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SUMMARY

The goal of this study was to identify individuals at risk of progression and reactivation among 

household contacts (HHC) of pulmonary TB cases in Vitoria, Brazil. We first evaluated the 

predictive performance of six published signatures on the transcriptional dataset obtained from 

peripheral blood mononuclear cell samples from HHC that either progressed to TB disease or not 

(non-progressors) during a five-year follow-up. The area under the curve (AUC) values for the six 

signatures ranged from AUC values of 0.670 to 0.461, and the PPVs did not reach the WHO 

published target product profiles (TPPs). We therefore used as training cohort the earliest time-

point samples from the African cohort of adolescents (GSE79362) and applied an ensemble 

feature selection pipeline to derive a novel 29-gene signature (PREDICT29). PREDICT29 was 

tested on 16 progressors and 21 non-progressors. PREDICT29 performed better in segregating 
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progressors from non-progressors in the Brazil cohort with the area under the curve (AUC) value 

of 0.911 and PPV of 20%. This proof of concept study demonstrates that PREDICT29 can predict 

risk of progression/reactivation to clinical TB disease in recently exposed individuals at least 5 

years prior to disease development. Upon validation in larger and geographically diverse cohorts, 

PREDICT29 can be used to risk-stratify recently infected for targeted therapy.
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INTRODUCTION

With one-third of the world’s population estimated to be latently infected with 

Mycobacterium tuberculosis (Mtb), the World Health Organization’s guidelines on 

management of latent tuberculosis infection (LTBI) call for better strategies for testing and 

treating LTBI, particularly pointing out the need for methods to determine risk of LTBI 

progression to active tuberculosis (TB) disease (1). Administration of preventive treatment 

to persons with LTBI can reduce the subsequent number of TB disease diagnoses (2, 3). 

However, in TB endemic regions, mass treatment of all latently infected individuals is 

neither practical nor cost-effective. Therefore, the identification of Mtb-infected subjects 

most likely to progress to disease or reactivate several years later, could enable the targeting 

of anti-TB preventive therapy to those most likely to benefit.

Several blood signatures have been reported to discriminate active TB from LTBI (4–11), 

but studies centered on predicting the outcome of Mtb infection are limited (12). In a 

retrospective case-control study conducted in Amsterdam, Netherlands, PBMC samples 

from HIV-infected drug users with and without TB were analyzed for the expression of 141 

genes. The study found that 8 months prior to onset of disease the expression of IL-13 and 

AIRE could identify individuals that progressed to TB (13). Another large prospective 

biomarker study in a South African adolescent cohort (GSE79362) identified a 16-gene 

whole blood signature (henceforth denoted ACS-COR) capable of predicting progression to 

disease with 53.7% sensitivity and 82.8% specificity, when disease diagnosis was 

established within 12 months of sample collection (14). Whereas the latter study 

demonstrated the utility of blood transcriptomics as a biomarker for progression risk, 

sensitivity was a key limitation to its conclusions (15). Importantly, ASC-COR’s predictive 

performance, most notably its sensitivity, decreased with increasing time to disease onset –

suggesting ASC-COR was likely detecting sub-clinical TB disease that was already present 

at the time of blood collection. For example, the sensitivity of their approach decreased to 

39.3% when disease diagnosis occurred between 361 and 720 days of sample collection 

(14). Another study consisting of a number of cohorts from Africa (GC6; GSE94438) 

identified a 4-gene signature (RISK4), but predicted progression only up to two years before 

onset of disease (16).

Proteomic and metabolic biomarkers with diagnostic potential for distinguishing active from 

latent TB have also been reported (4–7). Serum-based biomarkers of risk of progression to 
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disease are also being developed. A recent study performed an in-depth proteomic analysis 

of serum samples from the South African adolescent and GC-6 cohorts on the Somascan 

platform and discovered a 5-protein signature, TB Risk Model 5 (TRM5) and a 3-protein 

signature, 3-protein pair-ratio (3PR). Both signatures predicted progression up to a year prior 

to disease diagnosis. However, the biomarker performed with greatest significance proximal 

to disease diagnosis. Also, neither signature met the WHO Target Product profile for a 

progression test (8). Metabolic profiling of serum and plasma samples from the GC6 cohort 

was successful in generating a TB-specific prognostic metabolic signature that performed 

well in predicting subclinical TB and progression to active TB as early as 12 months prior to 

TB diagnosis (9). Circulating miRNAs have also been found to perform well as a short-term 

predicters of risk (10).

The predictive performance of none of the published biomarker signatures has been 

evaluated in a Brazilian population. Therefore, the goal of this study was to test the 

predictive performance of the published transcriptomic signatures in identifying individuals 

at risk of progression and reactivation among household contacts (HHC) of pulmonary TB 

cases in Vitoria, Brazil. We found that the published signatures did not perform well in 

predicting progression to disease in the Brazilian cohort. Using relevant data from published 

study, we then developed a novel 29-gene biomarker signature that performed significantly 

better than the published signatures in predicting TB disease risk.

RESULTS

HHC follow up for progression to TB disease

From March 2008 to May 2015, 1203 HHCs (derived from 410 smear positive culture-

proven TB index cases) were enrolled in a prospective observational cohort study in Vitória, 

Brazil. At the time of enrollment, HHCs were screened for tuberculin skin test (TST) 

reactivity; 573 HHCs had a positive TST (≥10mm), indicating infection with Mtb. Of these 

TST-positive contacts, 6 (1%) were clinically diagnosed with TB disease at the time of 

enrollment and excluded from further follow-up for incident TB disease. During post-

enrollment follow-up, 27 TST-positive HHC and 1 TST-negative HHC were later diagnosed 

with TB disease (progressors). In this nested case-control study, baseline (time of 

enrollment) peripheral blood mononuclear cells (PBMC) samples from only 16 progressors 

was available for gene expression profiling. These individuals developed TB disease 

between 11 and 1795 days after enrollment (median 255 days) and baseline blood collection. 

Five of the 16 progressors were diagnosed within the first three months of sample collection 

and were defined as co-prevalent cases. Three of the 5 co-prevalent were culture-proven TB. 

Of the remaining 11 progressors, 5 were diagnosed within 2 years (early progressors) and 6 

were diagnosed after 2 years (late progressors) of sample collection. Nine of the 11 

progressors were culture-proven TB (Tables S1–S2). All HHCs with suspected TB were 

evaluated by experienced clinicians from the TB clinics of Núcleo de Doenças Infecciosas 

(NDI) Vitoria, Brazil. Based on Brazilian TB program guidelines, patients with abnormal 

CXR suggestive of TB (apical infiltrates, cavities, miliary pattern), systemic symptoms 

(cough, fever, weight loss) and clinical/radiographic improvement with empiric TB therapy 

are considered TB by clinical diagnosis.
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TST-positive contacts that were not diagnosed with TB disease during long-term follow-up 

(≥5 years) were considered non-progressors. We selected 21 age- and sex-matched non-

progressors as controls for this study. In addition, PBMC from 14 randomly selected TB 

index patients from the cohort were also studied. PBMC obtained at baseline from the 16 

progressors, 21 non-progressors, and 14 TB patients were used for RNA sequencing (RNA-

seq) analysis (Tables S1–S2,).

Predicting progressors from non-progressors in the Brazil cohort using existing gene 
signatures

We first tested the performance of ACS-COR and RISK4 signatures in predicting risk of 

progression in the Brazil cohort using four methods- ridge logistic regression (glmnet 

package), SVM, random forest (ranger package), gradient boosting (xgbost package). Co-

prevalent cases were not included for prediction analysis. Averaging the ACS-COR 

signature’s performance across the four models (Table 1), yielded a mean AUC of 0.670 

(0.640, 0.700), sensitivity of 0.515 (0.460, 0.571) and a specificity of 0.774 (0.728, 0.820). 

Similarly, averaging the RISK4 signature’s performance across the four models (Table 1), 

yielded a mean AUC of 0.461 (0.434, 0.488) with a sensitivity of 0.413 (0.335, 0.491) and a 

specificity of 0.665 (0.588, 0.743). Evaluation of the predictive performance of four existing 

TB disease signatures Kaforou27 (6), Sambarey10 (7), Jacobsen3 (5) and Sweeney3 (9) 

revealed that none of the signatures performed well in classifying progressors from non-

progressors with all average AUC values <0.65 (Table 1).

In the Brazil cohort, 573 HHCs were TST-positive, of these 28 were progressors, 6 were 

diagnosed with TB at the same time as the TB index case, and 539 were non-progressors. In 

the Brazilian cohort, we assume a rate of TB progression of 4.8%. Based on the sensitivity 

and specificity of ACS-COR, RISK4, Kaforou27, Sambarey10, Jacobsen3, Sweeney3, in the 

Brazil cohort PPVs were calculated for these signatures. Importantly the PPVs for none of 

the 6 signatures reached the WHO published target product profiles (TPPs) (Table 2).

Thus, these results suggest that neither the existing progression risk signatures nor TB 

disease signatures offer discriminatory ability between progressors and non-progressors in 

the Brazil cohort.

Derivation of a 29-gene signature for distinguishing progressors from non-progressors

The ACS-COR progression risk signature was derived using the samples in the GSE79362 

cohort most proximal to their TB diagnosis in the initial down-selection of genes, and then 

the final selection used all available samples, including those at baseline (up to 18 months 

before progression (14, 17). The signature shows strong predictive performance closer to 

time of the diagnosis of TB and also distinguishes TB patients from LTBI individuals with 

high accuracy (14, 18). This suggests that the ACS-COR signature is a biomarker of 

subclinical TB rather than of long-term risk progression. We, therefore, hypothesized that if 

we selectively used ‘baseline’ progressor samples from the GSE79362 dataset at the time 

point furthest from their eventual TB diagnosis, we could derive a risk signature of 

progression that defines the early host response to infection. This signature would be 

independent of expression of inflammatory responses that may occur proximal to the clinical 
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expression of TB disease in response to replicating Mtb. We used the existing RNA-seq 

dataset from the South African adolescent GSE79362 cohort to train a baseline biomarker, 

using an ensemble feature selection pipeline, and then validated this biomarker on the RNA-

seq data from the Brazil cohort. The training RNA-seq dataset contained 46 progressors and 

107 matched controls; the samples were collected every six months, ranging from baseline 

to up to two years per subject (14). For this analysis, available sequencing data for 39 

progressor samples from time-points furthest from their TB diagnosis dates as well as 103 

non-progressors were used for predictive model training based on gene signatures (Figure 

1). Then the Brazilian dataset, which was smaller in size, provided a new independent 

validation set of progressors and non-progressors for assessing predictive performance of 

gene signatures. The GC6 cohort (GSE94438) provided a second validation set. This 

approach of independent training and validation in an ethnically distinct cohort should yield 

highly robust biomarkers of disease and has not been previously applied to genomic 

biomarkers of progression.

Briefly, initial identification of potential genes (features) of interest involved applying filters 

for (1) interquartile range, (2) days to progression correlation, and (3) differential gene 

expression, after which we identified 639 putative biomarker genes. The next step for feature 

selection used an ensemble model combining random forest, lasso logistic regression, and 

gradient boosting that resulted in selection of 89 genes. Then, 40 of these 89 genes were 

selected based on a single lasso logistic regression classifier (Figure 1). Finally, 29 out of 

these 40 genes were selected based on their mapping to protein-coding genes (Figure 1) and 

designated as PREDICT29. Predictive performance was also evaluated for models of the 

existing ACS-COR and PREDICT29 progression signatures in the African training dataset 

via 10*10 cross validation for unbiased evaluation, and both signatures performed roughly 

equivalently (Tables S6 and S7).

Several of the genes comprising PREDICT29 signature are associated with innate response. 

For instance, SH2D1B (SH2 Domain containing 1B) is involved in regulating signal 

transduction via surface receptors expressed on antigen-presenting cells (APC) (19). CTSA 
(Cathepsin A) is expressed on human APCs and regulates MHC class II antigen presentation 

(20). SPSB1 (SplA/Ryanodine Receptor Domain And SOCS Box Containing 1) targets 

inducible nitric oxide synthase (iNOS) (21, 22). IL31RA (Interleukin 31 Receptor A) is 

involved in proliferation and function of myeloid cells (23, 24). Lastly, HM13 
(Histocompatibility Minor 13) is required to generate lymphocyte HLA-E epitopes from 

non-classical MHC Class I peptides (25), and HLA-E binding peptides of Mtb induce both 

cytotoxic and immunoregulatory responses (26, 27). The top four pathways identified from 

KEGG analysis were Lysosome, Renin-angiotensin system, Glycosphingolipid biosynthesis 

- globo series, and Vitamin digestion and absorption (Table S8). Ingenuity Pathway analysis 

predicted Glycolysis 1, Gluconeogenesis 1, Glutathione-mediated detoxification, and tRNA 

charging as the top pathways (Table S9). None of the top predicted pathways were 

inflammation related.
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Validation of the PREDICT29 signature in predicting progressors from non-progressors in 
the Brazil and GC6 cohorts

As shown in the heat map (Figure 2A), PREDICT29, discriminated progressors from non-

progressors. Consistent with the heat map, the PCA plot also corroborated that progressors 

and non-progressors segregated into two main clusters (Figure 2B). Genes within 

PREDICT29 did not overlap with the TB or progression risk signatures tested, except for 

four genes (SRBD1, WARS, APOL6, and TCN2) that also were part of the signature shown 

to differentiate TB from LTBI in the original work by Berry and colleagues (4).

We next tested the performance of PREDICT29 using various predictive model methods. 

PREDICT29 performed well across all four models used, suggesting its reproducibility and 

versatility across modeling methods. When averaging performance across the four models 

tested, the PREDICT29 signature resulted in a mean AUC 0.911 (0.894, 0.928), sensitivity 

of 0.742 (0.704, 0.780) and specificity of 0.848 (0.816, 0.880) (Table 3A; Figure 3B). There 

was no significant change in performance when co-prevalent cases were included in the 

analysis (Figure 3A). In terms of segregating active TB from LTBI, PREDICT29 performed 

with a mean AUC of 0.757 (0.732, 0.782), sensitivity of 0.643 (0.597, 0.688) and specificity 

of 0.773 (0.733, 0.813) (Table S10; Figure 3B), Furthermore, there was no correlation 

between PREDICT29 and age (Table S11).

GC6 is also an HIV-negative African cohort of exposed HHC, but unlike the Brazil cohort, 

disease progression was followed for only 2 years (Table S12). The performance of 

PREDICT29 was also validated in this cohort. When averaging performance across the four 

models tested, the PREDICT29 signature resulted in a mean AUC of 0.680 (0.670, 0.690) 

with a sensitivity of 0.558 (0.531, 0.585) and specificity of 0.755 (0.732, 0.779) (Table 3B). 

These data indicate that PREDICT29 performed less better in the GC6 short-term risk cohort 

compared with the Brazil cohort.

Several of the HHC progressed > 2 years after exposure which might reflect transmission 

that occurred outside of the household. We, therefore, performed RFLP analysis to 

determine Mtb strain match between the strain derived from the index case and that obtained 

from the secondary case (progressors). RFLP data was available on seven of the progressors, 

and it showed that all of them were infected by the same strain as the index case (Table S2). 

These data suggest that transmission is occurring in the household and transcriptional 

changes occurring at the time of Mtb exposure may contribute to the PREDICT29 risk 

signature.

Next, we determined if PREDICT29, in comparison to the currently available transcriptional 

signatures, could more reliably predict disease progression. Based on the sensitivity and 

specificity in the Brazil cohort the calculated PPV for PREDICT29 was 20.2% (95% CI 

13.1–29.4%) and NPV was 98.5% (95% CI 96.9–99.3%) (Table 4). However, in the GC6 

cohort, the calculated PPV for PREDICT29 was 4.1% (95% CI 2.3–7.4) and NPV was 

98.7% (95% CI 97.6–99.4). (Table 4). PPV of PREDICT29 reached the WHO published 

target product profiles (TPPs).
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DISCUSSION

In this study, we developed a predictive blood-based signature that accurately determined an 

individual’s risk of progression from Mtb infection to disease. Evaluation of predictive 

performance of the existing ACS-COR and RISK4 signatures for TB progression risk and 

four TB signatures demonstrated their moderate ability to distinguish progressors from non-

progressors in the Brazil cohort. However, PREDICT29 signature offered superior 

performance in predicting progressors in the Brazil dataset. Although the same RNA-seq 

prospective African cohort dataset was used to derive both the ACS-COR signature and the 

PREDICT29 signature, markedly different signatures resulted, largely attributable to the 

differing methodologies of signature derivation. ACS-COR signature improved closer to TB 

diagnosis, during which TB disease-related inflammatory processes are occurring although 

clinical manifestations of the disease may not yet be present (17, 28, 29). Consistent with 

this, the ACS-COR signature performed well in distinguishing active TB disease from LTBI 

in multiple datasets (14, 18). Unlike ACS-COR (17), the PREDICT29 signature’s lack of 

inflammatory gene or pathway enrichment suggests specific detection of progression risk at 

early time-points prior to eventual TB diagnosis many years later. PREDICT29 signature 

appears to capture processes occurring in the early host response to Mtb that could dictate 

successful long-term pathogen control or permissiveness resulting in progressive disease. 

The advantage of our analytical approach is that it allowed us to develop PREDICT29 that 

measures risk of progression to TB disease years ahead of the onset of infectiousness. Thus, 

ACS-COR and PREDICT29 are likely biomarkers for different phenomena with differences 

in performance in different cohorts based on time after Mtb exposure and time to disease 

progression. The limited overlap with ACS-COR and PREDICT29, therefore, is not 

unexpected.

In a study that directly compared publicly available gene expression datasets (30) found that 

the previously reported 3-gene signature (31) performed with high accuracy for diagnosis of 

tuberculosis and in predicting progression of LTBI to TB disease prior to sputum conversion. 

It is important to note that in this study the LTBI progressed to disease within 6 months of 

baseline evaluation and thus the 3-gene signature is likely detecting subclinical disease in 

asymptomatic individuals rather than truly predicting risk of progression in recently 

infected. Consistent with our assessment that PREDICT29 captures early changes in the host 

following infection, the 3-gene signature did not perform well in the Brazil dataset in 

predicting risk of TB progression in the recently exposed HHC.

Two studies have shown that the diagnostic performance of the ACS-11 gene signature 

(derived from 16 gene ACS-COR) was maintained in cryopreserved PBMC samples (1, 2). 

This suggests that lack of neutrophils in the PBMC is not affecting the performance of TB 

signatures. Furthermore, transcriptional module enrichment analysis of the whole blood 

transcriptional data from progressors and non-progressors in the African cohort of 

adolescents (GSE79362) implicated monocytes as contributing to the gene signature (3). 

Supporting a role for monocytes, the authors of this study also found that progressors have 

increased numbers of monocytes in peripheral blood and the isolated monocytes had 

significantly elevated expression of the risk signature genes (ACS-COR) (3). These results 

strongly indicate that the performance of ACS-COR and other signatures on PBMC samples 
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should not be affected by the lack of neutrophils in these samples. Nevertheless, longitudinal 

studies comparing PBMC and whole blood should be conducted to fully address the 

performance of available prognostic and diagnostic signatures on different sample types and 

the contribution of specific cell types to a given signature.

It was unexpected to find that PREDICT29 did not perform well on the GC6 which consists 

of South African, Gambian and Ethiopian HHC cohorts who were followed for 2 years for 

disease progression. Site-specific biomarker of risk of progression derived from the RNA-

seq data separately for the South African and Gambian cohorts showed that the Gambia 

signature did not validate in the South Africa cohort and similarly the South African 

signature had poor performance when tested on the Gambian cohort. These studies reveal 

that site-specific differences could have affected PREDICT29’s performance when tested on 

the GC6 cohort. It is also possible that the extent of infectiousness of the index case and 

amount of exposure of the HHCs to the index case in the GC6 and Brazil cohorts was 

different, resulting in GC6 HHCs being at a more advanced stage in the spectrum of LTBI 

progression from infection to subclinical TB to preclinical and clinical TB than the Brazil 

Cohort. Thus, differences in gene expression in the baseline samples in the two cohorts may 

explain the poor performance of PREDICT29 in GC6.

In the Brazil cohort, PREDICT29 showed a PPV of 20% while retaining a very high NPV. A 

meta-analysis conducted to assess the PPV and NPV of IGRAs and TST for predicting 

progression to active TB was 2.7% and 1.5%, respectively. In high-risk groups, PPV 

increased to 6.8% and PPD to 2.4% (32). The performance characteristics of PREDICT29, 

therefore, exceeds the WHO recommended optimum target product profile that is a PPV of 

16% (12). In determining the target PPV and NPV, the WHO expert committee takes into 

account the clinical and public health benefits (including cost-effectiveness) of introduction 

of a new diagnostic. Once the target is achieved or exceeded the WHO would consider 

recommending implementation.

PREDICT29 has the potential to provide a novel long sought clinical screening tool for risk 

stratification of recently infected individuals. Since subclinical TB can be a significant 

source of transmission in the community (33, 34), a test that can identify recently infected at 

risk of progression is significant. Since the sample size of progressors in the Brazil cohort 

was limited, we argue that this is a proof-of-concept study demonstrating that PREDICT29 

outperforms other biomarkers. Clearly further investigation and validation of PREDICT29 is 

warranted in larger and geographically diverse cohorts and countries with diverse TB 

incidence to ascertain its prognostic accuracy and generalizability as a biomarker signature 

of TB disease risk in recently infected individuals. These studies should also include head-

to-head comparisons of PREDICT29 with the published signatures to determine if the 

different signatures predict different stages in the spectrum from infection to clinical disease. 

Combining existing transcriptomic and metabolomic signatures was reported to significantly 

enhance prediction of risk of progression TB (11). Future studies should also consider this 

approach to develop a highly sensitive and globally applicable TB risk biomarker.
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METHODS

Household contact study design and subject inclusion criteria

Subject groups: A household contact (HHC) study of index TB cases and their household 

contacts was conducted as previously described (35, 36). Briefly, index cases were eligible 

for enrollment if they were consenting adult (≥ 18 years old) pulmonary TB cases living in a 

household with 3 or more contacts and had a 2+ or greater sputum acid fast bacilli (AFB) 

smear, positive culture for Mtb, and a history of cough ≥ 3 months. Enrolled household 

contacts (HHCs) included consenting individuals of all ages that had close contact with the 

index case for at least 3 months. Close contact was defined as meeting at least one of the 

following criteria: sleeping under the same roof ≥ 5 days/week, sharing meals ≥ 5 days/

week, watching TV nights or weekends, or other significant contact, such as visiting the 

household > 18 days/month.

At the time of enrollment, all HHCs underwent tuberculin skin testing and were screened for 

active TB based on symptoms. HHCs enrolled into the study were HIV-uninfected. Baseline 

blood samples were collected and peripheral blood mononuclear cells (PBMC) isolated and 

stored in liquid nitrogen. Additional subject data, including age, gender, socioeconomic 

information, and health history, as well as household environmental evaluation were also 

collected Tables S1 and S2. Follow up of the HHCs was by TB program and secondary TB 

cases was diagnosed through the National registry. However, the NDI program assured 

capture of all cases that were culture positive. Sputum from TB suspects in program was 

cultured at the NDI. The screening process included a household visit for symptom 

screening and TST/IGRA placement. HHCs with symptoms suggestive of TB (cough or 

systemic symptoms) and these with positive TST/IGRA were referred to the National TB 

Program for evaluation. According to the Brazilian TB Guidelines, TB suspects undergo 2–3 

sputum sampling for AFB smear and culture in solid media (Ogawa-Kudow) along with a 

chest radiograph. Microbiologically proven TB is defined as cases with suggestive 

symptoms and positive sputum AFB smear or culture. Clinical TB cases are defined as these 

with suggestive symptoms (cough for more than 2 weeks with systemic symptoms) and a 

chest radiograph with either an upper lobe infiltrate, presence of cavities or miliary pattern 

and response to TB treatment. TB is a reportable disease in Vitoria, all smear-culture 

positive TB cases are processed in the Núcleo de Doenças Infecciosas (NDI) microbiology 

laboratory, similarly all clinical TB cases are reported to the National notifiable disease 

database system.

Individuals that were diagnosed with TB disease during follow-up were classified as 

progressors. Individuals that did not develop TB during long-term follow-up (≥4 years) were 

considered non-progressors. Genotypic analysis by IS6110 RFLP was performed according 

to a standardized method (37) on the index and secondary case (progressors) Mtb isolates.

Sample collection and PBMC preparation

Eight weeks post-enrollment, baseline peripheral blood samples were collected from eligible 

subjects using BD Vacutainer tubes (BD 367874), and peripheral blood mononuclear cells 

(PBMC) were isolated by Ficoll gradient separation method using Histopaque-1077 (Sigma-
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Aldrich 10771). PBMC were cryopreserved using 90% heat-inactivated fetal bovine serum 

(GIBCO #12657–029, South America origin) and 10% DMSO (Sigma-Aldrich #D2650) for 

storage in liquid nitrogen and cryoshipment from Brazil to the United States.

Cryopreserved PBMC were flash thawed in a 37°C water bath and added drop-wise to 10 

mL of pre-warmed cell culture medium, consisting of RPMI 1640 (Corning #15040CM), 

10% defined fetal bovine serum (GE Healthcare Life Sciences #SH30070.03, U.S. Origin), 

1% penicillin-streptomycin (Corning #30002CI), 1% L-glutamine (Corning #25005CI), and 

1% HEPES buffer (Corning #25–060-CI). Cells were pelleted and rinsed in dPBS (Corning 

#21–031-CV) prior to immediate re-suspension in 1 mL of Ambion TRIzol Reagent 

(ThermoFisher Scientific #15596018) for total RNA extraction.

RNA extraction and sequencing

Total RNA was extracted from PBMC using TRIzol Reagent (ThermoFisher Scientific 

#15596018) as per standard protocols recommended by the manufacturer. Total RNA quality 

and quantity was assessed using the Agilent 2100 Bioanalyzer (Agilent, CA, USA) prior to 

downstream processing. Total RNA was enriched for mRNA via poly(A) tail enrichment via 

a single round of amplification using MessageAmp II aRNA Amplification Kit 

(ThermoFisher Scientific #AM1751). Amplified mRNA was re-assessed for quality on the 

Agilent 2100 Bioanalyzer prior to preparation of cDNA libraries. Strand-specific cDNA 

libraries for sequencing on the Illumina platform were prepared using a modified version of 

the low-input Illumina TruSeq RNA Sample Preparation protocol (Illumina Inc., CA, USA). 

Briefly, amplified mRNA was fragmented, purified, and ligated to adaptors at 3’ and 5’ ends 

prior to reverse transcription and 15 cycles of PCR amplification. Resultant cDNA libraries 

were purified using AMPure XP beads and subsequently quantified. Sequencing was 

performed using lllumina HiSeq 2500 at an approximate depth of 40 million 50 basepair 

(bp) single-end reads per sample.

RNA sequencing data processing and analysis

Quality control and data processing—Raw RNA sequencing data derived from our 

Brazilian cohort samples (GSE112104) as well as those obtained from the Zak et al. (2016) 

Africa dataset from GEO (GSE79362) (38), and the GC6 African dataset from GEO 

(GSE94438) (16) were processed using the same pipeline. Raw sequencing files were 

assessed for quality control using FastQC (39) and MultiQC (40). On average, the Brazil 

samples had a mean Phred score of ⩾ 30 for each base pair (bp) position, the GSE79362 

samples had a mean Phred score of ⩾ 25 for each bp position, and the GSE94438 samples 

had a mean Phred score of ⩾ 36.2 for each bp position suggesting high quality data with 

approximately 99.9% base call accuracy. Resultant short sequence reads were aligned to 

human genome hg19 using Rsubread (36). The average alignment rate was 71.9% for the 

Brazil dataset and 88.3% for the GSE79362 Africa dataset, and 64.5% for the GSE94438 

Africa dataset. Furthermore, the FASTQC software also estimates the average duplication 

rates in the RNA-seq data to be 30.1% for the Brazil dataset and 49.5% for the GSE79362 

Africa dataset, and 59.1% for the GSE94438 Africa dataset. We note that the average 

alignment percentages for the GC6 dataset GSE94438 was lower and the duplication 
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percentages were higher than those of the Brazil and GSE79362, datasets. In particular, 394 

of the 405 GC6 samples failed the FastQC duplication percentage threshold.

In addition, we note that the Brazil samples consisted of two batches of RNA-seq samples. 

The first batch (reported above) consisted of 16 progressors and 21 non-progressors 

produced high-quality RNA-sequencing data with a clear distinction between the 

progressors and non-progressors. The second batch consisted of 10 progressors and 28 non-

progressors. However, these samples were excluded from this analysis because their data 

quality were low. For example, the average alignment percentage was merely 49.2% and the 

duplication rate was 55.9%, across the entire batch, suggesting that these samples in this 

batch were low-quality and should be removed from the analysis.

Differential expression analysis—All of our analysis code is available at the following 

GitHub repository (https://github.com/compbiomed/TBP). DESeq2 (41) was used for 

differential expression analysis between progressors and non-progressors using raw read 

counts outputted by Rsubread. All default parameters were used with the model design 

incorporating both subjects’ gender and TB condition as variables as follows: “design = ~ 

condition + gender”. Differential expression was contrasted based on TB condition as 

progressors over non-progressors as follows: “contrast = c(“condition”, “progressors”, “non-

progressors”)”.

Signature identification by ensemble feature selection—All of our biomarker 

development code is available through the GitHub repository named above. Raw read count 

data for the African dataset were pre-processed by filtering out genes with low read counts 

(maximum read count < 5) and log2 normalization using the ‘rlog’ function in DESeq2 (41). 

In order to remove additional unwanted noise from the dataset, combat (42) was used. To 

initially identify potential genes (features) of interest (Round 1): genes were ranked by 

interquartile range, and the top 80% of genes were selected. From this list, genes having 

≥0.1 Spearman’s correlation between expression level and ‘days to progression’ in the 

African dataset were selected. Finally, genes with an adjusted p-value <0.1 in differential 

expression analysis between progressors and non-progressors were selected. Round 1 led to 

identification of 639 initial genes.

For feature selection (Round 2): using an ensemble feature selection procedure, feature 

weights of the previously selected genes for three machine learning modeling methods (lasso 

logistic regression (glmnet-lasso (43)), gradient boosting (XGBoost (44)), and random forest 

(ranger (45)) were determined by applying a 5-fold cross-validation training process and 

normalizing weights between 0 and 1, and averaging the weights obtained from the three 

models. This procedure was repeated 100 times, and for each time after obtaining the gene 

weights, one run of ridge logistic regression was performed using leave-one-out cross-

validation in order to obtain a best-normalized feature weights cut-off, and then all genes 

with weights higher than the cut-off were selected. This process led to identification of 100 

gene signatures. Genes were ranked by appearing times in the 100 signatures, and the top 89 

genes (average signature length) were selected based on the number of times they appeared 

across these 100 signatures. Thus, Round 2 led to selection of 89 genes.
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For feature dimension reduction (Round 3): to further reduce the number of genes 

comprising a signature, glmnet-lasso was used to perform 100 iterations of 5-fold cross-

validation lasso logistic regression in order to obtain 100 gene signatures (on average, 40 

genes). Based on the number of times each gene appeared in the 100 signatures, genes were 

ranked, and the top 40 genes were selected. Round 3 led to selection of 40 genes. Final 

filtering was performed by selecting only protein-coding genes based on protein coding 

information available in BioMart (46). This final filtering step led to a final signature of 29 

protein-coding genes (Tables S3–S5 and Figure 1).

Signature-based modeling and evaluation of predictive performance—Raw read 

counts from Rsubread for the both the Africa dataset and Brazil dataset were pre-processed 

by filtering out genes with low read counts (maximum read count < 5) and log2 

normalization using the ‘rlog’ function in DESeq2 on the combined dataset containing both 

Africa and Brazil data. ComBat and BatchQC (47, 48) were used to correct for batch 

differences between the Africa and Brazil datasets. This batch correction procedure was 

performed separately for the Africa + Brazil progressors vs. non-progressors data as well as 

the Africa + Brazil TB vs. non-progressors data. Batch-corrected data was used for 

quantitative evaluation of predictive performance for the gene signatures.

Using the caret package (49), classification models were derived using four different widely 

used modeling methods: “glmnet” (ridge logistic regression), “svmLinear” (support vector 

machine with linear kernel), “ranger” (random forest), and “xgblinear” (gradient boosting). 

Caret was used to train four classification models based on the batch-corrected Africa 

dataset gene expression of either the PREDICT29 or ACS-COR. During this training 

process, parameters were tuned by a 10-repeats 10-fold cross-validation. The final 

classification models were used to predict in the batch-corrected Brazil and GC6 dataset.

For a single iteration of predictive evaluation (done separately for progressors vs. non-

progressors in the Brazil dataset and GC6 datasets: bootstrapping was performed on the 

Brazil and GC6 dataset to obtain a new dataset containing the same total number of samples 

as the starting Brazil and GC6 datasets. The classification models trained on the Africa 

dataset were used to predict progressors and non-progressors in the bootstrapped Brazil and 

GC6 datasets. Performance was evaluated by generating receiver operating characteristic 

(ROC) curves and computing area-under-curve (AUC) values using the ROCR package in R 

(50). Additionally, optimal sensitivity and specificity values were obtained by using the 

probability threshold that yielded a maximized sum of sensitivity and specificity. This 

bootstrapping and evaluation process was repeated for 50 iterations for each Brazil and GC6 

datasets. Thus, mean AUC, sensitivity, and specificity values with corresponding 95% 

confidence intervals were calculated based on the 50 iterations of results. As mentioned 

above, all our code is available at (https://github.com/compbiomed/TBP).

A distinctive feature of our methodology was that we adopted a classic approach for 

ensemble feature selection that has been used successfully in cancer biomarker studies (51, 

52). We also used multiple biomarker/machine learning approaches in order to demonstrate 

the robustness of our signature gene set, regardless of the methods used to train the 

classification model. On the other hand, Zak et al. (38) employed a single, paired-SVM 
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method that involved measuring gene expression abundance at the level of splice junction 

counts by quantifying frequency of mRNA splicing events (14), which only uses 16.9% of 

the available RNA-seq data. Thus, different methodology for RNA-Seq data analysis 

enabled the derivation of PREDICT29 that had significantly improved performance over 

ACS-COR in predicting risk of progression/reactivation.

Data visualization—The heatmap was generated using the pheatmap package in R (53). 

ROC curves were plotted using the plotting functions in R.

Data and Materials Availability

We have created a secure token to allow review of record of the RNA-seq data - GSE112104 

if required by the reviewers. Below is the link.

To review GEO accession GSE112104:

Go to https://na01.safelinks.protection.outlook.com/?url=https%3A%2F

%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc

%3DGSE112104&data=02%7C01%7Csalgampa%40njms.rutgers.edu

%7Ce5094e4c867d44eb079e08d6557640bf%7Cb92d2b234d35447093ff69aca6632ffe

%7C1%7C0%7C636790363727707236&sdata=cJqgIreDqWeEq

%2BGXacb8K815xLewNO7LyfQOjmWgO3k%3D&reserved=0

Enter token uxstcqkcvhkpnwh into the box.

Study Approval

The study was approved by the Comite de Ética em Pesquisa do Hospital Universitário 

Cassiano Antonio de Morais, and the Institutional Review Boards of Rutgers Biomedical 

Health Sciences (formerly UMDNJ) and Boston University School of Medicine. Written 

informed consent and assent in Portuguese were obtained from all study participants as per 

the consent procedure approved by IRBs from all participating institutions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Analysis strategy used to identify a new gene signature and train predictive models 
using Africa dataset and quantitatively test predictive performance in Brazil datasets.
The Africa dataset (ACS-COR; GSE79362) derived from whole blood samples was used to 

identify a novel 29-gene signature via an ensemble feature selection pipeline: Round 1 led to 

identification of 639 genes of interest based on expression trends that correlated with 

progression. Round 2 led to selection of 89 genes based on evaluation using an ensemble 

model to determine which genes performed most robustly across different models. Round 3 

led to final selection of 29-protein coding genes after removing redundant features. 

Predictive model training was performed using batch-corrected ACS-COR (GSE79362) 

Africa dataset (Training and Cross-Validation Set), and predictive testing was performed 

using batch-corrected Brazil progressors vs. non-progressor dataset derived from PBMC 

samples (Validation Set 1) and GC6-GSE94438 derived from whole blood samples 

(Validation Set 2).
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Figure 2: Expression of the PREDICT29 signature in Brazilian progressors and non-progressors.
(A) Gene expression heatmap of the PREDICT29 signature. (B) Principal Component 

Analysis plot of the PREDICT29 signature. Progressors with co-prevalent cases (n=16), 

non-progressors (n=21).
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Figure 3: Receiver operating characteristic (ROC) curves for predicting clinical classification in 
Brazilian cohort using PREDICT29.
(A) PREDICT29 predictive performance of progressors (n=16) and non-progressors (n=21). 

(B) PREDICT29 predictive performance of progressors (n=11) and non-progressors (n=21). 

(C) PREDICT29 predictive performance of active TB patients (n=14) versus non-

progressors (n=21). Different colored lines represent the four modeling methods used: 

glmnet (ridge logistic regression), svm (support vector machine), ranger (random forest), 

and xgbLinear (gradient boosting).
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Table 1:

Predictive performance of the listed signatures in progressors (co-prevalent cases removed) versus non-

progressors in the Brazil Cohort. Receiver operating characteristic (ROC) area-under-curve (AUC), sensitivity, 

and specificity reported as mean (95% confidence interval) for 50 iterations.

Signature AUC Sensitivity Specificity

ACS-COR 0.670 (0.640, 0.700) 0.515 (0.460, 0.571) 0.774 (0.728, 0.820)

RISK4 0.461 (0.434, 0.488) 0.413 (0.335, 0.491) 0.665 (0.588, 0.743)

Sweeney3 0.590 (0.560, 0.620) 0.427 (0.353, 0.501) 0.746 (0.676, 0.816)

Jacobsen3 0.575 (0.546, 0.605) 0.553 (0.489, 0.616) 0.633 (0.570, 0.695)

Sambarey10 0.623 (0.595, 0.651) 0.632 (0.571, 0.693) 0.586 (0.525, 0.647)

Kaforou27 0.629 (0.602, 0.656) 0.664 (0.603, 0.725) 0.567 (0.513, 0.620)
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Table 2

Hypothetical performance of different gene signatures to predict progression to TB disease in the Brazil 

dataset

Gene signature PPV (95% CI) NPV (95% CI)

ACS-COR 0.106 (0.057–0.165) 0.968 (0.946–0.982)

RISK4 0.061 (0.035–0.114) 0.956 (0.933–0.976)

Sweeney 0.080 (0.042,0.136) 0.961 (0.939,0.976)

Jacobsen 0.072 (0.399,0.113) 0.964 (0.938,0.980)

Sambarey 0.073 (0.045,0.116) 0.968 (0.944,0.985)

Kaforou 0.073 (0.046,0.115) 0.970 (0.942,0.985)
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Table 3-

Predictive performance of PREDICT29 in Brazil (A) and GC6 (B) Cohorts.

(A) Brazil

Model used AUC Sensitivity Specificity

glmnet 0.929 (0.914, 0.944) 0.741 (0.703, 0.779) 0.867 (0.836, 0.897)

SVM 0.915 (0.900, 0.930) 0.756 (0.716, 0.796) 0.836 (0.807, 0.866)

ranger 0.867 (0.843, 0.891) 0.679 (0.641, 0.717) 0.830 (0.795, 0.866)

XGBoost 0.932 (0.919, 0.945) 0.794 (0.757, 0.830) 0.860 (0.828, 0.893)

AVERAGE 0.911 (0.894, 0.928) 0.742 (0.704, 0.780) 0.848 (0.816, 0.880)

(B) GC6

Model used AUC Sensitivity Specificity

glmnet 0.664 (0.655, 0.674) 0.497 (0.459, 0.535) 0.787 (0.750, 0.824)

SVM 0.685 (0.676, 0.695) 0.535 (0.516, 0.554) 0.780 (0.766, 0.795)

ranger 0.683 (0.673, 0.693) 0.649 (0.616, 0.683) 0.651 (0.623, 0.678)

XGBoost 0.688 (0.677, 0.699) 0.549 (0.531, 0.567) 0.803 (0.787, 0.819)

AVERAGE 0.680 (0.670, 0.690) 0.558 .531, 0.585) 0.755 (0.732, 0.779)
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Table 4-

Hypothetical performance of PREDICT29 in Brazil and GC6 cohorts

Cohort PPV (95% CI) NPV (95% CI)

Brazil 0.202 (0.131–0.294) 0.984 (0969–0993)

GC6 0.041 (0.023–0.074) 0.987 (0.976–0.994)
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