Table 3-.
Predictive performance of PREDICT29 in Brazil (A) and GC6 (B) Cohorts.
| (A) Brazil | |||
|---|---|---|---|
| Model used | AUC | Sensitivity | Specificity |
| glmnet | 0.929 (0.914, 0.944) | 0.741 (0.703, 0.779) | 0.867 (0.836, 0.897) |
| SVM | 0.915 (0.900, 0.930) | 0.756 (0.716, 0.796) | 0.836 (0.807, 0.866) |
| ranger | 0.867 (0.843, 0.891) | 0.679 (0.641, 0.717) | 0.830 (0.795, 0.866) |
| XGBoost | 0.932 (0.919, 0.945) | 0.794 (0.757, 0.830) | 0.860 (0.828, 0.893) |
| AVERAGE | 0.911 (0.894, 0.928) | 0.742 (0.704, 0.780) | 0.848 (0.816, 0.880) |
| (B) GC6 | |||
| Model used | AUC | Sensitivity | Specificity |
| glmnet | 0.664 (0.655, 0.674) | 0.497 (0.459, 0.535) | 0.787 (0.750, 0.824) |
| SVM | 0.685 (0.676, 0.695) | 0.535 (0.516, 0.554) | 0.780 (0.766, 0.795) |
| ranger | 0.683 (0.673, 0.693) | 0.649 (0.616, 0.683) | 0.651 (0.623, 0.678) |
| XGBoost | 0.688 (0.677, 0.699) | 0.549 (0.531, 0.567) | 0.803 (0.787, 0.819) |
| AVERAGE | 0.680 (0.670, 0.690) | 0.558 .531, 0.585) | 0.755 (0.732, 0.779) |