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ABSTRACT: Accurate prediction of the absolute or relative protein−ligand binding affinity is one
of the major tasks in computer-aided drug design projects, especially in the stage of lead
optimization. In principle, the alchemical free energy (AFE) methods such as thermodynamic
integration (TI) or free-energy perturbation (FEP) can fulfill this task, but in practice, a lot of
hurdles prevent them from being routinely applied in daily drug design projects, such as the
demanding computing resources, slow computing processes, unavailable or inaccurate force field
parameters, and difficult and unfriendly setting up and post-analysis procedures. In this study, we
have exploited practical protocols of applying the CPU (central processing unit)-TI and newly
developed GPU (graphic processing unit)-TI modules and other tools in the AMBER software
package, combined with ff14SB/GAFF1.8 force fields, to conduct efficient and accurate AFE
calculations on protein−ligand binding free energies. We have tested 134 protein−ligand complexes
in total for four target proteins (BACE, CDK2, MCL1, and PTP1B) and obtained overall
comparable performance with the commercial Schrodinger FEP+ program (Wang et al. J. Am. Chem. Soc. 2015, 137, 2695−2703).
The achieved accuracy fits within the requirements for computations to generate effective guidance for experimental work in drug
lead optimization, and the needed wall time is short enough for practical application. Our verified protocol provides a practical
solution for routine AFE calculations in real drug design projects.

1. INTRODUCTION

On average, the cost of bringing a medicine from research and
development (R&D) to the market has been estimated to be
$2.6 billion according to a survey study published in 2016,1 and
the process takes at least 10 years. In order to improve the
efficiency of drug design and development and reduce the time
and cost arising from expensive and tedious experiments in the
trial-and-error procedures, tremendous amounts of efforts have
been poured into computational methods, especially in the early
stages (from hit to lead) of drug development, with the hope of
shortening and saving iterative steps of synthesis and tests of
large number of compounds to search for better compound
potency and biopharmaceutical properties.2−9 Since a drug
molecule needs to bind, usually the stronger the better, to its
target receptor (usually a protein), the measurement of the
magnitude of the protein−ligand binding interaction is
underpinning all drug design projects, and correspondingly,
the quantitative estimation of the protein−ligand binding
affinities becomes a primary task of computer-aided drug design
(CADD) projects. Various methods have been developed
during the past three decades, which were claimed practically
promising. They have led to different levels of successes and
disappointments at the same time and brought hopes and
frustrations to the drug discovery community. For instance, the
docking and scoring methods have been proven to be suitable
for high-throughput screening of potentially bioactive ligands

from reservoirs of huge amount of candidate compounds3,10 and
achieve generally reliable predictions of most likely ligand
binding modes (i.e., conformation and orientation) at the
binding sites of receptor proteins;8,11 however, they are poor at
correctly ranking the docked compounds according to their
predicted binding affinities.11−13 This is due to their inherent
limitations, for example, not considering the flexibility of the
receptor in the calculation. Physics-based endpoint approx-
imation methods, such as LIE (linear interaction energy) and
MM-PBSA (molecular mechanics Poisson−Boltzmann surface
area), adopt the molecular dynamics (MD) or Monte Carlo
simulations to sample the conformational space of both protein
and ligands in aqueous solutions and use energy functional terms
to estimate the binding free energy.7,14−20 Their accuracies are
usually higher than empirical scoring methods, and the
correlation between estimated and experimentally obtained
binding free energies vary from system to system. Overall, their
performance is effective enough to further narrow down the
screened pool of compounds but not accurate enough for
reliably guiding lead optimization in silico, in which a series of
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congeneric compounds with minor substitution difference need
to be properly ranked by their binding affinities. Although
moderate accuracy like with a root-mean-square error (RMSE)
of ∼2 kcal/mol can produce efficiency gains in wet-lab
screening,21 a stricter criterion, about 5-fold binding affinity
that corresponds to ∼1 kcal/mol, is preferred to efficiently
search for an ideal candidate ligand in the lead optimization
stage22 because the range of experimental values of small
modification compounds are usually spanning only 3−4 kcal/
mol or less.
Alchemical free energy (AFE) calculations, such as free-

energy perturbation (FEP), thermodynamic integration (TI)
methods, λ dynamics, and so on,21−26 which are theoretically
rigorous and are in principle more accurate than the endpoint
methods (such asMM-PBSA), can meet the above requirement.
AFE-based methods incorporate the statistical mechanical
effects (such as contributions from entropy change and discrete
nature of solvent) and chemical effects (such as protonation
states and tautomer distributions), which are often neglected or
roughly approximated in aforementioned docking methods or
endpoint approximation methods. However, several factors
hurdled the routine usage of AFE calculations in real CADD
projects: (1) the enormous demand of computing resources and
time needed for adequate sampling of simulation and
convergence of calculation, (2) often unavailable or inaccurate
force field parameters for possibly encountered ligand
compounds in the huge chemical space, and (3) tedious and
troublesome procedures of system setting up, simulation
running, and data analyzing. In 2015, researchers from
Schrodinger Inc. reported that their newly developed AFE
module (called FEP+) combined with their newly developed
OPLS2 force field, could obtain an RMSE of 0.93−1.41 kcal/
mol after a large-scale validation of 8 proteins and 200 ligands in
total.22 Nowadays, Schrodinger’s FEP+ program has become the
de facto standard in the pharmaceutical industry. Whilst such an
excellent commercial program is available for users, it is also of
great importance and need to have an academic program and
force field as an alternative solution that can achieve similar
performance and convenience.
In this study, we report our exploitation of practical and

reliable protocols with the popular academic AMBER program
and AMBER force fields. Some of us have been working on the
implementation of fast TI calculation with the affordable graphic
processing units (GPU) in AMBER program.27,28 Some of us
have been working on the development, expansion, and
improvement of the general AMBER force fields (GAFF) and
related tools29−31 for arbitrary organic compounds, which may
be encountered in drug discovery projects. Together, we here
report feasible solutions for routine usage of fast and accurate TI
calculations of relative protein−ligand binding free energies.
Our goal is to get the simulation and calculation work done as
quickly as possible (e.g., simplifying the procedures and
reducing the wall time) and get an accuracy under a threshold
of ∼1 kcal/mol for the mean of unsigned error (MUE) and
RMSE. The accomplishment of such a goal could pave the road
for AFE methods to be routinely used in practice in real drug
discovery R&D. We have explored various computational
protocols that determine the accuracy and efficiency of AFE
calculations, including the setting up of systems, the schedules of
λ windows and integration, and the impact of simulation time
and number of repeated individual runs, using four different
protein systems32−35 that have 134 ligands in total. These four
protein data sets were reported as more difficult, leading to

higher MUE and RMSE among the eight retrospective data sets
calculated by Schrodinger’s FEP+.22 The structures of
investigated ligands span a diverse range of chemical space of
pharmaceutically relevant compounds. In this study, the
performance of the central processing unit (CPU) version of
TI (CPU-TI) and GPU version of TI (GPU-TI) in AMBER was
also evaluated. We hope that the established computational
protocols not only enable us to achieve the aforementioned 1
kcal/mol threshold but also provide us overall guidance on
conducting AFE-guided lead optimization for other drug design
projects.

2. METHODS
2.1. Data Set Preparation. The same crystallographic

structures for each of four protein receptors (BACE, CDK2,
MCL1, and PTP1B) as taken by the Schrodinger FEP+ study22

were adopted in this study. The experimental data of binding
affinity and corresponding structures of ligands were taken from
the same references32−35 used in the Schrodinger FEP+ study
(ref 22). For each protein system, we compared the ligands
reported in ref 22 and the ligands in the original experimental
study, identified which tables in the experimental reference
contain the ligands covered by the Schrodinger FEP+ study, and
then included all of the ligands with specific Ki or IC50 values in
these tables in our study. As a consequence, our study not only
included all the ligands reported in ref 22 but also included more
ligands (Table 2 in the Results section and Figures S2 and S4−
S6 in the Supporting Information), which were omitted by ref
22. The perturbation pathways of the four protein systems are
shown in the Supporting Information. They were designed
according to the following strategies: (1) set perturbations from
the same ligand A to as many ligand Bs as possible and (2) set a
pathway to every ligand from the common reference ligand as
short as possible, except for the BACE system in which we
exploited the effects of different paths to some query ligands.

2.2. TI Method. The principle of the TI method has been
well described in many references.8,36,37 The calculation of
relative protein−ligand binding free energy relies on the
thermodynamic cycle, which has also been well explained in
literature.5,7,36,37

2.3. Force Fields and Preparation of Systems.The setup
for all TI simulations has been carried out with the help of the
tool FESetup (version 1.2.1),38 which was modified by us to
allow specific functions, including assigning the RESP charges39

to ligand molecules from the output files of quantum chemistry
HF/6-31G* calculations with the Gaussian16 package.40

Proteins, ligands, and water were represented by ff14SB,41

GAFF1.8,29 and TIP3P models,42 respectively. Atom types and
parameters of GAFF1.8 for all ligand molecules were obtained
by Antechamber31 and Parmchk2 in the Amber16 tool set.43 All
complex systems and solution systems were solvated in
rectangular water boxes with at least 12 Å distances between
the edges of the box and any atom of ligands or protein−ligand
complexes.

2.4. Simulation Protocols. TI simulations in both complex
and solution environments were conducted for each mutation
pair as normal TI methods based on the thermodynamic cycle.36

The unique atoms in both ligands of a mutation pair were put in
the softcore region for both van der Waals and electrostatic
interactions. Periodic boundary condition and the NPT
ensemble were adopted in all simulations, including both the
equilibration and production runs. The temperature was kept at
298 K using Langevin dynamics with the collision frequency
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gamma_ln being set to 2.0. The pressure was kept at 1.01325 bar
with Monte Carlo barostat and a pressure relaxation time of 2.0
ps. The bond constraint SHAKE algorithm is disabled for TI
mutations in AMBER GPU-TI module pmemdGTI,27 and
therefore a time step of 1 fs was used for all MD simulations. The
energy information was saved every 0.5 ps for post-analysis.
Other important settings in the simulation control files are the
same as the default values from FESetup1.2.1 and AMBER16/
18 packages43,44 except for specific λ values. Various schedules of
λ windows for TI simulations have been tested in this study
(Table 1). After setting up of systems, initial equilibrations were

conducted at λ = 0.5 with CPU-TI for 100−200 ps before
switching to GPU-TI runs because AMBER CPU-TI has more
tolerance for changes in the size of the simulation box than
AMBER GPU-TI in NPT ensemble simulations. Five snapshots
were extracted at even intervals from the last 100 ps trajectory of
CPU-TI equilibration as starting configurations of five
individual TI runs at λ = 0.5 with GPU-TI (Figure S1 in the
Supporting Information). A 5 ns simulation was performed for
each individual TI run at λ = 0.5, and a snapshot at the end of 3
ns was used as the starting configuration at two neighboring λ
windows (0.4 and 0.6 in λ schedules 1 and 2, 0.33787 and
0.66213 in λ schedule 3; see Table 1 and Figure S1). The
snapshots after 3 ns TI runs at these two neighboring λ windows
were used as starting configurations of their neighboring λ
windows toward two endpoints (Figure S1). The beginning 1 ns
of each 5 ns individual simulation was considered as a further
equilibration step at the corresponding λ window and therefore
was skipped for post-analysis of dU/dλ. For five replicas of each
mutation pair, five relative binding free energyΔΔG values were
separately calculated from corresponding replicas (run1 to
run5) at all λ windows and then the arithmetic average was used
to calculate the final absolute binding free energy ΔG for each
ligand.

3. RESULTS

First of all, it is worth noting that all reported absolute binding
free energies (ΔG) in this manuscript are the raw data directly
calculated from a single experimental value of a common
reference ligand for each protein system plus all calculated
relative binding free energies ΔΔG along the alchemical
transformation path from the same reference ligand to each
individual query ligand, as described in the Supporting
Information. We did not adopt the offset ways like “cycle
closureΔΔG values”22,36 or “centered RMSE”,45 in which “all of
the ligands’ experimental values were used as a reference and the
sum of the predictedΔG values was set to be equal to the sum of
the experimental ΔG values”36 to make the mean signed error
zero, even though they can “artificially improve the overall
results”36 and make calculated MUE and RMSE for ΔG lower.
We avoided applying these procedures of processing data to
mimic scenarios of real drug design projects, in which most of
calculated ligands have not been synthesized and experimentally
measured, and most probably, only one of them has
experimental data available beforehand.

3.1. Performance of AMBER CPU-TI with λ Schedule 1
on the PTP1B System. We first tested various simulation
protocols on the protein tyrosine phosphatase 1B (PTP1B)
system with 27 congeneric ligands,35 among which 23 ligands
were calculated and reported in the Schrodinger FEP+ paper.22

The setting up of the systems and simulations, the adopted force
fields, and the alchemical transformation paths, and so on are
described in the Methods section and Supporting Information.
We first carried out calculations with the CPU-TI implemented
in the AMBER16 package43 for a series of 13 λ windows (λ
schedule 1 in Table 1). As shown in Figure 1a, MUE and RMSE
for ΔG decrease as the simulation time t for each λ window
increases and reach a plateau at t > ∼4 ns. The predictive index
(PI)8,37 and Pearson’s correlation coefficient r (PR) increase as
the simulation time t for each λ window increases and also reach
plateaus at t > ∼4 ns (Figure 1b). At t = 5 ns, the MUE and
RMSE for this series of 27 ligands are 0.75 kcal/mol and 0.92
kcal/mol, respectively.

3.2. AMBER CPU-TI versus GPU-TI with λ Schedule 1 on
the PTP1B System. The computing demand for TI
calculations is high and the speed is slow, even with parallel
CPU clusters. This is one of the biggest hurdles preventing the
extensive use of TI calculations in practice. The GPU version of
the AMBER TI method has been developed recently and
implemented in the AMBER18 package.27,28,44 According to our
test on the PTP1B system, the speed on a single Nvidia GeForce
GTX1080 GPU card is ∼100 folds faster for the protein−ligand
complexes (∼48,240 atoms) and ∼40 folds faster for the ligand

Table 1. Schedules of λWindows for TI Tested in This Study

schedules
# of
λs specific λ values

integration
method

schedule 1 13 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.95, 1.0

trapezoidal rule

schedule 2 13 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.95, 1.0

extrapolation
and
trapezoidal
rule

schedule 3 9 0.01592, 0.08198, 0.19331, 0.33787,
0.5, 0.66213, 0.80669, 0.91802,
0.98408

gaussian
quadrature

Figure 1. Results for a series of PTP1B−ligand complexes calculated with AMBER16 CPU-TI and λ schedule 1. (a) Mean unsigned error and root-
mean-square error for ΔG and (b) predictive index and Pearson’s correlation coefficient r for this series as a function of simulation time for each λ
window. (c) Calculated binding free energies at t = 5 ns versus experimental values.
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solutions (∼4070 atoms) than the speed on a single core of an
Intel Xeon Gold 6126 Skylake processor (2.60 GHz). This
speedup agrees with the benchmarks on other protein systems.27

With one Nvidia GTX1080 card, a 1 ns TI simulation of a
PTP1B−ligand complex can be done in∼0.65 h (wall time) and
a 1 ns TI simulation of ligand solution can be done in ∼0.17 h.
Due to the intrinsic limitation of applying GPUs in MD

simulations and TI calculations27 and the fact that AMBER18
GPU-TI calculation is already fast enough, it is recommended to
carry out several runs for each λ window, either from different
starting configurations or from the same starting configuration
but with different initial velocities of atoms, which could be
randomly generated from a Maxwell−Boltzmann distribution
according to the simulation temperature, and take averages from
repeated runs to get more precise and accurate results. As to the
GPU-TI calculation of the tested PTP1B system,35 the MUE for
ΔG decreases as the number of repeated runs (Nrun) at each λ
window and the simulation time (t) for each run increase and
approaches a plateau of∼0.75 kcal/mol at the region ofNrun≥ 4
and t >∼4 ns (Figure 2a), and this plateau value of MUE forΔG
is the same as that from CPU-TI calculation. The RMSE forΔG

has a very similar behavior pattern (Figure 2b) and reaches its
plateau at the same region. Meanwhile, the rank coefficient PI
and correlation coefficient PR are more affected by Nrun than t.
They both increase asNrun increases (Figure 2c,d) and approach
plateaus in the same region of Nrun ≥ 4 and t > ∼4 ns. Such
patterns suggest that in order to save the computing resource
and wall time as much as possible when performing AMBER
GPU-TI calculations, a strategy of adoptingNrun as less as 4 and t
as less as 4 ns would lead to close results as conducting more
repeated runs and longer simulations. In the following sessions
of this manuscript, all reported results of GPU-TI were taken
from Nrun = 5 and t = 5.0 ns.

3.3. AMBER GPU-TI with Different λ Schedules on the
PTP1B System. It is well known that TI calculations can suffer
from instabilities during the creation or annihilation of particles,
which correspond to the states of λ of 0 or 1, according to the
convention of TI setting up. In this study, the state of λ = 0
corresponds to the smaller ligand and the state of λ = 1
corresponds to the bigger one. For instance, in the alchemical
transformation of ligand 9 → ligand 17 in the PTP1B system35

(Figure S2 in the Supporting Information), the root-mean-

Figure 2. (a) MUE for ΔG, (b) RMSE for ΔG, (c) predictive index, and (d) Pearson’s R for a series of 27 PTP1B−ligand complexes calculated with
AMBER18 GPU-TI and λ schedule 1 as functions of the number of repeated runs for each λ window and the simulation time per run per λ window.

Figure 3. Calculated binding free energies for 134 ligands of four protein systems versus their experimental values: (a) BACE, (b) CDK2, (c) MCL1,
and (d) PTP1B.
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squared (RMS) fluctuations of ∂U/∂λ (marked as “DV/DL” in
AMBER output files) is∼2000 kcal/mol at λ = 0,∼500 kcal/mol
at λ = 0.001,∼40 kcal/mol at λ = 0.01592, and∼10 kcal/mol at λ
> 0.1. Therefore, it is a common practice to avoid direct
simulation at the endpoint window (λ = 0 in this study) where
particles appear/disappear. Instead, the ∂U/∂λ value at endpoint
λ is either fitted from other close λ windows by an extrapolation
method or just simply neglected in practice. In our λ schedule 2
(Table 1), TI simulations at λ = 0.001were carried out and used
to fit ∂U/∂λ at λ = 0 for all GPU-TI calculations for the PTP1B
system. It turned out that MUE and RMSE reduced by ∼0.09
kcal compared to those using λ schedule 1 and PR increased by
∼0.04, although PI decreased slightly from 0.74 by λ schedule 1
to 0.72 (Figure S3), which is understandable since even small
changes in the computed free energies can lead to a different
ranking of the ligands with similar affinities.45 We have also
tested a 9 λwindow schedule of Gaussian quadrature integration
(schedule 3 in Table 1 of this manuscript, eq 21.2 and Table 21.1
in the AMBER18 manual44) and found that all merit metrics
(MUE, RMSE, PI, and PR) are improved or very similar
compared to schedules 1 and 2 (Figure S3). Considering that
schedule 3 saves calculations of four λ windows compared to
schedule 1/schedule 2 and it can still obtain a very similar or
better performance in the benchmark on the PTP1B system, it
has been adopted for GPU-TI calculations for three other
protein systems (BACE,32 CDK2,33 and MCL134), which have
also been calculated by Schrodinger FEP+.22

3.4. Overall Performance of AMBER GPU-TI on the
Tested Four Protein Systems. The calculated ΔGbind of all
ligands of four protein systems compared to experiment by
AMBER18 GPU-TI are presented in Figure 3. Of the 134 data
points in total, all unsigned errors for ΔG (ΔG UEs) are <2.5
kcal/mol, three ΔG UEs (2.3%) are >2.1 kcal/mol, three ΔG
UEs (2.3%) are between 2.0 and 2.1 kcal/mol, 34 ΔG UEs
(25.6%) are between 1.0 and 2.0 kcal/mol, and 93 ΔG UEs
(69.9%) are smaller than 1.0 kcal/mol. The ΔGMUEs are 0.77
kcal/mol for BACE, 0.80 kcal/mol for CDK2, 0.81 kcal/mol for
MCL1, and 0.71 kcal/mol for PTP1B. TheΔG RMSEs are 0.93,
1.04, 0.98, and 0.91 kcal/mol for BACE, CDK2, MCL1, and
PTP1B, respectively. All ΔG MUEs and ΔG RMSEs are lower
than the aforementioned threshold of 1 kcal/mol except for the
ΔG RMSE of CDK2 (1.04 kcal/mol). Note that the offset ways
like “cycle closureΔΔG values”22,36 or “centered RMSE”45 were
not adopted in the calculations of ΔG for all ligands from ΔΔG
of perturbation pairs, even though they could artificially reduce
the appeared ΔG MUEs and ΔG RMSEs. We only used one
experimental ΔG value of a common reference compound in
each protein system.While it is true that all calculatedΔG values
are more or less dependent on the chosen common reference
compound, we chose the compound in each protein system with
either the simplest structure or the most connections in the
graph of the perturbation pathway (Figures S2 and S4−S6 in the

Supporting Information). Such a scenario is close to real
situations encountered in real drug design projects.
As to the MUEs and RMSEs for relative ΔΔG of mutation

pairs, Table 2 shows that for the four protein systems, AMBER
GPU-TI leads to ΔΔG MUEs between 0.71 and 0.94 kcal/mol
and ΔΔG RMSE between 0.91 and 1.22 kcal/mol compared to
the ΔΔG MUEs between 0.84 and 1.16 kcal/mol and ΔΔG
RMSEs between 1.03 and 1.41 kcal/mol achieved by
Schrodinger FEP+.22 As to the correlation coefficient PR for
ΔG, GPU-TI leads to slightly higher PR for CDK2 (0.64 vs
0.48), slightly lower values (by −0.12 to −0.17) for other three
protein systems, and comparable PR ranges in general (0.61−
0.75 for GPU-TI vs 0.48−0.80 for Schrodinger FEP+22).

4. DISCUSSION
As described above, we investigated the ability of AMBERCPU-
TI and newly implemented GPU-TI on the prediction of
binding free energies on data sets of four protein systems that
were originally tested by Schrodinger Inc. with their GPU free-
energy code FEP+, OPLS2.1 force field, and REST2 replica
exchange sampling method.22 We adopted the ff14SB force
field41 for protein receptors, the general AMBER force field
(GAFF, version 1.8)29 for ligand compounds, and TIP3P
model42 for water molecules. By using the 9 λ window protocol
(Table 1), our calculated results not only obtained ΔΔG MUE
and ΔΔG RMSE overall slightly lower than those by
Schrodinger FEP+ but also approached the threshold of ΔG
MUE/RMSE ≈ 1 kcal/mol, which are necessary for effectively
guiding the lead optimization in drug design projects. Recently,
Song et al. carried out calculations with the same AMBERGPU-
TI program and the same ff14SB/GAFF1.8 force fields on the
same protein systems.36 However, their computed results had
larger average errors than the FEP+ results.36 For the same
number of ligands as in the FEP+ study, Song et al. got ΔΔG
MUE of 1.20, 0.97, 1.52, and 1.06 kcal/mol for BACE, CDK2,
MCL1, and PTP1B, respectively, andΔΔG RMSE of 1.47, 1.13,
1.83, and 1.40 kcal/mol for BACE, CDK2, MCL1, and PTP1B,
respectively.36 Here, we point out several differences in our
calculations from their calculations that might contribute to the
discrepancy in the calculated results.
First of all, different water models were used in two studies

although the same protein and general force fields were applied.
In our calculations, we adopted the TIP3P water model,42

whereas Song et al.36 adopted the SPC/E water model.46

Usually, each biomolecular or soft-matter force field is bound to
a specific water model, and the force field parameters are
adjusted and validated based on that specific water model. While
mixed usage of noncompatible force fields for macromolecules
and small molecules can lead to large computational errors, the
substitution of the default water model is also not
recommended. Both ff14SB and GAFF were developed based
on the TIP3P water model, as described in their corresponding
references.29,41 Therefore, the TIP3P water model should

Table 2. Overall Performance of AMBER GPU-TI on Four Protein Systems Comparing with the Performance of Schrodinger
FEP+ Whose Data Are Taken from ref 22

systems BACE32 CDK233 MCL134 PTB1B35

protocols FEP+ GPU-TI FEP+ GPU-TI FEP+ GPU-TI FEP+ GPU-TI

#compounds 36 41 16 22 42 44 23 27
ΔΔG MUE (kcal/mol) 0.84 0.93 0.91 0.94 1.16 0.82 0.89 0.71
ΔΔG RMSE (kcal/mol) 1.03 1.22 1.11 1.16 1.41 1.01 1.22 0.91
Pearson’s R for ΔG 0.78 0.61 0.48 0.64 0.77 0.65 0.80 0.75
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always be adopted with ff14SB and GAFF, and the substitution
of TIP3P to another water model is not recommended. After all,
the calculation of the protein−ligand binding free energy deeply
involves the interactions between protein−ligand and the
surrounding environment, which is the aqueous solution.
Especially, the thermodynamic cycle, which is used in binding
free energy calculations, specifically includes the simulation of
the ligand in water.5,7,36,37 In order to test the effect of switching
water models, we performed extra TI calculations of seven ligand
pairs in the PTP1B system (ligand 3 → ligand 8, ligand 8 →
ligand 11, ligand 8→ ligand 12, ligand 8→ ligand 13, ligand 8→
ligand 14, ligand 8→ ligand 15, and ligand 8→ ligand 16) with
the same settings in our GPU-TI protocol (ff14sb for protein,
GAFF for ligands, 12 Å thickness of the water shell for
complexes and solutions, λ schedule 3, and five independent
runs) except that the SPC/Ewatermodel was adopted instead of
TIP3P. Compared to the TIP3P water model, the SPC/E water
model led to ΔΔG MUE of these seven mutation pairs that is
increased by 0.44 kcal/mol andΔΔG RMSE that is increased by
0.48 kcal/mol (Table S1 in the Supporting Information).
Second, although both studies solved the complex and the

ligand in rectangular simulation cells, different values were used
for the minimum distance between the edge of the cell and the
solute atoms of the protein and ligand systems.While we used 12
Å as the minimum thickness of the water shell for both protein
and ligand systems, Song et al. applied 5 and 10 Å for the protein
and ligand systems, respectively.36 The 10 Å thickness of the
water shell for the ligand system might be acceptable in most
cases, but we are concerned about the only 5 Å thickness of the
water shell for the protein system. Although the number of
solvent particles and the corresponding computing burden can
be greatly reduced with such a thin water shell, the density of the
protein−ligand complex would be very high compared to real
biological systems, which makes the complex and surrounding
water molecules cannot fully relax and reorganize as they are
supposed to. We also performed extra TI simulations on the
aforementioned seven mutation pairs in the PTP1B system with
the same setting as our GPU-TI protocol except that 5 and 12 Å
thickness of the water shell was used for the protein system and
the ligand only system, respectively. As shown in Table S1 in the
Supporting Information, decreased simulation boxes led to
ΔΔG MUE of these seven mutation pairs that is increased by
0.26 kcal/mol and ΔΔG RMSE that is increased by 0.22 kcal/
mol.
Third, while we carried out five independent runs at each λ

point from different initial conformations extracted from
equilibrium runs at this λ point or from the product runs at
neighbor λ points (Figure S1 in the Supporting Information),
Song et al. performed only one run for each λ point.36 As
demonstrated in Figure 2, we found that repeating runs at each λ
point help improve the merit metrics (MUE and RMSE for ΔG
decrease and PI and PR forΔG increase). This is understandable
that a single simulation within a limited time cannot sample all
important potential binding modes.47,48 On the other hand, a
single long-time simulation is supposed to be able to sample all
important binding modes, but in reality, the simulated systems
might drift away from correct binding modes due to an
inaccurate force field. A practical solution would be individual
runs from different initial conformations with an appropriate
length of simulation time. Although extra simulations are needed
in such protocol, it is affordable and tolerable with GPU
computing, and the gained improvement in precision and
accuracy is worth the extra investment if four or five repeated

runs could be achieved, as this study demonstrated. Other
researchers also suggested adopting such an ensemble of
independent simulations (termed as “replicas”) to reduce the
uncertainty and improve quantification in AFE calcula-
tions.49−51 For instance, no less than 25 and 5 replicas were
suggested to be run for the “ESMACS (enhanced sampling of
molecular dynamics with approximation of continuum solvent)”
and “TIES (thermodynamic integration with enhanced
sampling)” methods, respectively, with the length of each
replica being 4 ns.51

Next, the λ window processing protocols adopted in both
studies share similarities and have differences. A conservative
strategy of processing λ states is to start from one end (either λ =
0 or λ = 1), which has a crystallographic structure from
experiment, equilibrate and run at this λ end, then move to the
neighboring λ point, equilibrate and run, and so on, gradually
moving to the other λ end step by step. Such a conservative
procedure unavoidably causes idle waiting periods and does not
fit the expectation of shortening wall time in real drug
development work. By coincidence, both we and Song et al.36

chose to do the initial equilibration process after system setting
up at λ = 0.5, but the rest of the procedures are different. Song et
al. sent the initially equilibrated conformation at λ = 0.5 to 12 λ
windows (0.00922, 0.04794, 0.11505, 0.20634, 0.31608,
0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206,
0.99078) simultaneously as their starting structures.36 Such a
process is quite aggressive compared to the aforementioned
conservative step-by-step strategy. Another minor disadvantage
is that these λ windows do not include λ = 0.5, where initial
equilibration is done, causing somehow waste. Our strategy is in
the intermediate between the conservative step-by-step
procedure and the aggressive one by Song et al. Our tested λ
schedules (Table 1) start from the state at λ = 0.5, where initial
equilibration is performed, then propagate sequentially and
separately to both ends. Taking the λ schedule 3 as an example
(Figure S1), the TI simulation jobs at λ = 0.33787 and λ =
0.66213 can get started immediately after the system is well
equilibrated at λ = 0.5 (no need to wait for the production run at
λ = 0.5 to be done). The TI job at λ = 0.19331 can start
immediately once the equilibration run at λ = 0.33787 is done,
and the TI job at λ = 0.80669 can start immediately once the
equilibration run at λ = 0.66213 is done (again, no need to wait
until their production runs are done). The jobs at the rest of the
λ windows are performed in a similar way. This strategy is a
trade-off considering both efficiency and accuracy.
Still other differences between the protocols in our study and

in that of Song et al.36 exist, but the influence on the calculated
results are expected to be minor. For instance, the NPT
ensemble is applied for production runs in our study, whereas
the NVT ensemble is applied by Song et al.36

In TI calculations, two computational protocols are widely
adopted to transform from ligand A to ligand B, that is, the one-
step protocol and the three-step protocol.36,52 For the former,
the vanishing of ligand A and the emergence of ligand B occur
simultaneously; whereas, for the latter, the whole transformation
is divided into three phases, namely, removing charges of ligand
A, changing van der Waals and bonded terms of ligand A to
those of ligand B, and adding charges back for ligand B. Each of
these three processes needs to be simulated at a set of individual
λ windows. Both Song et al. and we adopted the one-step
protocol instead of the three-step protocol for the following
reasons. First, for the three-step protocol, the net charge of the
system may change during the discharging/charging steps,
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which may affect the long-range electrostatic interactions in
AMBER.36 Second, the one-step protocol takes significantly less
amounts of simulations. When the overall accuracies of different
protocols are comparable, the faster and more efficient one is
often preferred in real drug development because the time also
matters.

5. CONCLUSIONS
In this study, we carried out simulations and calculations of a
data set of protein−ligand binding free energies covering four
protein targets and 134 ligands using the alchemical
thermodynamic integration (TI) method implemented in the
AMBER16 CPUmodule (PMEMD) and AMBER18 GPU code
(PMEMD.GTI) with ff14SB/GAFF1.8/TIP3P force field
combination for proteins, ligands, and water solvent, respec-
tively. We explored the effects of protocols of different
transformation scheme, λ schedule, number of parallel runs,
simulation time, and so on on the overall merit metrics such as
mean of unsigned errors (MUEs), root-mean-square errors
(RMSEs), predictive index (PI), and Pearson’s correlation
coefficient r (PR).We found that with AMBER18GPU-TI code,
the aforementioned force field combination, a 9 λ window
schedule of Gaussian quadrature integration with an appropriate
equilibration/production procedure along λ windows, appro-
priate number of repeated runs and length of simulation time, we
can efficiently achieve MUEs and RMSEs for binding free
energies (ΔG) not only lower than 1 kcal/mol, which is a
threshold criterion for effectively guiding real drug lead
optimization research, but also comparable MUEs and RMSEs
for ΔΔG of mutation pairs obtained by the Schrodinger FEP+
program, which is currently the de facto standard in
pharmaceutical industry. As the AMBER code developers and
force field developers, we hope that our proposed protocol may
serve as a cost-efficient solution for daily routine usage of
rigorous alchemical free energy calculations in real drug research
and development projects to broad communities, especially the
academic research labs.
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