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The Prognostic Role of 
Procalcitonin in Critically Ill Patients 
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Unit: A Retrospective Cohort Study
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Procalcitonin (PCT) is a a marker of bacterial infection. Its prognostic role in the critically-ill patient, 
however, is still object of debate. Aim of this study was to evaluate the capacity of admission PCT 
(aPCT) in assessing the prognosis of the critically-ill patient regardless the presence of bacterial 
infection. A single-cohort, single-center retrospective study was performed evaluating critically-ill 
patients admitted to a stepdown care unit. Age, sex, Simplified Acute Physiology Score II (SAPS-II), 
shock, troponin-I, aPCT, serum creatinine, cultures and clinical endpoints (in-hospital mortality or 
Intensive Care Unit (ICU) transfer) were collected. Time free from adverse event (TF-AE) was defined as 
the time between hospitalization and occurrence of one of the clinical endpoints, and calculated with 
Kaplan-Meier curves. We engineered a new predictive model (POCS) adopting aPCT, age and shock.
We enrolled 1063 subjects: 450 reached the composite outcome of death or ICU transfer. aPCT was 
significantly higher in this group, where it predicted TF-AE both in septic and non-septic patients. aPCT 
and POCS showed a good prognostic performance in the whole sample, both in septic and non-septic 
patients. aPCT showed a good prognostic accuracy, adding informations on the rapidity of clinical 
deterioration. POCS model reached a performance similar to SAPS-II.

Procalcitonin (PCT) is a pro-hormone of human calcitonin synthesized by the parafollicular C cells of the thy-
roid and involved in calcium homeostasis. PCT is produced in large quantities by different cell types in patients 
affected by bacterial infections1. Several studies have shown low- to moderately-elevated PCT levels also among 
critically-ill patients without evidence of infection (trauma, major surgery, multi-organ failure and myocardial 
infarction)2,3.

Clinically, PCT represents a quantitative biomarker which is currently used to help predicting the probability 
of bacterial infections4 and guide the duration of antibiotic therapy5. PCT demonstrated not only a diagnostic, 
but also an elevated prognostic value in septic patients. A recent meta-analysis concluded that increased PCT 
concentrations and absence of PCT clearance were strongly associated with all-cause mortality in septic patients6.

Clinical and pathophysiological data suggest a role of PCT in prognostic evaluation of critically-ill patients 
regardless the presence of a bacterial infection7, but large and conclusive data are still lacking.

Main objective of the present study was to assess the prognostic value of PCT, evaluated as a single assay at 
the admission (aPCT) within the first 12 hours, in critically-ill patients regardless of the presence of bacterial 
infection. We also engineered a new predictive model, named “Procalcitonin and Other Clinical Score” (POCS), 
adopting both clinical and laboratoristic variables (aPCT, age and shock), to improve the prediction of outcomes 
and compared its performances with other validated prognostic markers, as Troponin I (TnI)8 and the Simplified 
Acute Physiology Score II (SAPS-II)9.
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Materials and Methods
This single-cohort observational retrospective study was performed in a 25-beds Internal Medicine with step-
down beds unit (SDU) of the University-Hospital “Azienda Ospedaliero Universitaria Ospedali Riuniti” of 
Ancona (Italy). Since January 01st 2002 our department adopted an electronic medical record system (EMR) for 
inpatients’ management: this system contained all the patient’s data, including history, medical visit, systolic and 
diastolic blood pressure at admission and at discharge, heart rate at admission and at discharge, respiratory rate 
at admission and at discharge, all the performed electrocardiograms, cardiac and blood pressure monitor results, 
blood exams at admission and during the SDU stay, discharge diagnosis, comorbidities and outcomes.

All subjects or their caregivers gave their informed consent to the analysis of their data at the moment of 
the admission and were treated according the Helsinki declaration and following the guidelines current at the 
moment of the study. The Ethics Committee of Marche Region (CERM) reviewed and approved the study proto-
col (CERM protocol reference: 2019/7).

Study setting and population.  Our SDU, according to the common definition10, admits patients from 
the emergency department (ED) if affected by severe medical pathologies requiring an intermediate level of care, 
such as continuous electrocardiographic monitoring, inotropic or vasopressor support, non-invasive ventilation 
and renal replacement therapy, but still not necessitate of invasive ventilation and ICU care.

The commonly treated conditions in this setting and considered for the present work are: acute heart failure, 
acute coronary syndromes, pulmonary embolism, acute respiratory failure, acute kidney injury, pancreatitis, sep-
sis, septic shock, and complicated infections (such as diverticulitis, pneumonia, pyelonephritis, cholecystitis and 
pleural empyema). These conditions were present alone or in combination in this set of patients.

Inclusion and exclusion criteria.  All the consecutive patients admitted in a 36-month period (from 1st 
January 2008 to 31th December 2010) were screened from the EMR. A total of 6562 patients was evaluated.

Currently, there is no univocal definition of critical illness: for this reason, in order to outline the critically ill 
subjects, we selected all the patients affected by a life-threatening condition with signs of physiological deteriora-
tion11, defined as the presence of at least one abnormal vital sign and one end-organ dysfunction at the admission.

Thus, patients were enrolled if they met at least one of the following clinical inclusion criteria: (1) Glasgow 
Coma Scale <1212; (2) PaO2/FiO2 < 300, respiratory rate <8/min or>20/min, accessory muscle use13; (3) mean 
arterial pressure <70 mmHg, urine output <0,5 mL/kg/hr, use of inotrope or vasopressors14,15.

Exclusion criteria were represented by: (1) age <18 years; (2) absence of critical illness, defined as absence of 
organ dysfunction; (3) data incompleteness at the moment of the study, particularly (4) absence of serum PCT 
determination within the first 12 hours of admission.

Patients treated with cardiopulmonary resuscitation before the admission, whose PCT values could be signif-
icantly raised, are not admitted to our stepdown unit. PCT values could be significantly reduced after dialysis: all 
measurements were performed at the admission before any dialytic treatment.

Definitions.  We retrospectively collected the following variables: age, sex, presence of shock, admission TnI, 
aPCT, leucocyte count, aPCT, serum creatinine and biological cultures, if present.

aPCT was defined as the first procalcitonin determination within the first 12 hours from admission to the SDU. 
Similarly, TnI was defined as the first determination within the first 12 hours from SDU admission. According 
current literature, TnI was treated as a generic marker of critical illness8 and tested in all the consecutive patients 
independently of admission diagnosis.

SAPS-II score was calculated for each subject following its original definition9 with the admission values.
Presence of shock was collected as a dichotomous variable: shock was outlined in all the patients admitted 

with a systolic blood pressure <90 mmHg, mean arterial pressure <70 mmHg and clinical signs of tissue hypop-
erfusion, defined as cutaneous (hypothermia, mottling), renal (urine output <0.5 mL/kg/hr) or neurological 
(mental state, obtundation, disorientation and confusion)16.

We labelled as “infective” all the patients who had at least one clinical or instrumental criterion of active 
infection, defined as at least one positive culture (blood, sputum, urine, pleural or peritoneal effusion) and/or a 
radiogical evidence of infection; a definite diagnosis of infection was put by the attending physician according to 
current guidelines for each infective condition.

Each enrolled patient underwent to a retrospective chart review (EMR, radiological and biological data) by 
the group of researchers and unclear cases were retrospectively discussed by the senior experts of the department 
and assigned to the “infective” or “non infective” group.

Serum PCT levels were measured with the method of enzyme-linked fluorescent immunoassay (VIDAS 
B.R.A.H.M.S. PCT). The upper and lower detection limits were 200 ng/mL and 0.05 ng/mL, respectively.

Serum TnI levels were measured with an high-sensitivity method (Siemens Dimension Vista cardiac 
TnI assay). The upper and lower detection limits were 200 ng/mL and 0.015 ng/mL, respectively (range encom-
passing the 99th percentile: 0.00-0.045 ng/mL).

Clinical endpoints and statistical models.  The main clinical endpoint, or adverse event, was defined 
as the composite of in-hospital mortality o Intensive Care Unit (ICU) transfer. We also evaluated the in-hospital 
length of stay and the free time from adverse event (TF-AE), defined as the time occurred between hospitalization 
and the occurrence of the main clinical endpoint, calculated by Kaplan-Meier’s statistics.

We adopted clinical and laboratoristic parameters at the admission in a logistic regression model to engineer 
a score able to predict in-hospital adverse events. We used the composite endpoint as the main outcome and age, 
aPCT and presence of shock as main predictors. Variables were treated in binary form with the following cut-offs: 
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65 years for age, 0.5 ng/mL for aPCT, according to the currently suggested cutoffs7 and presence or absence of 
shock16. We named this composite model “Procalcitonin and Others Clinical Score” (POCS).

Statistical analysis.  All the variables were collected in an electronic database. We synthesized each variable 
with mean, standard deviation and 95% confidence interval if normally distributed, or by median, interquan-
tile range (IQR) or percentile confidence interval in case of non-normal data distribution; continuous varia-
bles were compared, in normally distributed variables, with t-test or, in non-normally distributed variables, with 
Mann-Whitney U test; comparison among more than two populations of continuous data have been performed 
with analysis of variance; binary and categorical data were compared with the chi-squared test.

Temporal events were described with Kaplan-Meier curves, and the comparison between curves was per-
formed with the log-rank test. Sensitivity and specificity were calculated with the standard method, as their con-
fidence intervals. ROC curve analyses were performed according to the standard procedure, and the comparison 
between curves has been done with the Z-score test.

Multivariate analysis was performed with a linear logistic regression for continuous and discrete data. The 
model has been engineered with the assumption of logit(y) = xB (where B was taken from logistic analysis coeffi-
cients) and event probability has been calculated with the assumption of prob(y) = 1/(1 + exp-xB).

A difference was deemed as statistically significant if p resulted <0.05 in a 2-tailed test. The statistical analysis 
was performed with the NCSS 2009 package for Windows systems.

Results
From an initial screened sample of 6562 patients admitted to the medical SDU of the University-Hospital 
“Azienda Ospedaliero-Universitaria Ospedali Riuniti” of Ancona (Italy), we excluded 5499 subjects for absence 
of inclusion criteria or presence of at least one exclusion criteria. The study flow is described in Fig. 1.

We obtained a final sample 1063 critically-ill patients. Baseline characteristics of the sample are summarised 
in Table 1. At the end of enrolment, we observed that 67.55% of the sample had a definite diagnosis of infec-
tion according to validated diagnostic criteria, while the remaining subjects had a “non-infective” critical illness. 
Diagnoses at the discharge are synthesized in Table 2.

Figure 1.  Study flow showing the number of patients included and excluded from the study according to the 
inclusion and the exclusion criteria.

Variable Value

Sample size (patients) 1063

Age (mean ± SD) 72.4 ± 14.5

Sex (men %) 52%

Days of admission [median, IQR] 8 [5–14]

Death or ICU transfer (%), “worse prognosis” group 450 (42.3%)

Discharge or ordinary department transfer (%), “good 
prognosis” group 613 (57.7%)

Infective critical illness 718 (67.5%)

Non-infective critical illness 345 (32.5%)

SAPS-II (mean ± SD) 33.1 ± 12.1

Troponin I (mean ± SD), ng/mL 1.238 ± 1.027

Procalcitonin (median, IQR), ng/mL 0.34 [0.06–3.65]

Serum creatinine (mean ± SD), mg/dL 0.86 ± 0.64

Biological cultures (positive %) 35.3% (375)

Table 1.  Baseline characteristics of the study population.
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Clinical end-points.  The all-cause in-hospital mortality was 16.8% (n:179); this observation is in concord-
ance with the mean SAPS-II value in the observed population (33.1 ± 12.1), which corresponds to a predicted 
mortality of 18.1%. The proportion of patients transferred to ICU for clinical deterioration was 25.5% (n:271). We 
considered the occurrence of ICU transfer as a therapeutic failure and aggregated this event to in-hospital death.

The group of patients who underwent to the composite clinical endpoint (death or ICU transfer) was 
defined as a “worse prognosis” (WP) group (n:450,42.3%). The remaining subjects, discharged or transferred to 
non-intensive care departments, were defined as a “good prognosis” (GP) group (n:613,57.7%).

Prognostic value of aPCT.  We observed significantly different aPCT levels according different clinical out-
comes: mean aPCT levels were significantly (p < 0.0001) higher in the WP (aPCT:2.39; 95% CI:1.13–3.55) than 
in the GP group (aPCT:0.23; 95% CI:0.18–0.29).

ROC curve analysis showed a good predictive value of aPCT for the composite endpoint in the overall sample 
(AUC:0.690; 95%CI:0.642–0.732; p < 0.05) (Fig. 2), with a fair prognostic capacity both in the subpopulation of 
“infective” (AUC:0.660; 95%CI:0.61–0.70; p < 0.05) and “non-infective” patients (AUC:0.732; 95%CI:0.64–0.80; 
p < 0.05), as shown in Fig. 3. When comparing the above-mentioned ROC curves, we observed a significantly 
better performance of the ROC curve in “non-infective” patients (p < 0.05).

In the overall sample, the prognostic performance of aPCT was similar to TnI (AUC:0.657; 95%CI:0.609–
0.699; p < 0.05) but inferior to SAPS-II (AUC:0.760; 95%CI:0.717–0.798; p < 0.05), as shown in Fig. 4 (AUCaPCT 
vs AUCTnI p = 0.271; AUCSAPS-II vs AUCaPCT p = 0.0244).

Diagnosis N %

NON-INFECTIVE DIAGNOSIS

Pulmonary Embolism 28 2.63

Acute Myocardial Infarction 25 2.35

Acute Heart Failure 73 6.86

Pancreatitis 5 0.47

Other non-infective diagnoses 214 20.13

Total 345 32.45

INFECTIVE DIAGNOSIS

Septic Shock 142 13.35

Diverticolitis 3 0.28

Pneumonia 380 35.74

Pyelonephritis 4 0.37

Colecistitis 14 1.32

Pleural empyema 5 0.47

Other infective diagnoses 170 15.99

Total 718 67.55

Table 2.  Diagnoses at SDU discharge.

Figure 2.  ROC Curve analysis for aPCT in the overall sample. ROC curve analysis showed a good predictive 
value of aPCT for the composite endpoint (death or transfer in ICU) in the overall sample (AUC:0.690; 
95%CI:0.642–0.732; p < 0.05).
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Composite model of in-hospital mortality.  We adopted both clinical and laboratoristic parameters at 
the admission to engineer a model able to predict in-hospital adverse events. We named this composite model 
“Procalcitonin and Others Clinical Score” (POCS). In POCS we considered the following parameters: (1) aPCT, 
taking a cut-off > 0.5 ng/mL as suggested by literature7; (2) age, taking a cutoff of 65 years, as derived from liter-
ature data17; (3) shock criteria, as previously defined by literature16. The POCS equation is synthesized in Table 3. 
Hosmer and Lemeshow test showed no evidence of poor fit of the model (p = 0.241).

Prognostic performance of this model was good in the overall sample (AUC:0.730; 95%CI:0.680–0.770; 
p < 0.05), but also in the group of “infective” patients (AUC:0.752; 95%CI:0.705–0.799; p < 0.05) and in the group 
of “non-infective” subjects (AUC:0.670; 95%CI:0.570–0.769; p < 0.05). The difference between AUC of the “infec-
tive” group and the AUC of the “non-infective” group resulted non significant (p = 0.130).

We also compared the prognostic performance of POCS model with other indicators, as SAPS-II, aPCT or TnI 
comparing their ROC curves (Fig. 3). We did not find any statistically significant difference between AUCPOCS 
and AUCSAPS-II (p = 0.317), while AUCaPCT and AUCTnI were significantly lower than AUCSAPS-II (AUCaPCT vs 
AUCSAPS-II p = 0.024; AUCTnI vs AUCSAPS-II p = 0.0009).

Figure 3.  ROC Curve analysis for aPCT in the subgroups of “infective” and “non-infective” patients. ROC 
curve analysis showed a good predictive value of aPCT for the composite endpoint (death or transfer in ICU) 
both in the subpopulation of “infective” (AUC:0.660; 95%CI:0.61–0.70; p < 0.05) and “non-infective” patients 
(AUC:0.732; 95%CI:0.64–0.80; p < 0.05). When comparing the above-mentioned ROC curves, we observed a 
significantly better performance of the ROC curve in “non-infective” patients (p < 0.05).

Figure 4.  ROC Curve analysis for POCS, SAPS-II, PCT and TnI in the overall sample. In the overall sample, 
the prognostic performance of aPCT was similar to TnI (AUCaPCT vs AUCTnI p = 0.271) but inferior to SAPS-II 
(AUCSAPS-II vs AUCaPCT p = 0.0244). We also compared the prognostic performance of POCS model with other 
indicators as SAPS-II, aPCT or TnI. We did not find any statistically significant difference between AUCPOCS 
and AUCSAPS-II (p = 0.317), while AUCaPCT and AUCTnI were significantly lower than AUCSAPS-II (AUCaPCT vs 
AUCSAPS-II p = 0.024; AUCTnI vs AUCSAPS-II p = 0.0009).
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aPCT and free time from adverse events.  We considered the WP group and divided it in two subpopu-
lations according their aPCT levels, adopting a cutoff of 0.50 ng/mL. We compared the two populations accord-
ing the TF-AE endpoint. The subpopulation with aPCT <0.50 ng/mL (n:478) had a median TF-AE of 44 days 
(95%CI:32–57), while the subgroup of aPCT ≥0.50 ng/mL (n:585) had a median TF-AE of 26 days (95%CI:23–29).  
Kaplan-Meier curves (Fig. 5) confirmed that TF-AE can be significantly modified by aPCT levels at a cutoff 
of 0.50 ng/mL (p < 0.0001). Increasing aPCT cutoff to a value of 2.00 ng/mL did not substantially modify the 
above-mentioned results. For aPCT <2.00 ng/mL (n:744), median TF-AE was 41 days (95%CI:31–54), while for 
aPCT ≥2.00 ng/mL (n:319) median TF-AE was 25 days (95%CI:20–28).

A definite diagnosis of bacterial infection was present in 61% of the subgroup with aPCT <2.00 ng/mL (n: 455);  
the number of patients with diagnosis of bacterial infection increased to 82% in the group of subjects with aPCT 
≥2.00 ng/mL (n: 263).

Last, we divided the WP group in two subpopulations: “infective WP” (iWP) and “non-infective WP” (niWP). 
In the iWP group, aPCT significantly predicted TF-AE at a cutoff of 2.00 ng/mL (aPCT < 2.00 ng/mL:TF-AE:44; 
95%CI:30–49; aPCT ≥2.00 ng/mL: TF-AE:26; 95%CI:23–29). Similarly, in the niWP population, aPCT was able 
to modify TF-AE (aPCT < 2.00 ng/mL: TF-AE:not reached; aPCT ≥2 ng/mL:TF-AE:25; 95%CI:16–72).

Discussion
In this single-cohort, retrospective study we observed that a single determination of aPCT was associated to 
in-hospital prognosis in a population of critically-ill patients admitted to an Internal Medicine SDU from the ED.

The magnitude of this association is similar to other biomarkers, as admission TnI, but lower than SAPS-II. 
The elaboration of a composite clinical and laboratoristic model, based on a reducted set of variables, allowed us 
to improve the prognostic performance of aPCT. Age and shock are recognised prognostic factors for sepsis18 that 
could improve the prediction of infective patients at higher risk of in-hospital adverse events. With this model, 
aPCT performance was superior to absolute aPCT and admission TnI and similar to SAPS-II.

Our score, however, needs less items than SAPS-II and, if validated in larger cohorts, could be easier to use, 
especially in patients in critical conditions. aPCT levels were also able to predict the time free from adverse events 
(death or ICU transfer) in the group of subjects with a worse prognosis.

Several studies have already underlined the ability of serum PCT, both as an absolute value and in terms of 
non-clearance, to septic patients prognosis6. However, PCT levels are increased not only during bacterial infec-
tions1, but also during other conditions, commonly present in critically-ill patients, such as burns, trauma, necro-
sis, organ failure and surgery2,3.

Thus, we can hypothesise that PCT could have a role in the prognostic evaluation of the patients affected 
by sepsis or septic shock but also, generally, in all the critically-ill patients, independently of the presence of 
infection. This has already been postulated and confirmed in other studies: a PCT increase in 24 hours in the 
critically-ill patient has been associated with an increase of in-hospital mortality at 90 days7.

Prob(Y) = 1/[1 + Exp(−XB)]

Where B = −1.84638531591793–0.947881848652313*(aPCT) + 
0.64398536658017*(age + 1.80028562923787*(shock)

Table 3.  POCS equation. Legend: aPCT = 1 (aPCT < 0.5); PCT = 0 (aPCT > 0.5); age = 0 (<65 years); age = 1 
(>65 years); shock = 0 (absence of shock criteria); shock = 1 (presence of shock criteria).

Figure 5.  Kaplan-Meier survival analysis within WP group, according to aPCT values and adopting 0.5 ng/mL as 
cutoff. This curves confirmed that TF-AE can be significantly modified by aPCT levels at a cutoff of 0.50 ng/mL 
(p < 0.0001).
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With the present study, we underline the importance of a single PCT determination at the admission in a 
medical SDU in the prediction of in-hospital prognosis of the critically-ill patient: aPCT levels were significantly 
higher in patients with worse prognosis, represented by in-hospital death or ICU transfer, than the ones observed 
in patients with a more favourable outcome. ROC curves shown a good accuracy in the defining the in-hospital 
prognosis in the whole population and independently of the presence of an infection. Thus, we can postulate that 
the prognostic ability of aPCT could represent the increase of the systemic inflammation during a critical illness 
that could finally evolve into a multiorgan failure.

Actually, several composite clinical and instrumental prognostic indices have been validated for the 
critically-ill patient, as SAPS-II9, APACHE II19 and MEWS20. Some biomarkers, as TnI, have also been associated 
to a worse prognosis in the critically-ill patient8.

Our data underline that an early aPCT determination could represent, alone or in association with clinical 
features, an easy, economic and fast approach to predict prognosis in this setting, allowing an earlier risk stratifi-
cation and suggesting a more aggressive diagnostic and therapeutic strategy in the patients at risk.

However, according to our data, an extensive screening of critically-ill subjects with aPCT should be con-
sidered only for an accurate risk stratification. aPCT can also be useful to improve diagnosis in several medical 
conditions, but its results must be carefully interpreted in the setting of patient’s history, physical examination, 
radiologic and microbiologic tests in order to reduce unnecessary treatment21.

The strengths of this work are represented by the large number of subjects and the well-defined population 
under analysis: to date, this is the largest study evaluating the role of PCT in critically-ill patients. However, this 
study has several limitations: the retrospective nature of the analysis limits the generalizability of the results. 
Moreover, due to its single-center design, its results should be validated in prospective, multicenter studies.

Conclusions
aPCT could represent a potential tool to stratify the risk of adverse events in the critically-ill patient admitted in 
medical SDU. Our clinical-laboratoristic model, if validated in larger samples, could be easy and useful to stratify 
earlier patients’ risk of adverse events. These data, in a critical, time-dependent medicine, represent a further 
implementation of previous studies that correlated the mortality of the patient to a serial evaluation of PCT7.
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