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Bacillus megaterium NCT-2 is a nitrate-uptake bacterial, which shows high bioremediation capacity in secondary salinization soil,
including nitrate-reducing capacity, phosphate solubilization, and salinity adaptation. To gain insights into the bioremediation
capacity at the genetic level, the complete genome sequence was obtained by using a multiplatform strategy involving HiSeq and
PacBio sequencing. The NCT-2 genome consists of a circular chromosome of 5.19 Mbp and ten indigenous plasmids, totaling
5.88 Mbp with an average GC content of 37.87%. The chromosome encodes 5,606 genes, 142 tRNAs, and 53 rRNAs. Genes
involved in the features of the bioremediation in secondary salinization soil and plant growth promotion were identified in the
genome, such as nitrogen metabolism, phosphate uptake, the synthesis of organic acids and phosphatase for phosphate-
solubilizing ability, and Trp-dependent IAA synthetic system. Furthermore, strain NCT-2 has great ability of adaption to
environments due to the genes involved in cation transporters, osmotic stress, and oxidative stress. This study sheds light on
understanding the molecular basis of using B. megaterium NCT-2 in bioremediation of the secondary salinization soils.

1. Introduction

Soil application of organic and inorganic fertilizers for crop
and vegetable cultivation is the major source for soil
nitrate-nitrogen (nitrate-N), which increases agricultural
productivity. However, the vegetable yields do not increase
continuously with soil nitrate-N [1]. A large accumulation
of nitrate in soil results in soil secondary salinization, hav-
ing various adverse effects on soil productivity, and nitrate
accumulation in vegetables [2]. What is more, the reduction
of nitrate to nitrite can cause various human diseases [1].
Soil secondary salinization is a severe problem in inten-
sively managed agricultural ecosystems [3]. It is required
to develop a low-cost bioremediation method to remove
nitrate from soil.

In our previous study, Bacillus megaterium NCT-2 was
isolated from the secondary nitrate-salinized soil in a green-
house, which shows high nitrate-reducing capacity and salin-
ity adaptation in secondary salinization soil [4]. It can

remove nitrate at initial nitrate-N concentrations ranging
from 100 mg/L to 1,000 mg/L and grow well in inorganic salt
medium with 4.0% sodium chloride [4]. In our field trails, the
concentrations of NO; in both soil and plant were reduced
significantly when we used the NCT-2 strain mixed with
straw powder to treat secondary salinization soil (unpub-
lished). Moreover, this strain showed significant phosphate-
solubilizing ability of insoluble inorganic phosphates in the
culture medium [5]. Strain NCT-2 has the potential to be uti-
lized as a biofertilizer for bioremediation of the secondary
nitrate-salinized soil and plant growth promotion [6].

The Gram-positive bacterium Bacillus megaterium is
found in diverse habitats from soil to sediment, sea, and dried
food. It was named after its big size with a volume approxi-
mately 100 times than that of Escherichia coli [7]. Its big size
made it ideal to be used in studies of cell structure, protein
localization, sporulation, and membranes [8, 9]. Due to no
production of endotoxins associated with the outer mem-
brane and no external alkaline proteases, they are used widely
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as desirable cloning hosts in food and pharmaceutical pro-
duction processes for a- and 5-amylases in the baking indus-
try [10, 11], penicillin acylase [12-14], and vitamin B12 [15],
such as Bacillus megaterium DSM 319, Bacillus megaterium
QM B1551, and Bacillus megaterium WSH 002 [16, 17].
The genomes of them have been sequenced to gain insights
into the metabolic versatility that facilitate biotechnological
applications, not the bioremediation of secondary saliniza-
tion soil [18, 19].

Despite the previously published work sequenced the
5.68 Mb draft genome of B. megaterium NCT-2 by using
the Solexa platform, consisting of the 204 contigs, it focused
only on the multiple alignments of nitrate assimilation-
related gene sequences [20]. The functional nitrate
assimilation-related genes (the nitrate reductase electron
transfer subunit, the nitrate reductase catalytic subunit, the
nitrite reductase [NAD(P)H] large subunit and small sub-
unit, and the glutamine synthetase) were identified [20].
The genes that could be involved in the full potential of strain
NCT-2 in the bioremediation of secondary salinization soil
remain unknown. For this, we obtained its complete genome
sequence by using a multiplatform strategy involving HiSeq
and PacBio sequencing. Furthermore, we performed a com-
prehensive analysis of nitrogen metabolism and plant
growth-promoting features. The comparative analysis might
be helpful for use in soil bioremediation.

2. Methods

2.1. DNA Preparation and Genome Sequencing. B. megater-
ium NCT-2, isolated from the secondary salinized green-
house soil in China, was cultured in a defined inorganic salt
medium as previously described [4]. It was registered in
China General Microbiological Culture Collection Center
under CGMCC No. 4698. Genomic DNA was isolated using
QIAGEN DNeasy Blood & Tissue Kit (Hilden, Germany).
The concentration and quality of DNA were determined by
a Qubit Fluorometer (Thermo Scientific, USA), NanoDrop
Spectrophotometer (Thermo Scientific, USA), and agarose
electrophoresis. The whole genome of the B. megaterium
strain NCT-2 was sequenced by the BGI Tech Solutions
Co., Ltd. (Shenzhen, China) by using Illumina Hiseq 4000
short-read sequencing platform (Illumina Inc., San Diego,
CA, USA) (insert size, 500 bp; 2 x 125bp read length) and
PacBio RSII long-read sequencing platform (Pacific Biosci-
ences of California, Inc., Menlo Park, CA, USA) (Figure S1).

2.2. Genome Assembly and Annotation. After quality control,
the de novo assembly of the whole NCT-2 genome was per-
formed using the RS_HGAP Assembly3 in the SMRT Analy-
sis pipeline version 2.2.0 [21]. The HiSeq clean reads were
preliminarily assembled into contigs and then were used for
hybrid error correction of the subreads from PacBio. There
were two rounds of error correction. One was analyzed by
using SOAPsnp and SOAPIndel [22] and another was by
using the Genome Analysis Toolkit (GATK) [23]. Finally,
SSPACE-LongRead [24] and Celera assemble [25] were used
to generate a high-quality genome. The finished NCT-2
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genome was submitted to GenBank, replacing the previous
version of the draft genome [20].

The protein-coding genes were predicted by using Glim-
mer 3.02 [26], and the tandem repeats were detected with
Tandem Repeat Finder 4.04 [27]. The gene function annota-
tion was accomplished by blasting the protein sequences
against the database of Kyoto Encyclopedia of Genes and
Genomes (KEGG) [28]. In addition, the RAST web server
(https://rast.nmpdr.org) with the default parameters was
used to catalog all the predicted genes into subsystems
according to functional categories [29, 30]. CGView was used
to produce the maps of the circular genomes with gene fea-
ture information [31]. Genome alignments with locally col-
linear blocks were performed with MAUVE [32].

2.3. Phylogenetic Analysis. The whole genome-based phylo-
genetic analysis was performed by using the CVTree 3.0
online server [33, 34]. Fourteen genome sequences were
obtained from GenBank. A phylogenetic tree was con-
structed by the neighbor-joining method using MEGA
analysis [35-37]. In addition, FusionDB was used to ana-
lyze the functional repertories of B. megaterium NCT-2
and identify the nearest “neighbors” based on the func-
tional similarities [38, 39].

3. Results and Discussion

3.1. General Genomic Characteristics. A total of ~1,189 Mb
raw data and ~1,147 Mb clean data were obtained after filter-
ing the low-quality reads generated by the HiSeq platform.
The PacBio platform yielded 48,392 polymerase reads (with
the average size of 12.9kb) and 622 Mb subreads after quality
control. The complete genome was assembled by taking
advantage of the higher accuracy short reads from the HiSeq
platform and the long subreads from the PacBio platform.
The genome consists of a circular chromosome of 5.19 Mb
with an average GC content of 38.2% (accession number:
CP032527.2) and ten circular plasmids designated as the
plasmid pNCT2-1 to pNCT2-10 (accession numbers:
CP032528.1-CP032537.1). Sequence information was visual-
ized in CG view Server (Figure 1 and S2). The total genome
size is 5.88 Mb with an average GC content of 37.87%. The
whole genome contains 6,039 genes, including 5,606 coding
sequences, 203 RNA genes, and 230 pseudo genes. There
are 127 identified tandem repeat sequences (TRF), 83 minis-
atellite DNA, and 7 microsatellite DNA.

The general features of B. megaterium NCT-2 were com-
pared with five genomes of Bacillus strains (Bacillus megater-
ium DSM 319, Bacillus megaterium QM B1551, Bacillus
subtilis subsp. subtilis str. 168, Bacillus cereus Q1, and Bacil-
lus licheniformis DSM 13) (Table 1). The genome GC con-
tents for three B. megaterium strains are around 38%.
Strain NCT-2 has the largest genome size and most coding
sequences and RNA genes, such as 53 rRNAs and 142 tRNAs.
There were 14 rRNA operons on the negative chain and one
rRNA operon on the positive strand with a 16S-23S-5S orga-
nization. In addition, the positive chain had one unusual
rRNA operon with a 16S-23S-5S-5S organization and a single
5S rRNA. The microbial genome size is positively correlated


https://rast.nmpdr.org

International Journal of Genomics 3

NCT-2, chromosome
length: 5,193,616 bp

I CDS BLAST NCT-2 B GC content
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rRNA BLAST QM B1551 B GC skew-

FIGURE 1: Genetic and physical map of the genome of B. megaterium NCT-2 prepared using CGView. Circles from the outside to the
inside show the position of protein-coding sequences (blue), tRNA gene (red), and rRNA genes (pink) on the positive (circle 1) and
negative (circle 2) strands. Circles 3-5 show the positions of BLAST hits detected through BLASTx comparisons of B. megaterium
NCT-2 against itself (circle 3), B. megaterium DSM 319 (circle 4), and B. megaterium QM B1551 (circle 5). Circles 6 and 7 show
plots of GC content and GC skew plotted as the deviation from the average for the entire sequence.

TABLE 1: General genome features of B. megaterium NCT-2 compared with other five Bacillus strains.

B. megaterium  B. megaterium  B. megaterium B. licheniformis

Strain NCT-2 QM B1551 DSM 319 B. subtilis 168  B. cereus Q1 DSM 13
Genome size (Mb) 5.88 5.52 5.10 4.22 5.51 4.22
Chromosome size (Mb) 5.19 5.10 5.10 4.22 521 4.22
G+C content (%) 37.8 37.97 38.1 435 35.5 46.2
Chromosomal G+C content (%) 38.2 38.3 38.1 43.5 35.6 46.2
Gene number 6039 5674 5245 4536 5856 4382
Coding sequence number 5606 5379 4941 4237 5513 4219
RNA gene number 203 182 153 116 137 98
rRNA genes 53 37 33 30 39 21
(58, 16S, and 239) (19, 17, 17) (13, 12, 12) (11, 11, 11) (10,10, 10) (13, 13, 13) (7,7,7)
tRNA gene number 142 137 114 86 93 72
Plasmid number 10 7 0 0 2 0

with their environment adaptability [40]. One typical charac-
teristic of soil microorganisms is the high number of rRNAs,
which is helpful for fast growth, successful sporulation, ger-
mination, and rapid response to changing the availability of
nutrients [41-44]. These features indicate that strain NCT-
2 has great ability of adaptation to various environments.
Most strains of Bacillus megaterium carry multiple plas-
mids, such as strain QM B1551 has seven resident plasmids

[18], Bacillus megaterium strain 216 has ten plasmids [45],
and Bacillus megaterium NBRC 15308 has six plasmids. As
for the ten plasmids in strain NCT-2, the sizes range from
9,625bp to over 132kb making up 11.7% of the whole
genome (Table S1). The plasmids have significantly lower
GC contents than the chromosome (33.7-37.0% versus
38.2%). There are 761 coding sequences and 23 RNA genes.
Both plasmids pNCT2-2 and pNCT2-6 had one tRNA. In



addition, pNCT2-7 had 18 tRNAs, one 5S RNA, one large
subunit ribosomal RNA (LSU rRNA), and one small
subunit ribosomal RNA (SSU rRNA). Additional rRNA
operons carried on plasmids slowed the growth rates of
E. coli on poor carbon sources [46]. Further investigations
are needed to clarify the role of plasmids in bacterial
growth and adaptations to high-nitrate environments in
bioremediation of the secondary salinization soils.

3.2. Phylogenetic Lineage Analysis. We used CVTree 3.0 to
construct a phylogenetic tree based on the complete pro-
teomes with Macrococcus caseolyticus JCSC5402 as an out-
group. The obtained tree (Figure 2(a)) indicated that B.
megaterium NCT-2 was most homologous to B. megaterium
DSM 319 and then B. megateriumn QM B1551. Similarly,
genome comparison using the RAST Prokaryotic Genome
Annotation Server also showed that the genomic sequence
of NCT-2 had a higher comparison score with B. megaterium
QM BI1551 and B. megaterium DSM 319 (Figure S3).
Furthermore, 16S rDNA sequences from 15 Bacillus strains
were used to construct a phylogenetic tree by MEGA7 with
the neighbor-joining method. The neighbor-joining
phylogenetic tree shows that strain NCT-2 is closest to B.
megaterium QM B1551, B. megaterium DSM 319, and B.
megaterium WSH 002 (Figure 2(b)). Whole-genome
alignment of B. megaterium NCT-2 to closely related QM
B1551 and DSM 319 by using MAUVE revealed that the
chromosomes of the three strains showed overall
collinearity (Figure 2(c)).

3.3. Functional Annotations of B. megaterium NCT-2. To
investigate the function of the 5,606 coding sequences, the
GO database, the KEGG database, the COG database, and
RAST web server were used. The 3,159 genes annotated by
GO were classified into biological processes, cellular compo-
nents, and molecular functions (Figure S4). The top five
categories were catalytic activity (1,822), metabolic process
(1,786), cellular process (1,567), single-organism process
(1,400), and binding (1,214).

2,338 chromosomal genes (44%) were assigned into 477
subsystems by RAST (Figure S5a). Subsystem -category
comparisons among six related Bacillus strains showed that
the number of genes involved in “Amino Acids and
Derivatives” and “Carbohydrates” was highest in the
genome of the six strains (Figure 3(a)). In addition, Bacillus
megaterium has more genes involved in “Cofactors,
Vitamins, Prosthetic Groups, Pigments.” The top five
categories in strain NCT-2 were the “Amino Acids and
Derivatives” (538), “Carbohydrates” (500), “Cofactors,
Vitamins, Prosthetic Groups, Pigments” (340), “Protein
Metabolism” (283), and “Fatty Acids, Lipids, and
Isoprenoids” (180).

Likewise, 2,962 genes annotated by the KEGG database
were assigned to 38 pathways (Figure 3(b)). The top five
enriched pathways were “Biosynthesis of other secondary
metabolism” (710), “Signaling molecules and interaction in
Environmental information processing” (542), “Substance
dependence” (540), “Nucleotide metabolism” (475), and
“Immune disease” (472).
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Like most strains of B. megaterium, which carry more
than four plasmids, strain NCT-2 harbors ten indigenous
plasmids. Only 75 genes (10%) were assigned into 37 subsys-
tems by RAST (Figure S5b), including genes for riboflavin
metabolism, butanol biosynthesis, and xylose utilization,
and parts of genes in benzoate degradation and metabolism
of central aromatic intermediates. There are also genes for
cobalt-zinc-cadmium resistance, oxidative stress, and
nitrosative stress.

3.4. Microbial Functional Similarities. The translated protein
sequence of B. megaterium NCT-2 was downloaded from
RAST and submitted to the FusionDB web server (https://
services.bromberglab.org/fusiondb/mapping) [38]. The sub-
mitted proteome (containing 5,364 proteins) matched to
3,662 FusionDB functions, while 228 proteins could not be
mapped to any function in their database. The functional
similarities of B. megaterium NCT-2 with 1,374 taxonomi-
cally distinct bacteria (with similarity > 40%) were shown in
Table S2, most of them were soil bacterium. Strain NCT-2
is most functionally similar to B. megaterium DSM 319
(90%) and B. megaterium QM B1551 (89%). The functional
relationships ~among nine  Bacillus  strains  were
demonstrated by the fusion+ networks (Figure 4(a)). There
were 1,290 functions shared by all of them. The common
functional annotations related to nitrogen metabolism were
nitrite transporter NirC, nitrogen-fixing NifU domain
protein, nitroreductase, nitrate transport protein, and 2-
nitropropane dioxygenase. Notably, there are 3,047
functions shared among three strains of B. megaterium
(strain NCT-2, strain QM B1551, and strain DSM 319)
(Figure 4(b)). Strain NCT-2 has most of the core genes
and pathways, including vitamin biosynthesis and nitrogen
metabolism. The nitrogen metabolism-related genes, such
as those encoding nitrate transport protein, nitrate/nitrite
sensor protein, nitric oxide reductase activation protein,
nitrite reductase [NAD(P)H] large subunit, nitrite
reductase [NAD(P)H] small subunit, nitrite transporter,
nitrite-sensitive  transcriptional = repressor,  nitrogen
regulatory protein P-II, nitrogen-fixing NifU domain
protein, nitroreductase, and nitroreductase family protein,
were located on the chromosome of the three strains.
Furthermore, only strain NCT-2 carries the gene encoding
for periplasmic nitrate reductase.

3.5. Genome Inventory for Nitrogen Metabolism. In our field
experiment, strain NCT-2 shows high nitrate-reducing
capacity in secondary salinization soil (unpublished). The
functional nitrate assimilation-related genes that are involved
in the process of converting nitrate to glutamine have been
identified [20]. The genes encoding nitrate and nitrite reduc-
tase were cloned and overexpressed in Escherichia coli [47].
Here, the whole genomic analysis also revealed the genes
encoding sensor, transporter, and enzymes are involved in
nitrogen metabolism. The genes were scattered in the chro-
mosome. Genes encoding nitrite-sensitive transcriptional
repressor (NsrR), which is directly sensitive to nitrosative
stress, were found in both the chromosome and the plasmid
(Table S3 and Figure S6). B. megaterium NCT-2 possessed
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nitrate/nitrite sensor protein (NaNiS) and nitrate/nitrite assimilatory nitrate reductase (NaRas) and nitrite reductase
transporter (NaNiT) for sensing and transporting the NO,”  (NiRas) catalyzed the reduction of nitrate to ammonia
and NO,". In the process of nitrate and nitrite ammonification,  through nitrite [48]. Then, ammonia was assimilated into
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amino acids through L-Glutamine and L-Glutamate by
glutamine synthetase type I (GSI), Ferredoxin-dependent
glutamate synthase (GOGATF), glutamate synthase [NADPH]
large chain (GOGDP1), and glutamate synthase [NADPH]
small chain (GOGDP2). Ammonium transporter (Amt)
was also encoded in the genome. Ammonium is an
important nitrogen source for plant growth. Environmental
NH,"/NH, was imported across membranes by Amt for
cell growth in prokaryotes and plants [49]. Bacterial Amt
proteins act as passive channels for the uncharged gas
ammonia (NH;) [50]. It means that B. megaterium NCT-2
might scavenge NH,"/NH, in soil instead of providing. In
the face of nitrosative stress, genes encoding nitrite-sensitive
transcriptional repressor (NsrR) were found in both the
chromosome and the plasmid. NsrR played a pivotal role in
the regulation of NirK (nitrite reductase), which was expressed
aerobically in response to the increasing concentration of NO,
and decreasing pH [51]. However, no functional NirK could
be found. Instead, two nitric oxide reductase activation
proteins (NorD and NorQ) for denitrifying reductase gene
clusters were found but without nitric oxide reductase, making
the function of denitrification highly unlikely. Thus, the
genome analysis proposed that B. megaterium NCT-2 could
convert nitrate from secondary salinization soil into biomass

through glutamate rather than reduce nitrate to nitrous oxide
or dinitrogen, which are lost from the soil (Figure 5). It is an
effective bioremediation approach to remove nitrate from soils.

3.6. Genes Associated with Plant Growth-Promoting Features.
Our previous studies on the plant growth promotion of B.
megaterium NCT-2 revealed that it could produce organic
acids (lactic acid, acetic acid, propionic acid, and gluconic
acid) and phosphatase in culture medium, showing signifi-
cant phosphate-solubilizing ability [5]. Inoculation with B.
megaterium NCT-2 significantly increased the root fresh
weight of maize [6]. The genome of NCT-2 contains genes
encoding for glucose 1-dehydrogenase (EC 1.1.1.47) and
alkaline phosphatase (EC 3.1.3.1). Glucose dehydrogenase
can oxidize glucose to gluconic acid, which is the most fre-
quent organic acid produced by phosphate-solubilizing bac-
teria [52]. Additionally, the phosphate starvation system for
phosphate uptake encoded by pstS, pstC, pstA, and pstB was
also found in the genome. The phosphate solubilization
capacity of strain NCT-2 plays a positive role in promoting
plant growth by dissolving unavailable P (PO,>) in soil to
plant available forms.

Many plant growth-promoting bacteria have the ability
to synthesize plant auxins (indole-3-acetic acid, IAA)
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[53, 54], which is a key regulator for plant growth and devel-
opment, such as cell division and elongation, lateral root pro-
duction, and flowering [55]. Large-scale genomic analysis of
IAA synthesis pathways suggested that plenty of bacteria
could synthesize IAA via multiple incomplete pathways,
and Firmicutes genomes had the simplest Trp-dependent
IAA synthetic system [56]. According to the KEGG analysis,
strain NCT-2 could assimilate tryptophan (Trp) (Figure S7)
but had incomplete Trp-dependent TAA synthesis pathways,
such as the indole-3-acetamide (IAM) pathway and indole-
3-pyruvate (IPA) pathway (Figure S8). It had aldehyde
dehydrogenase (NAD') (EC 1.2.1.3) and amidase (EC
3.5.1.4) catalyzing the final step of IAA synthesis. However,
we could not find the enzymes which convert Trp into IAM
and IPA. These results suggested that strain NCT-2 might
synthesize IAA from intermediates.

Both the phosphate solubilization and IAA synthesis
play important roles in plant growth promotion of strain
NCT-2 during biocontrol and bioremediation of the sec-
ondary salinization soils.

3.7. Genes Involved in Stress Response. B. megaterium NCT-2
showed high salinity adaptation in secondary salinization soil
in our previous study [4]. From the genome perspective, we
can see genes involved in cation transporters (magnesium
transport and copper transport system) and stress response,
such as osmotic stress, oxidative stress, and detoxification.
Glycine betaine, a very efficient osmoprotectant, can be
synthesized or acquired from exogenous sources [57].
There are glycine betaine ABC transport systems (opuA,
opuC, and opuD) for choline uptake and genes for the gly-
cine betaine biosynthetic enzymes (choline dehydrogenase,
gbsB, and betaine-aldehyde dehydrogenase, gbsA) in strain

NCT-2 genome. Moreover, the genome contains genes
encoding for superoxide dismutase (EC 1.15.1.1), catalase
(EC 1.11.1.6), and ferroxidase (EC 1.16.3.1), protecting
bacteria from oxidative stress. It implied that NCT-2 has
great ability of adaption to environments.

4. Conclusion

A hybrid approach with multiple assembler was used to
assemble the complete genome of B. megaterium NCT-2.
The deeper investigation identified clues associated with the
features of the bioremediation of secondary salinization soil
and plant growth promotion at the gene level, such as nitro-
gen metabolism, phosphate uptake, synthesis of organic acids
and phosphatase for phosphate-solubilizing ability, and Trp-
dependent TAA synthetic system. Furthermore, the genes
involved in cation transporters, osmotic stress, and oxidative
stress implied that NCT-2 has great ability of adaption to
environments. In summary, these results provide valuable
genomic resources for further studies and applications of
using B. megaterium NCT-2 in bioremediation processes of
secondary salinization soil.
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