Table 5. Absorption Wavelengths λMax (nm), Excitation Energies, Eex (eV), and Oscillator Strengths (f) Calculated by TD/DFT-B3LYP/6-31+G(d,p) Method for all of the trans-Azo Compounds and FL From the Initial Optimized Geometry at B3LYP/6-31+G(d,p).
compound | electronic transition | λmax | f | Ex | MOa | MOb | symc | wave functionsd,e |
---|---|---|---|---|---|---|---|---|
trans-DZ | S0 → S1 | 387.78 | 0.0000 | 3.1972 | 8 → 9 | 0.70891 | BG | H → L (100%) |
S0 → S2 | 184.08 | 0.0000 | 6.7354 | 8 → 10 | 0.70579 | AG | H → L + 1 (99%) | |
S0 → S3 | 178.97 | 0.0386 | 6.9277 | 8 → 11 | 0.70527 | BU | H → L + 2 (99%) | |
trans-DFDZ | S0 → S1 | 227.47 | 0.0000 | 5.4505 | 16 → 17 | 0.70544 | BG | H → L (99%) |
S0 → S2 | 189.32 | 0.0111 | 6.5490 | 15 → 17 | 0.29661 | BU | H – 1 → L (17%) | |
16 → 18 | 0.63732 | H → L + 1 (81%) | ||||||
S0 → S3 | 179.59 | 0.0000 | 6.9033 | 15 → 18 | 0.70238 | BG | H – 1 → L + 1 (98%) | |
trans-AzoFL | S0 → S1 | 489.35 | 0.0000 | 2.5336 | 93 → 95 | 0.69879 | B | H – 1 → L (97%) |
S0 → S2 | 423.53 | 1.5595 | 2.9274 | 94 → 95 | 0.70581 | B | H → L (99%) | |
S0 → S3 | 344.48 | 0.0000 | 3.5992 | 92 → 95 | 0.68177 | A | H – 2 → L (92%) | |
94 → 96 | –0.13547 | H → L + 1 (3%) | ||||||
FL | S0 → S1 | 276.39 | 0.1648 | 4.4858 | 42 → 45 | 0.22186 | B2 | H – 2 → L (9%) |
42 → 46 | 0.11652 | H – 2→L + 1 (2%) | ||||||
44 → 45 | 0.48597 | H → L (47%) | ||||||
44 → 46 | –0.43727 | H → L + 1 (38%) | ||||||
S0 → S2 | 265.77 | 0.2862 | 4.6650 | 42 → 45 | –0.15521 | B2 | H – 2 → L (4%) | |
44 → 45 | 0.48553 | H → L (47%) | ||||||
44 → 46 | 0.48096 | H → L + 1 (46%) | ||||||
S0 → S3 | 256.82 | 0.0072 | 4.8277 | 43 → 45 | 0.55822 | A1 | H – 1 → L (62%) | |
44 → 47 | –0.40501 | H → L + 2 (32%) |
Molecular orbitals involved in the transition.
Molecular orbital coefficients.
sym, orbital symmetry-singlet.
The wave functions based on the eigenvectors predicted by TD-DFT. H and L are used to denote the HOMO and LUMO.
Percentage of contribution obtained by (100 × c × c × 2), where c is the co-efficient.