WM tract deficiencies 46,47. Furthermore, macrocephaly is a 

common endophenotype observed in many individuals diagnosed with ASD, and 

specifically in individuals with PTEN mutations 48 and some atypical forms of Rett 

syndrome caused by MECP2 mutation 49. Therefore, we speculate that macrocephaly and 

hypermyelination may coincide in a proportion of ASD individuals.

Primary or secondary pathophysiology—Our results indicate that mutations in Tcf4 
lead to a cell autonomous effect on the OL lineage. We show in pure OPC cultures, that 

TCF4 protein is expressed and when mutated it leads to an increase in the proportion of 

OPCs and a decrease in the proportion of OLs (Fig. 6, Extended Data Fig. 6). In addition, 

we replicated this phenotype by genetically deleting a single Tcf4 allele within the OL-

lineage using Cre recombination driven by the Olig2 promoter (Fig. 7). We show cell 

autonomous defects in myelination are a primary pathophysiology in PTHS, and we identify 

transcriptional signatures that suggest myelination defects are a common pathophysiology in 

ASD. However, we do not claim myelination defects are strictly cell autonomous across 

ASD. Similar to neurons, OLs are responsive to their environment, and it is known that 

neuronal activity and experience regulates myelination 50. Instead, we suggest ASD 

mutations affecting neuronal function may lead to non-cell autonomous defects in 

myelination that varies between individual cases. The proximity and communication 

between OLs and neurons predicts that dysfunction in one cell type will have negative 

consequences on the other cell type.

We have provided a concise framework to more fully characterize the biological 

consequences of individual cell populations within bulk tissue RNA-seq expression data and 

subsequently validate this framework with robust, convergent experimental evidence. In 

several syndromic mouse models of ASD and human postmortem ASD brain samples, we 

identify a transcriptional signature implicating OL biology and myelination as being a 

common pathophysiology across the ASD spectrum. These findings offer an alternative to 

the neurocentric view of developmental disorders and suggests myelination may be a novel 

therapeutic target for the treatment of ASD.
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Methods:

Animals and tissue collection

The Tcf4+/tr mouse model of PTHS are heterozygous for a deletion of the DNA-binding 

domain of the Transcription Factor 4(B6;129-TCF4tm1Zhu/J; stock number 013598, 

Jackson Laboratory, Bar Harbor, ME) 51. This mouse colony was backcrossed at least 6 

generations, maintained by SoBran on a 12-hour light cycle, and fed ad libitum. Tcf4+/tr 

mouse samples were matched with WT littermates, and sex was randomly selected in each 

genotype and age group. The Tcf4R579W and Tcf4△574−579 were generated using Crispr/

Cas9 technology by the Animals Models Core facility at UNC 11. Heterozygous founders 

from each mutation were checked for off-target effects of the guide RNA, to which no 

changes were found. The Tcf4+/floxed mice were generated previously 52, and the Actin-Cre 
(JAX stock # 019099), Nestin-Cre (JAX stock #003771), and Olig2-Cre (JAX stock 

#025567) 53 mice were purchased from Jackson Laboratories. The Tcf4+/R579W, 

Tcf4+/△574−579, Actin-Cre::Tcf4+/floxed, Nestin-Cre::Tcf4+/floxed, and Olig2-

Cre::Tcf4+/floxed mice 11 were maintained on a congenic C57/BL6 background, and 

maintained on a 12:12 light dark cycle with ad libitum access to food and water. Age-

matched, sex-matched WT littermates were used as controls for all samples. All the 

procedures were in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals and approved by the institutional animal care and use committee.

qRT-PCR

To measure Tcf4 transcript expression across Tcf4+/tr mouse lifespan in mouse, three 

cortical samples were collected each from both genotypes over 11 developmental ages from 

embryonic day 12 (E12) to postnatal day 42 (P42, adult). Embryonic samples required 

microdissection for medial frontal cortical tissue. All samples were separately flash frozen 

and homogenized in Trizol (Life Technologies). Aqueous phase was mixed with a 1:1 

volume of 70% ethanol prior to purification using RNeasy mini columns treated with 

DNAse according to manufacturer’s protocol (Qiagen). RNA samples were then reverse-

transcribed to cDNA using the Quantscript Reverse Transcriptase kit (Qiagen). 

Amplification of cDNA was performed with iTaq SYBR Green Supermix (Bio-Rad) and 

Tcf4 primers were designed using with Primer 3 software (http://bioinfo.ut.ee/

primer3-0.4.0/). Primers were designed to span exons 19 and 20 to measure the full-length 

transcript. End-point PCR followed by product sequencing, in addition to cDNA dilution 

series and melt curve analysis, were used to verify primer design efficiency and specificity. 

Real time PCR was performed on the 7900HT Fast Real-Time PCR system (Applied 

Biosystems). Data was expressed as fold-change of gene of interest normalized to Gapdh 
expression using 2^-delta delta Ct. Lifespan expression fold-change was analyzed between 

the two genotypes with a two-way ANOVA with Sidak’s multiple comparison test for post 

hoc analysis in the GraphPad’s Prism software. mTcf4 forward primer CCC AGA CCA 

AGC TCC TGA TT, reverse primer CAT GTG ATT CGC TGC GTC TC; mGapdh forward 

primer GCC GTA TTC ATT GTC ATA CCA GG, reverse primer CGA CTT CAA CAG 

CAA CTC CC.
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Western Blot

TCF4 protein levels were measured across development in E12, P1, and adult ages (N=3 per 

condition). Mice cortices were extracted and flash frozen on dry ice. Dissected tissue was 

homogenized with T10 basic ultra-turrax (IKA) in a 1:15 ratio of tissue (mg): RIPA buffer 

plus protease inhibitor cocktail (Amresco). Samples were sonicated for 20 cycles using 

Sonifier 250 (Branson Ultrasonics) set at an output control of 1.5, and duty cycle of 60.05. 

Lysates were mixed with 20% SDS (Amresco) for a final concentration of 2% and 

resonicated. Lysates were then incubated on a rotator for 1hr in 4°C and centrifuged at 

20,000g for 5 minutes at 4°C. Supernatants were quantified using BCA kit (Pierce). Samples 

were blinded and randomly ordered on Western blots to control for batch bias. Total protein 

amounts of 20µg were used from each sample and separated using a 4–12% gradient Novex 

Bis-Tris Bolt SDS-PAGE gel via gel electrophoresis and transferred to 0.45 µm 

nitrocellulose membranes. Membranes were incubated at room temperature for 1hr in 

Odyssey PBS blocking buffer (Li-Cor), probed with anti-ITF-2 (N-16) (1:500, Santa Cruz) 

and anti-GAPDH (1:1000, Abcam) primary antibodies in Odyssey PBS blocking buffer 

overnight at 4⁰C, and detected using IRdye donkey anti-goat 680 (1:10,000, Li-Cor) and 

IRdye donkey anti-rabbit 800 (1:10,000, Li-Cor). Antibody detection and quantification was 

carried out using the LI-COR Odyssey infrared system and software. The Tcf4+/tr mouse 

produces two bands, one for the full-length (~75kDa) and one for the truncated protein 

(~70kDa) variants. We compared protein levels of the full-length protein over time and 

between genotypes using two-way ANOVA with Sidak’s multiple comparison test for post 

hoc analysis in the GraphPad’s Prism software.

CNP, MOG, and NG2 protein levels were similarly extracted and measured from whole 

brain lysates of Tcf4+/tr and WT adult mice (N=6 per genotype). Starting amounts of protein 

lysates (30µg, 20 µg, and 60ug) were respectively probed with 1:1000 dilutions of each 

primary antibody (mouse anti-CNP, Millipore; mouse anti-MOG, Abcam, and rabbit anti-

NG2, Millipore) and GAPDH and detected with 1:10,000 dilutions of Li-Cor IRdye (donkey 

anti-mouse 680, donkey anti-rabbit 800). Levels of CNP, MOG, and NG2 were normalized 

to GAPDH. We compared relative protein levels between genotypes using the two-sided 

unpaired t-tests.

Primary neuronal cultures

Primary cultures were obtained following the Worthington Papain Dissociation System 

(Catalog # LK003150). In brief, P0 mice brains were removed and whole cortex were 

individually microdissected from litters of Tcf4+/tr/Tcf4+/tr mice. Following dissection, 

individual cortices were enzymatically dissociated and isolated into a single cell suspension. 

Following papain inhibition, cells were plated at 2.5X104 per 24 well of poly-l-ornithine and 

laminin coated plates. At DIV1, medium was fully exchanged with oligodendrogenesis 

promotion medium (NBM/B27, 1XGlutamax and Pen/Strep with 10 µg/mL PDGFa, and 

10µg/mL bFGF). At DIV3 half of the medium was exchanged with oligodendrogenesis 

promotion medium. Starting at DIV5 growth factors were removed from medium and cells 

were treated with Ara-C (0.5µM for 48 hrs). After Ara-C treatment, cells were cultured with 

½ NBM/B27 medium exchange until DIV14 when cells were 4% PFA fixed for ICC 

experiments. Coverslips were stained for CNPase, MBP, TUJ1 and DAPI. Imaging was 
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performed blind to genotype, three 4X4 tiles using the 10X objective were imaged per 

mouse/coverslip for each of the antigen labels and the number of cells positive for OL 

markers were normalized to total DAPI counts per field.

Primary OPC and oligodendrocyte cultures

Primary OPC and OLs were obtained following a previous protocol 25. In brief, following 

dissociation or p0 pups, cells were cultured as spheres for 10 days in growth factors with ½ 

media exchange every other day. On the 11th day, media was replaced with conditioned 

media and ¼ media exchange every day until plating (Day 15). Cells were then cultured as 

OPCs in OPC media for 3 days until adding mature OL media for 3 days in order to push the 

OPCs to a mature fate. Cells were then fixed in 4% PFA for 15 minutes before ICC.

Transmission Electron Microscopy (TEM)

After perfusion with 2% paraformaldehyde (freshly prepared from EM grade aqueous 

solution), 2% glutaraldehyde, 3mM MgCl2, in 0.1 M sodium cacodylate buffer, pH 7.2 p21 

mouse brains were kept overnight in fixative. The next day brains were dissected in fixative, 

and rinsed with sodium cacodylate buffer. Samples were then post fixed in reduced 2% 

osmium tetroxide, 1.6% potassium ferrocyanide in buffer (2 hr) on ice in the dark. Following 

a dH2O rinse, samples were stained with 2% aqueous uranyl acetate (0.22 µm filtered, 1 hr, 

dark), dehydrated in a graded series of ethanol, propylene oxide and embedded in Eponate 

12 (Ted Pella) resin. Samples were polymerized at 60°C overnight. Thin sections, 60 to 90 

nm, were cut with a diamond knife on the Reichert-Jung Ultracut E ultramicrotome and 

picked up with copper slot (1 x 2 mm) grids. Grids were stained with 2% uranyl acetate and 

observed with a Phillips CM120 TEM at 80kV. Images were captured with an AMT XR80 

CCD camera. Preparation of samples, TEM imaging, and quantification was performed 

blind to genotypes.

Dissection of ROI for TEM

Cerebellum was removed and brains were divided into left and right hemisphere with a 

sagittal cut. Each hemisphere was cut again sagittal approximately 2mm from the midline, 

creating 2mm thick slices. The slices were laid flat and trimmed to a 3mm2 regions 

containing a length of cortex, CC and hippocampus. The tissue was embedded with the 

medial side at the front of the block. 300nm sections were stained with toluidine blue to 

confirm the location of the CC and ensure consistent regions of the CC were imaged across 

all brains. Blocks were trimmed to a 2x1mm region and thin sections were cut for TEM. 

Axon area, myelin area, and g-ratio were calculated using ImageJ plug-in 54. Quantification 

of the proportion of myelinated axons in the CC was previously described 36. We tested for 

differences in the proportion of myelinated axons by genotype using generalized linear 

mixed effects models across all 18,608 axons with quantified data across 79 images within 9 

mice (5 WT and 4 Tcf4+/tr). Specifically, we modeled whether the log odds of each axon 

being myelinated differed by genotype (fixed effect), treating images and mice as two nested 

random intercepts using the logistic/binary link function. This more conservative analysis 

partitioned variability in axon myelination probability within axons in the same image, and 

images from the same mouse, essentially comparing data from 9 total animals. More liberal 

analyses modeling axons within the same image as independent measurements (but not 
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images within the same mouse) showed an identical odds ratio (OR=0.65) with a more 

significant p-value (p=0.0008). All TEM imaging and counts were performed blind to 

genotypes.

Immunohistochemistry and Immunocytochemistry

Following fixation cells were rinsed with 0.04% Tween 20 3x while tissue (p24 mouse) was 

rinsed with 0.4% Triton 3x. Cells were blocked in respective serum (10%) for 2 hours at 

room temperature on an orbital shaker. Following block, primary antibody was added in 2% 

serum in 0.04% Tween 20 for cells and 0.4% Triton for tissue, and incubated overnight at 

4°C. Following overnight incubation cells were rinsed 3x with 0.04% Tween 20 or 0.4% 

Triton respectively before adding the secondary antibody to incubate at room temperature 

for 2 hours. After incubation, cells were rinsed 3x in respective buffer and DAPI 

(Invitrogen™ D1306) was added in order to visualize nuclei. Visualization was carried out 

on a ZEISS LSM 700 Confocal. Imaging and quantification was performed blind to 

genotypes.

Electrophysiology

Acute coronal brain slices containing the CC were obtained from P29–32 mice as previously 

described 55. Artificial cerebrospinal fluid (ACSF) was oxygenated (95% O2 and 5% CO2) 

and contained (in mM): 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 3 KCl, 25 dextrose, 1 

MgCl2, and 2 CaCl2, pH 7.3. A bipolar stimulating electrode was placed 500µm away from 

the midline and CC was stimulated with a 100µs square pulse using 80% of the maximal 

stimulation intensity. The recording electrodes were fabricated from borosilicate glass 

(N51A, King Precision Glass, Inc.) to a resistance of 2–5 MΩ and placed at varying 

distances from the stimulating electrode in the contralateral CC. For cAP recording pipettes 

were filled with ACSF. Voltage signals were recorded with an Axopatch 200B amplifier 

(Molecular Devices) and were filtered at 2 kHz using a built in Bessel filter and digitized at 

10 kHz. Data were acquired using Axograph on a Dell PC. For electrophysiology 

experiments, data collection and analysis were not performed blind to the conditions of the 

experiment.

Library preparation and RNA sequencing

RNA was extracted from the brains of Tcf4+/tr and WT littermates at two developmental 

time points, P1 and >P42 with 6 animals per group (total N=24). Animals were collected at 

the indicated time point, euthanized, and brains removed from the skull. The medial 

prefrontal cortex (mPFC) was rapidly dissected on an ice block, and the tissue samples were 

immediately subjected to RNA purification. Sequencing libraries were prepared from RNA 

from each mouse cortex using the Illumina TruSeq Stranded RNA HT sample preparation 

kit with Ribo-Zero Gold. Libraries were barcoded and then sequenced using an Illumina 

HiSeq 3000 at 100bp paired-end reads for targeted coverage of 50 million sequencing 

fragments (100 million reads) per sample in the LIBD Sequencing Core Facility. There was 

a median of 129M(Million) mapped reads per sample (interquartile range, IQR: 

109M-140M), of which a median 52% (IQR: 49%−54%) were assigned to genes (based on 

exonic sequence overlap).
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Brains collected from Tcf4+/R579W, Tcf4+/△574−579, Nestin-Cre::Tcf4+/Flox, Actin-
Cre::Tcf4+/Flox, and littermate controls were dissected at either P0-P2 or P60-P80. Brains 

were rapidly dissected, flash frozen in a dry ice and ethanol bath, and stored at −80°C. RNA 

was extracted from one (P60-P80 mice) or both (P0-P2) cerebral hemispheres using the 

RNeasy Plus kit (Qiagen) per manufacturer’s instructions with the following modifications. 

The frozen tissue was thawed on ice and then hand homogenized in 500µl of Buffer RLT+ on 

ice. The crude RNA lysates were diluted with additional Buffer RLT+ to a final volume of 

2mL. For purification of RNA, 400µl of P60-P80 lysate or 200µl of P0-P2 lysate were used 

from the total RNA lysates (2mL). The crude RNA lysate was twice passed through the 

genomic DNA eliminator column, and the purification proceeded according to the 

manufacturer’s instructions (Qiagen). A 40µl aliquot of purified RNA was used for 

additional purification using the RNA Clean and Concentrator kit (Zymo). Briefly, the 

purified RNA was incubated with RNase-free DNase I (Zymo) for 15 minutes at room 

temperature. The digested RNA was then washed and cleaned on column per the 

manufacturer’s instructions. All tested samples had 260/280 and 260/230 ratios ≥ 2.0 

measured using a NanoDrop (Thermo Scientific). All RNA samples were verified to have an 

RNA integrity number (RIN) INNA integrity number on the TapeStation 2000 (Agilent 

Technologies). Unstranded library construction, quality control, and RNA-sequencing were 

performed by Beijing Genomic Institute (BGI, Beijing, China) using the Illumina 

HiSeq4000 at single-end 50bp reads. These samples had a median of 29M reads mapped per 

sample (IQR: 26M-31M), of which a median 81% (IQR: 79%−83%) were assigned to genes 

(based on exonic sequence overlap).

Read mapping and quantification of gene expression

HISAT2 genome indices for mm10/GRCm38.p4 were created according to developer’s 

instructions. Reads were aligned to the mm10 mouse genome using the splice-read mapper 

HISAT2 (version 2.0.4) 56 using the reference transcriptome to initially guide alignment, 

based on known transcripts of the GENCODE build [`hisat2 -p 8 -x $GRCm38index 

−1 $FP −2 $RP -S $SAM --rna-strandness RF --phred33 2> $SUM`]. Single-

end reads were aligned with the argument [`-U $UP`]. Unstranded reads did not include the 

[`--rna-strandness`] argument. Gene expression levels were calculated with the 

featureCounts tool (version 1.5.0) 57 based on the GENCODE version M11 annotations of 

the mm10 genome. Tcf4+/tr expression was summarized with featureCounts arguments for 

reversely-stranded read pairs [`featureCounts -s 2 -p -T 8 -a $GTF -o $OUT 

$BAM`]. Other Tcf4+/mut samples were prepared with unstranded library kits, so expression 

was summarized with [`-s 0`] argument instead. ($FP: forward pair; $RP: reverse pair; 

$SAM: output alignment file, RF: HISAT argument for reversely stranded library prep; $UP: 

unpaired reads)

Differential expression across TCF4 mutations and brain regions

Differential expression in P1 and adult mice brain from Tcf4 mutation was determined by 

pooling samples from medial PFC, whole brain, and hippocampal CA1 from 5 forms of 

Tcf4+/mut (NP1=28, NAdult=69). The R package DESeq2 58 used raw gene counts to 

determine DEGs by genotype with the linear model `geneCounts ~ Genotype + Line 
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+ geneAssignmentRate+ SVs`. Lowly expressed genes were dropped from differential 

expression (average normalized counts across all samples less than 1). Expression was 

adjusted for mouse line and gene assignment rates to account for differences between mouse 

lines, animal care, tissue source, library preparation, and sequencing procedures. Surrogate 

variables (SV) determined by the R package sva 59 were included to remove batch effects 

and noise in gene expression data from unknown or un-modeled sources of variation. One 

low quality sample determined by a low rate of reads mapped to the genome and low gene 

assignment, an adult Tcf4+/tr sample, was identified in hierarchical clustering and was 

dropped from analysis. The p-values were adjusted for multiple testing through DESeq2 

with a target alpha = 0.05, and mouse genes were considered DEGs at FDR<0.05.

Comparison between differential expression analyses

Sub-analyses to determine DEGs within each mouse line and age group were similarly 

determined with DESeq2 with the linear model: geneCounts ~ Genotype + SVs at 

alpha = 0.05. Samples within these groups are considered balanced and matched. A DEG 

from one dataset is considered “replicated” if it is differentially expressed at p<0.05 in more 

than one dataset (Fig. 4, 5, and S1).

Functional gene set analysis on the DEGs

We found enriched gene pathways in GO databases with the R-package clusterProfiler 60. 

The clusterProfiler analysis tested the DEGs at p<0.01 from the pooled analysis in P1 and 

adult samples for overrepresented gene sets using hypergeometric tests. DEGs are separated 

by positive and negative log-2 fold-change. We defined the background as the list of 

expressed genes with mean normalized counts > 1 and adjusted for multiple testing with q-

value<0.05.

Cell type-specific expression and relative proportion analysis

We first used the CSEA approach 61 to determine cell type specificity of these TCF4 
mutations, which are based on over-representation of cell type-specific genes, determined by 

TRAP. The DEGs at P1 and Adult age groups at unadjusted P < 0.01 were used for CSEA. 

Analyses and plots were generated with the online CSEA tool (http://genetics.wustl.edu/

jdlab/csea-tool-2/). Each cell type is represented by a 4-level bullseye plot scaled by the 

number of transcripts unique to that cell type at multiple specificity index thresholds 

(pSI<0.05, 0.01, 0.001, 0.0001). Enrichment BH-adjusted p-values are plotted in each level 

of specificity (i.e. the most enriched cell types will have the lowest p-values in all rings). 

Independent validation of CSEA analysis took RNA-seq raw gene counts from purified cell 

types of mouse brain from Zhang et al. 62 and the CIBERSORT online tool 63 to create the 

set of signature genes using default parameters. The signature genes for enrichment was 

further limited to those upregulated in these cell types from DESeq2 analysis (Fig. 3A). Raw 

gene counts from PTHS mice were passed to CIBERSORT to predict relative proportions of 

each cell type. Shifts in proportions was determined by fitting the linear regression to model 

the genotype effect on cell type proportions co-varying for mouse line `Proportions ~ 

Genotype +Line`.
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Comparing transcriptomes of multiple syndromic ASD mouse models

We compared DEGs from Tcf4+/mut mice with two mouse models of ASD, Mecp2tm1.1Bird) 
20 and homozygous Pten mutation (Ptenm3m4/m3/m4) 19. We processed the Mecp2tm1.1Bird 

and Ptenm3m4/m3/m4 RNA-seq datasets as described below and compared genes differentially 

expressed in our pooled TCF4 analysis to those also differentially expressed in MeCP2 and 

Pten homozygous mutations (FDR<0.05). We tested enrichment of differential expression, 

log2 fold-change correlation, and log2 fold-change directionality concordance with Fisher’s 

Exact test and Spearman correlation test. We also report r, the Spearman’s correlation 

coefficient, and 1-k, the rate of genes with opposite log2 fold-change directionality. GO 

analysis for Fig. 3D was performed on the set of genes differentially expressed in all three 

mouse models.

Comparing to human ASD risk genes, expression networks, and differential expression

To directly compare our PTHS mice models with sporadic human ASD, we compared our 

DEGs to the Simons Foundation Autism Research Initiative (SFARI) ASD Human Gene 

Module and Animal Model Module64,65 and we searched for overlap using weighted gene 

co-expression network analyses (WGCNAs) from human ASD and neocortical development, 

as well as gene expression of a recent large RNA-seq study on human ASD postmortem 

brain 30. We downloaded the list of ASD risk genes scored by (release 8/8/2019) by the 

evidence of their risk associations to idiopathic or syndromic ASD. We included 992 of the 

1089 risk genes that had a homologous mouse gene expressed in our RNA-seq dataset and 

used the Fisher’s Exact test to test for over-representation of our DEGs in the list of human 

ASD risk genes. We further subset SFARI human module genes with scientific evidence 

scores of 1, 2, 3, or syndromic to assess a stricter overlap of our mouse DEG and human 

genes with stronger evidence to contribute to ASD. We replicated these enrichment by 

comparing to genes identified to be significantly associated with ASD by large de novo 
variant analyses 26,27. We downloaded Table S6 in Sanders et al., 2015 and Table S4 in 

Satterstrom et al. bioRxiv 2019 (accessed 8/14/2019) and 61/65 and 97/102 genes were 

included in replication enrichment analyses, respectively. We tested enrichment with 

weighted gene co-expression network analysis (WGCNA) of human brain development 29, 

microarray of human ASD 28, and RNA-seq of human ASD 30. For WGCNA data from the 

Voineagu et al. study, we assigned genes to the module that they have strongest membership 

(kME > 0.7). Here, we limited the analysis to only expressed genes in the mouse data that 

have human homologs present in each WGCNA study. As described in these papers, we 

tested enrichment in each co-expression module with two-tailed Fisher’s Exact test, included 

only positive enrichment (odds ratio > 1), and adjusted for multiple testing with the false 

discovery rate (FDR<0.05). We also provide a companion GO analysis of these enriched 

modules to interpret the molecular pathways involved in each co-expression networks. We 

used all genes in each module with the background as the list of genes reported in each 

study.

Comparing mouse models of PTHS with human ASD RNA-seq

Lastly, we compared adult PTHS DEGs with differential expression of human ASD vs. 

control in three brain regions (DLPFC, auditory cortex, and cerebellar vermis). We used 
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biomaRt 66 to map mice genes to their human homolog genes and determined fold-change 

concordance with chi square test of independence in significant DEGs in both datasets 

(FDR<0.01 in mice, p<0.05 in human). We tested the log2 fold-change correlation with 

Fisher’s Exact tests. We report k, the rate of genes with concordant log2 fold-change 

directionalities between PTHS mouse and human ASD or 15q duplication in each brain 

region with their respective permutation p-values of 1000 iterations. We subsequently 

performed GO analysis on genes in both mouse and human for each brain region (as above) 

with the background as the set of expressed genes with mouse homologs.

We calculated CAG eigengenes within the Parikshak et al and Wright et al datasets to test 

for association with ASD. We performed principal component analysis (PCA) on the 

log2(RPKM+1) of the 34 CAG genes homologous between mouse and human. This is 

analogous to treating the CAG gene set as a WGCNA module and calculating the 

corresponding eigengene. In the Parikshak et al data, we then associated this eigengene with 

ASD or 15q duplications diagnoses relative to controls in three different linear mixed effects 

models, 1) adjusting for brain region, 2) adjusting for brain region, gene assignment rate, 

sequencing batch, brain bank, RIN, age, sex, which we term the “covariate-adjusted” model, 

and 3) further adjusting for the top 5 quality surrogate variables (qSVs) 67 All three models 

treated donor as a random intercept (since some donors contributed multiple brain regions). 

We display the “adjusted” eigengene in each plot to account for this statistical adjustment, 

which preserves the effects of diagnosis in the eigengene while regressing out the effects of 

the observed and latent confounders (as described in Jaffe et al 68 and as implemented in the 

cleaningY function in the jaffelab R package.

We performed reference-based cellular deconvolution using 146 cell type-specific genes 

identified from the six adult cell types from Darmanis et al 69 (Table S8) and the Houseman 

algorithm first used in DNA methylation-based deconvolution 70. We specifically scaled the 

expression values of these 146 genes within the reference set prior to estimating the weights 

for each gene, and then within the postmortem ASD data to make values more comparable 

across datasets prior to deconvolution. Using data from Parikshak et al, we tested for 

composition differences between diagnostic groups across all samples using linear mixed 

effects modeling, using the same three models as above, and plotted the effects of cell types 

on diagnosis using values adjusting for the full observed and latent confounder model 

(which better visually reflects the multiple regression p-value).

In the data from Wright et al, we tested for ASD effects on RNA composition and the CAG 

eigengene effects using linear regression, adjusting for RIN, exonic mapping rate, sex, and 

the first 9 principal components (PCs) of the overall expression data, in line with the original 

publication 31.

Other RNA-seq data processing: Kennedy et al. RNA-seq data from hippocampal CA1 

of Tcf4+/tr mice 10: We acquired from the authors 16 BAM files from RNA-seq of CA1 

pyramidal neurons of unconditioned Tcf4+/tr and WT P60 mice. Reads were extracted from 

the BAM files to be realigned as single-end unstranded reads with HISAT2. Expression was 

summarized with featureCounts calls for single-end unstranded reads. Differential 

expression by genotype adjusting for surrogate variables was determined with DESeq2.
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Gabel et al. RNA-seq data of Mecp2tm1.1Bird20 : We downloaded the MeCP2 dataset from 

accession GSE67294 (N=6, male WT vs. MeCP2 knock-out, visual cortex). Single-end 

unstranded raw RNA-seq reads were aligned to the genome with arguments for single-end 

unstranded. FeatureCounts with similar arguments were used to quantify expression of genes 

[`featureCounts -a $GTF -o $OUT $BAM`]. Differential expression was determined in 

knockout vs. WT mice adjusting for surrogate variables.

Tilot et al. RNA-seq data of Pten homozygous mutation mice 19: We downloaded the Pten 

dataset from accession GSE59318 (N= 6, WT vs. homozygous mutants, P42 weeks old). 

Reversely stranded, paired-end RNA-seq reads were aligned to the genome. featureCounts 

was used to quantify expression of genes. Differential expression of homozygous mutant 

mice vs. WT was determined using surrogate variables.

Zhang et al. mouse brain cell type RNA-seq data 62 : We downloaded the Zhang dataset 

from accession GSE52564 (N=17, 7 purified cell types and 1 bulk tissue). Reversely 

stranded, paired-end RNA-seq reads were aligned to the genome. FeatureCounts was used to 

quantify expression of genes.

Parikshak et al. human ASD RNA-seq data 30 : We acquired RNA-seq reads of postmortem 

human brain from the authors, and aligned to the human genome hg38 and GRCh38 gene 

annotations with HISAT calls for paired, reversely stranded reads. Reads were summarized 

with featureCounts with analogous parameters. We further summarized library normalized 

sum coverage with bwtool to measure expression of degradation prone expressed regions 

from RNA-seq libraries prepared with RiboZero for the qSVA method explained in Jaffe et 

al, 67. This degradation region expressed matrix is used in the qSVA analysis method to 

account for latent degradation effects not completely modeled with RIN. Differential 

expression in each brain region was then determined with DESeq2 with the statistical model: 

Expression~ Diagnosis + geneAssignmentRate + SequencingBatch + 

BrainBank + RIN + Age + Sex+ qSVs`.

Velmeshev et al. 2019 data 35: we downloaded nuclei-level meta-data from http://

cells.ucsc.edu/autism/meta.tsv and calculated the proportion of each estimated cell class in 

each sample. We then performed linear regression analysis for each cell type proportion for 

ASD diagnosis adjusting for brain region.

Extended Data
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Extended Data Fig. 1. Heterozygous truncation of Tcf4 decreases levels of Tcf4 mRNA and 
protein.
Comparison of lifespan expression patterns of TCF4 in heterozygous (Tcf4+/tr) mice and 

wild-type (Tcf4+/+) littermates in qRT-PCR and RNA-sequencing analyses. mRNA and 

protein were extracted from frontal cortex of mice across developmental ages. (A) qRT-PCR 

analysis of full-length Tcf4 transcripts from mouse frontal cortex. Tcf4+/tr mice show overall 

reduced expression compared to Tcf4+/+ mice (n=66 mice, ANOVA p=0.02) with the 

greatest decrease inTcf4 expression around postnatal days 1–4 (P1–4, n=18 mice, Posthoc 

p<0.05). Center values represent mean and errors bars are S.E.M. (B) RNA-seq analysis also 

shows TCF4 expression decreased in the Tcf4+/tr mouse in the exon after the truncation 

(n=35 mice). Tcf4+/tr mice had significant decrease of Tcf4 exons (differentially expressed 

exon by genotype FDR = 3.35 x 10−35). The boxplot shows the quartile breaks of 

residualized variance stablilized count of a Tcf4 exon after the truncation (see methods on 

residualization for visual interpretation). (C) Western blot of endogenous mouse TCF4 at 

three ages (E12, P1, and P42). A single full-length (TCF4 fl; 80kDa) protein is observed in 

lysates from Tcf4+/+mouse brain and Tcf4+/tr mouse brain expresses a truncated (TCF4 tr) 

and full-length TCF4 protein. These representative gel images are compiled across several 

different gel images and stitched together. (D) Full-length TCF4 protein is decreased in the 

Tcf4+/tr mouse brain (n=3 mice per genotype per timepoint, pAnova =0.0009) with the largest 

effect occuring at P1 in the TCF4+/tr mice (n= 3 mice per condition, two-sided unpaired t-

test, p<0.01). Center values indicate mean and errors bars are the S.E.M., *<0.05, **<0.01, 

***< 0.001.
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Extended Data Fig. 2. Replicated differential expression across PTHS models.
(A) Table of DEGs (NP1 = 28, NAdult = 69, using the two-sided differential expression cutoff 

of FDR<0.05) and percent of differential expression replication across different forms of 

Tcf4 mutation P1 and adult mice. Most DEGs and replication occur in adult mice. The 

replication rate was defined as the proportion/percentage of DE genes that were p < 0.01 in 

at least one other mouse model of the same age group divided by those DEGs in the 

reference mouse model. (B) Differential expression log2 fold-change heatmap comparing 

replicated DEGs across various models of Tcf4 mutations in P1 (replication defined the 

same gene having differential expression with two-sided p<0.05).
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Extended Data Fig. 3. Cell type-specific expression analysis in PTHS mice.
Bulls-eye plots from CSEA analysis of DEGs in (A) P1 and (B) adult Tcf4+/tr mice. The 

bulls-eye plot size is scaled to the number of genes specific to a cell type at increasing levels 

of specificity as published by Xu et al., 201413. The FDR-adjusted hypergeometric test p-

value is plot for each level of specificity, with unenriched groups colored gray. Cell type 

bulls-eye plots are arranged by hierarchical distance of their specific gene expression levels. 

(A) P1 DEGs (N = 36 DEG at Padj < 0.05) enriched for D1+, D2+, and cholinergic neurons 

(Padj<0.05). (B) Adult DEGs (N = 1832 DEG at Padj < 0.05) strongly enrich for OLs among 

other neuronal cell types.
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Extended Data Fig. 4. Analysis of TEM images.
(A) Plot of gRatio and corresponding radius for all axons assessed. Axon radius is 

significantly correlated with gRatio (p=2.86e-34), and this correlation is different by 

genotype (p=0.03). (B-F) No significant differences were observed between genotypes for 

gRatio (p=0.796), axon area (p=0.844), myelin area (p=0.852), myelin + axon radius 

(p=0.615), or axon radius (p=0.873).
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Extended Data Fig. 5. Conduction velocity does not differ between TCF4 genotypes.
The peak time of N1 and N2 waveform (y-axis) is the amount of time between stimulation 

artifact and the amplitude peak of the compound action potential. The peak time is plotted 

against distance (x-axis) which is the distance between the stimulating electrode and 

recording electrode. The slope of the line generated from both N1(A) and N2 (B) does not 

differ between genotypes (N1 slope p=0.96, N2 slope p=0.36, N=30 slices from 4 Tcf4+/+ 

and 5 Tcf4+/tr mice) Center values indicate mean and errors bars are the S.E.M.
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Extended Data Fig. 6. Tcf4 is abundantly expressed at all stages of oligodendrocyte development.
(A) Example images of fluorescent in situ hybridization showing Tcf4 transcript co-localizes 

with both Pdgfrα and Mbp. (B) Summary plots of single-cell RNA-seq data across 

oligodendrocyte development showing expression levels for Pdgfrα, Tcf4, Olig2, and Mbp. 

This data was adapted from Marques et al., 2016.
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Extended Data Fig. 7. Primary OL cultures are devoid of neurons and astrocytes.
(A) Primary neuronal culture stained with CNP and GFAP as a positive control for antibody 

staining. (B1) Primary OL culture stained with CNP and GFAP. (B2) Cell counts showing 

primary OL cultures have very few neurons (Tuj1+) or astrocytes (GFAP+). Numbers 

indicate number of cells counted for that condition. (C) Primary neuronal cultures stained 

with OLIG2, NeuN, and GFAP as a positive control for antibody staining. (D) Primary OL 

culture stained with OLIG2, NeuN, and GFAP. (D1) Cell counts showing primary OL 

cultures have very few neurons (NeuN+) or astrocytes (GFAP+).
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Extended Data Fig. 8. OPCs derived from Tcf4+/tr mice show inefficient maturation into 
oligodendrocytes.
(A) Representative images of OPCs (PDGFRα) and mature OLs (MBP, CNP) derived from 

Tcf4+/+ and Tcf4+/tr mice. To control for cell numbers all cell counts are normalized by the 

pan-OL marker Olig2 that labels both OPC and mature OLs. Tcf4+/tr produce significantly 

more OPCs (n=23 mice, two-tailed unpaired t-test, p<0.0001) and fewer MBP positive OLs 

(Tcf4+/+ 0.19±0.02 vs. Tcf4+/tr 0.05±0.01, n=23 mice, two-tailed unpaired t-test, p<0.0001). 

(B) Representative images of OPCs (PDGFRα) and mature OLs (CNP). Tcf4+/tr produce 

significantly more OPCs (two-tailed unpaired t-test, n=17 mice, two-tailed unpaired t-test, 

p<0.0001) and fewer CNP positive OLs (Tcf4+/+ 0.56±0.04 vs. Tcf4+/tr 0.22±0.02, n=17 

mice, two-tailed unpaired t-test, p<0.0001). All scale bars equal 100µm. For all bar graphs, 

center values represent the mean and error bars are S.E.M.,***p<0.001, ****p<0.0001.
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Extended Data Fig. 9. Concordant gene regulation between PTHS mice and human ASD.
Comparison of differential expression in adult PTHS mice with human ASD and 15q 

duplication (15q Dup) in postmortem frontal, temporal, and cerebellum. (NTemp =68, 

NFrontal = 73, NVermis =63, Human two-sided differential expression p<0.05, mouse DEGs, 

FDR<0.01). (A) Log2 fold-change comparison of adult PTHS mouse DEGs replicated in 

human ASD and 15q Dup in each tissue region (p<0.05). Gene regulation in PTHS mice 

cluster closest with ASD differential expression in cortex. (B) More than 50% of replicated 

PTHS DEGs had concordant fold-change directionality. Null permutation for empirical p-

value significance of human-mouse gene fold-change concordance from 1000 permutations 

are reported (Two-sided Fisher’s exact test, *, padj<0.05; **, padj<0.01; *** padj<0.001). (C) 
Replicated DEGs in ASD and 15q Dup are significantly enriched in all tissues, mostly in the 

cortex (FDR-adjusted Fisher Exact test for overlap of Tcf4 mouse DEG with ASD DEG, 

padj<0.05). (D) Venn diagram showing overlap of PTHS mouse DEGs with human ASD or 
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15q Dup in cortical tissues. (E) Gene ontology analysis shows tissue-specific biological 

processes and cellular components between overlap of PTHS mouse and human ASD or 15q 

Dup (NASD = 10896 and N15qDup = 13149 DEGs at p < 0.01,s q-adjusted two-sided 

hypergeometric test). The gene sets are largely brain region specific and concordant between 

human ASD and 15q Dup. The color of the dot plots shows the q-adjusted hypergeometric 

test p-value for gene set enrichment of the DEG of each diagnosis group.
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Extended Data Fig. 10. Mouse concordant ASD genes (CAGs) are not convergent with 
Schizophrenia or Down Syndrome.
(A) The eigengene of the CAGs found across the three models of syndromic ASD explains 

65.8% of the gene expression variance and is not associated with Schizophrenia diagnosis 

(linear regression two-sided p-value=0.538). (B) The eigengene of the CAGs found across 

the three models of syndromic ASD explains 53.2% of the gene expression variance and is 

not associated with Down Syndrome diagnosis (linear regression two-sided p-value=0.34). 

(C)Estimated cellular composition differences between patients with schizophrenia and 

controls using reference-based deconvolution. There were significant increases of astrocytes 

(p=0.0002) and endothelial cells (p=0.0118) and decreases in microglia (p=0.0076) in 

patients with schizophrenia compared to controls using linear regression analysis.
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Figure 1: RNA-seq of multiple Tcf4 mutations reveal age-specific differential gene expression.
(A) Summary table of the 5 mouse lines of Tcf4 mutation sequenced in this analysis. 

Samples come from 3 regions, medial prefrontal cortex, hemibrain, and hippocampal CA1 

(colored red, black, and teal, respectively). Two age groups, P0–2 (P1) and >P42 (adult), 

were assessed in this study. N’s of wild-type and PTHS mice are colored black and red, 

respectively. (B) General sample-to-analysis RNA-seq pipeline. (C) Venn diagram of DEGs 

in P1 and adult mice by Tcf4+/mut genotype across all mouse lines and tissue regions 

(FDR<0.05). There are 36 DEGs in P1 group, and 1832 DEGs in adult group. A significant 

group of 17 genes are differentially expressed in both P1 and adult age groups (Fisher’s 

exact test, p=2.153 e-10). (D) Log2 fold-change heatmap of DEGs from the mega-analysis 

shows high concordance of differential expression across other mouse lines (replication 

defined as the same gene also differentially expressed in another model with two-sided 

p<0.05). (E) Dot plot of gene ontology (GO) enrichment analysis of DEGs split by up- or 
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down-regulated genes to determine functional pathways affected in PTHS mice brain (q-

adjusted two-sided hypergeometric test, padj < 0.05). Gene ratio dot size represent % of 

genes for each GO term differentially expressed.
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Figure 2: Oligodendrocyte-specific deficits in PTHS model mice.
(A) Heatmap plotting the ratio of cell type-specific genes that are DEGs. Differential 

expression in all adult mouse lines were highly specific to myelinating OL signature genes 

(n=21,196–25,848 expressed genes in within an age/mouse line, FDR-adjusted two-sided 

Fisher’s exact test for gene set enrichment, padj<0.05). New OLs, their precursors, neurons, 

and astrocytes are enriched in DEGs across all Tcf4 mutant mouse models, but most present 

in the adult brain (padj<0.05). (B) CIBERSORT cell proportions analysis of PTHS mice 

stratified by sample tissue source. New OL proportions are down in P1 brains, neuron 

proportions are up in adult brain, and myelinating OL proportions are down in adult brain 

(two-sided linear regression of related proportions for Tcf4 effect, NP1= 28, New OL p = 

0.023; NAdult = 69, Neuron p= 0.035, Myelinating OL p = 0.00155). Boxplot display the 

quartiles and median of cell type proportions. (Abbreviations: R579W = Tcf4+/R579W; 

D574–579 = Tcf4+/D574−579; Nest-Cre = Nestin-Cre::Tcf4+/floxed; Actin-Cre = Actin-
Cre::Tcf4+/floxed; mPFC-tr = Tcf4+/tr medial prefrontal cortex; CA1-tr = Tcf4+/tr 

hippocampal CA1 neurons; FPKM = fragments per kilobase per million reads mapped, * 

Padj <0.05, ** Padj <0.01, *** Padj < 0.001)
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Figure 3: Shared myelination gene regulation between mouse models of syndromic ASD.
(A) Venn diagram of DEGs in each mouse model of ASD (FDR < 0.05). There is significant 

overlap of DEGs from Tcf4 mutation vs. Mecp2 or Pten homozygous mutation (Two-sided 

Fisher’s Exact test, p=2.2e-16). (B-C) Log2 fold-change comparison of the genes 

differentially expressed both in Tcf4 heterozygous mutation and Mecp2 knockout or Pten 
homozygous mutation, respectively. DEG fold-change directionality in TCF4 mutant mice is 

inversely correlated (ρ < 0) to that in MeCP2 and Pten mutation suggesting TCF4 plays an 

opposite role in regulating these genes. 34 genes differentially expressed in all three 

mutations, referred to as the convergent ASD genes (CAG) are plot with black outlines. (B) 
The 586 DEGs in the Tcf4 vs. Pten comparison had 91% opposite fold-change directions 

and displayed strong negative correlation (Spearman correlation p=2.2e-16, ρ = −0.71). (C) 
The 64 overlapping DEGs in the Tcf4 vs. Mecp2 group had 72% opposite fold-change 

directions with significant negative correlation (Spearman correlation p=0.0023, ρ = −0.38). 

(D) Top GO terms of the CAGs enrich for myelination processes (q-value adjusted 

hypergeometric test Padj=0.0149). (ρ, Spearman’s correlation coefficient, κ, concordance 

rate).
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Figure 4: Validation of myelination defects due to Tcf4 mutation.
(A) Western blot for myelinating OL proteins, CNP and MOG, and an OL precursor cell 

protein, NG2, normalized to GAPDH in mPFC-Tcf4+/tr. (B) Relative protein levels of MOG 

and CNP are significantly decreased in Tcf4+/tr brain (two-sided unpaired t-test, n=12 mice, 

pMOG=0.0008, pCNP=0.0436). Relative levels of NG2 do not differ between genotypes (two-

sided unpaired t-test, n=12 mice, p=0.815). (C) Representative immunostaining for the 

mature OL marker CC1 and pan-OL marker Olig2 in the cortex of p24 Tcf4+/+ and Tcf4+/tr 

mice. (D) The proportion of Olig2-positive cells that are CC1-positive is significantly 

reduced in p24 Tcf4+/tr mice (Tcf4+/tr 0.69±0.05 vs. Tcf4+/+ 0.50±0.01, two-sided unpaired 

t-test, n=10 mice, p=0.0016) and adult Tcf4+/tr mice (Tcf4+/tr 0.61±0.04 vs. Tcf4+/+ 

0.81±0.03, two-sided unpaired t-test, n=8 mice, p=0.0055). (E) Representative 

immunostaining for the OPC marker PDGFRɑ and pan-OL marker Olig2 in the cortex of 

p24 Tcf4+/+ and Tcf4+/tr mice. (F) The proportion of Olig2-positive cells that are PDGFRɑ-
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positive is significantly increased in p24 Tcf4+/tr mice (Tcf4+/tr 0.58±0.04 vs. Tcf4+/+ 

0.42±0.05, two-sided unpaired t-test, n=10 mice, p=0.0495) and adult Tcf4+/tr mice (Tcf4+/tr 

0.52±0.03 vs. Tcf4+/+, two-sided unpaired t-test 0.26±0.02, n=8 mice, p=0.0002). All scale 

bars equal 100µm. Center values represent the mean and error bars are S.E.M., *p<0.05, 

**p<0.01.
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Figure 5: The proportion of myelinated axons in the corpus callosum is reduced in TCF4 mutant 
mice
(A) Representative electron micrographs of the CC from Tcf4+/+ and Tcf4+/tr mice. TEM 

images were quantified from 4 Tcf4+/+ and 5 Tcf4+/tr mice. (B) The proportion of axons 

myelinated across images was significantly reduced in Tcf4+/tr mice (logistic mixed effects 

model, OR=0.65, n=9 mice, p=0.046). The size of circles is proportional to the number of 

axons per image and the colors indicate the animal each slice was obtained from. (C) 
Representative electrophysiology traces of evoked compound action potentials recorded in 

the CC from Tcf4+/+ and Tcf4+/tr mice. N1 represents action potentials traveling down 

myelinated axons and N2 represents action potentials traveling down unmyelinated axons. 

(D) The proportion of action potentials traveling down myelinated axons was consistently 

reduced in Tcf4+/tr mice compared to Tcf4+/+ mice (n=30 brain slices from 4 Tcf4+/+ and 5 

Tcf4+/tr mice, ANOVA p=0.0012). Center values represent the mean and error bars are 

S.E.M., *p<0.05, **p<0.01, ***p<0.001.
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Figure 6. In vitro biological validation of myelination defects due to Tcf4 mutation.
(A) Representative images of CNP-positive OLs in primary neuronal cultures derived from 

Tcf4+/+ and Tcf4+/tr mice. (B) The proportion of CNP-positive cells in significantly reduced 

in cultures derived from Tcf4+/tr mice (Tcf4+/+ 3.07%±0.57% vs. Tcf4+/tr 1.46%±0.31%, 

n=16 mice, ANOVA p=0.0074, Posthoc p=0.031). Tcf4tr/tr mice failed to produce any CNP-

positive OLs. (C) Representative images of OPCs (PDGFRα) and mature OLs (MBP) 

derived from Tcf4+/+ and Tcf4+/tr mice. To control for cell numbers all cell counts are 

normalized by the pan-OL marker Olig2 that labels both OPC and mature OLs. (D) Cultures 

derived from Tcf4+/tr mice produce significantly more OPCs (Tcf4+/+ 0.39±0.03, n=9 vs. 

Tcf4+/tr 0.69±0.03, two-sided unpaired t-test, n=16 mice; p<0.0001) and fewer MOG-

positive OLs (Tcf4+/+ 0.47±0.03, n=9 vs. Tcf4+/tr 0.21±0.03, two-sided unpaired t-test, n=16 

mice; p<0.0001). (E) Example Western blot showing TCF4 protein is expressed in these OL 

cultures (repeated from independent cultures derived from 3 Tcf4+/+ and 4 Tcf4+/tr mice). 

All scale bars equal 100µm. For all bar graphs, center values represent the mean and error 

bars are S.E.M.; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 7: TCF4 regulation of oligodendrocytes is cell autonomous.
(A) Representative immunostaining for the OPC marker PDGFRα, mature OL marker CC1 

and pan-OL marker Olig2 in the cortex of p24 Olig2-Cre; Tcf4+/+ and Olig2-Cre; Tcf4+/flox 

mice. (B) The proportion of Olig2-positive cells that are CC1-positive is significantly 

reduced in Olig2-cre; Tcf4+/flox mice compared to Olig2-Cre+/−;Tcf4+/+ cultures (Olig2-Cre
+/−;Tcf4+/flox 0.19±0.05 vs. Olig2-Cre+/−;Tcf4+/+ 0.45±0.10, n=11 mice, one-tailed unpaired 

t-test p=0.015). (C) The proportion of Olig2-positive cells that are PDGFRα-positive 

significantly increased in Olig2-cre; Tcf4+/flox mice (Olig2-Cre+/−;Tcf4+/flox 0.52±0.04 vs. 

Olig2-Cre+/−;Tcf4+/+ 0.40±0.05, one-tailed unpaired t-test, n=11 mice, p=0.028). All scale 

bars equal 100µm. For all bar graphs, center values represent the mean and error bars are 

S.E.M.,*p<0.05.
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Figure 8: Human-mouse convergence of gene expression in idiopathic and syndromic ASD.
(A) The eigengene of the CAGs found across the three models of syndromic ASD in 

Parikshak et al is significantly associated with ASD but not 15q duplication diagnoses (via 

linear mixed effects modeling). (B). The CAG eigengene is also different between patients 

with ASD from controls in Wright et al. as replication (linear regression for ASD p=0.0411). 

Estimated cellular composition differences between patients with ASD and controls using 

reference-based deconvolution show decreased OL RNA fractions in (C) Parikshak et al 

(linear mixed effects regression for ASD p=0.0004) and (D) Wright et al (linear regression 

for ASD p=0.0281). The y-axis in each panel are residualized values when accounting for 

observed and latent confounders for improved visual interpretation (see Methods).
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