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Abstract
Serotonin (5-HT) contributes to the pathogenesis of experimental neonatal pul-
monary hypertension (PH) associated with bronchopulmonary dysplasia (BPD). 
Platelets are the primary source of circulating 5-HT and is released upon platelet 
activation. Platelet transfusions are associated with neonatal mortality and increased 
rates of BPD. As BPD is often complicated by PH, we tested the hypothesis that 
circulating platelets are activated and also increased in the lungs of neonatal mice 
with bleomycin-induced PH associated with BPD. Newborn wild-type mice received 
intraperitoneal bleomycin (3 units/kg) three times weekly for 3 weeks. Platelets from 
mice with experimental PH exhibited increased adhesion to collagen under flow (at 
300 s−1 and 1,500 s−1) and increased expression of the αIIbβ3 integrin and phosphati-
dylserine, markers of platelet activation. Platelet-derived factors 5-HT and platelet 
factor 4 were increased in plasma from mice with experimental PH. Pharmacologic 
blockade of the 5-HT 2A receptor (5-HT 2A R) prevents bleomycin-induced PH and 
pulmonary vascular remodeling. Here, platelets from mice with bleomycin-induced 
PH demonstrate increased 5-HT 2A R expression providing further evidence of both 
platelet activation and increased 5-HT signaling in this model. In addition, bleomycin 
treatment increased lung platelet accumulation. In summary, platelets are activated, 
granule factors are released, and are increased in numbers in the lungs of mice with 
experimental neonatal PH. These results suggest platelet activation and release of 
platelet-derived factors may increase vascular tone, promote aberrant angiogenesis, 
and contribute to the development of neonatal PH.
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1  |   INTRODUCTION

Pulmonary hypertension (PH) is a life-threatening condition 
that develops in 14%–25% of preterm infants with the lung 

disease of prematurity known as bronchopulmonary dys-
plasia (BPD) (Bhat, Salas, Foster, Carlo, & Ambalavanan, 
2012; Mourani et al., 2015). The pathophysiology of neona-
tal PH associated with BPD involves alterations in numerous 
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signaling pathways, including the serotonin (5-HT) pathway 
(Alvira, 2016; Bhatt et al., 2001; Delaney et al., 2018; Le 
Cras et al., 1999; Le Cras, Markham, Tuder, Voelkel, & 
Abman, 2002). We have previously shown that pharmaco-
logic inhibition of 5-HT signaling via the 5-HT 2A recep-
tor (5-HT 2A R) increases pulmonary blood flow in fetal 
sheep with PH and protects against the development of mu-
rine bleomycin-induced neonatal PH (Delaney et al., 2013, 
2018). The vast majority of peripheral 5-HT (98%) is syn-
thesized by enterochromaffin cells of the small intestine and 
taken up by platelets via the serotonin transporter (SERT) 
where it is stored within dense granules (Barter & Pearse, 
1953). This mechanism results in plasma levels of 5-HT in 
the low nanomolar range while in platelet dense granules, 
the concentration of 5-HT reaches the millimolar range 
(Holmsen & Weiss, 1979). Selective serotonin reuptake in-
hibitors, via blockade of SERT, increase the plasma 5-HT 
levels and have been associated with PH in newborns ex-
posed to these agents during the third trimester of fetal de-
velopment (Chambers et al., 2006).

Increased plasma 5-HT and activation of circulating 
platelets are reported in adults with PH (Damas et al., 2004; 
Diehl et al., 2011; Herve et al., 1990, 1995; Kazimierczyk 
& Kaminski, 2018; Kereveur et al., 2000; Nakonechnicov, 
Gabbasov, Chazova, Popov, & Belenkov, 1996). While no 
studies have evaluated whether platelets within the lungs of 
patients who died or received a lung transplant for PH were 
activated, pulmonary artery thromboses are increased in pa-
tients with PH and anti-platelet therapies targeting the plate-
let hemostatic response demonstrate clear benefit in patients 
with chronic thromboembolic PH (Chaouat, Weitzenblum, 
& Higenbottam, 1996; Moser & Bloor, 1993; Wagenvoort, 
1980). Antibody-induced thrombocytopenia and treatment 
with pharmacologic platelet inhibitors (aspirin and dipyrid-
amole) protect rats from monocrotaline and hypoxia-induced 
PH (Gao et al., 2017; Keith, Will, Huxtable, & Weir, 1987; 
Mlczoch, Tucker, Weir, Reeves, & Grover, 1978; Shen, Shen, 
Pu, & He, 2011). Additionally, mice with a platelet-specific 
deletion of toll-like receptor 4 are protected from hypoxia-in-
duced PH (Bauer et al., 2014). Whether activation of plate-
lets and increased circulating platelet-derived factors such 
as 5-HT are associated with experimental neonatal PH is 
unknown.

Platelets are small anucleated cells derived from mega-
karyocytes and are essential for hemostasis. Platelets are also 
integral mediators of other physiologic processes includ-
ing immune regulation, vascular inflammation, and wound 
healing (Golebiewska & Poole, 2015; Kubes, 2016; Opneja, 
Kapoor, & Stavrou, 2019; Projahn & Koenen, 2012; Rondina 
& Garraud, 2014; Smyth et al., 2009). Aberrant platelet activa-
tion mediates several pathologic conditions in adults including 
atherosclerosis, sepsis, asthma, and acute lung injury (Lievens 
& Hundelshausen, 2011; Looney et al., 2009; Middleton, 

Weyrich, & Zimmerman, 2016; Pitchford, Cleary, Arkless, 
& Amison, 2019). In neonates, elevated platelet counts after 
birth are an independent predictor of moderate and severe 
BPD, which is often associated with PH (Chen, Li, Qiu, Yang, 
& Walther, 2019). Furthermore, increased plasma platelet-de-
rived protein, platelet factor 4 (PF4), after birth is associated 
with higher rates of later pulmonary vascular disease in for-
mer preterm infants (Wagner et al., 2018). Interestingly, re-
cent published randomized clinical trials have raised concern 
about the effect of platelet transfusions on major neonatal out-
comes. Preterm neonates transfused with platelets to maintain 
a higher platelet threshold have higher rates of mortality, BPD, 
and intraventricular hemorrhage (Curley et al., 2019; Kumar, 
2019; Sola-Visner & Bercovitz, 2016).

The mechanism by which platelets may adversely affect 
these neonatal outcomes is unknown and raises suspicion 
for the role of platelet activation in the pathogenesis of other 
neonatal conditions including PH. Each platelet contains nu-
merous growth factors, vasoactive mediators, chemokines, 
cytokines, and angiogenic agents that have been implicated in 
the pathogenesis of PH (Balabanian et al., 2002; Christman 
et al., 1992; Clave, Maeda, Thomaz, Bydlowski, & Lopes, 
2019; Duncan et al., 2012; Flaumenhaft & Sharda, 2019; 
Hundelshausen, Petersen, & Brandt, 2007; Italiano et al., 
2008; Jurasz, Ng, Granton, Courtman, & Stewart, 2010; 
Kawut et al., 2005; Lopes et al., 2011; Tantawy, Adly, Ismail, 
Habeeb, & Farouk, 2013). These factors are stored within 
three types of granules: alpha (PF4 (CXCL4), CXCL7, 
CXCL5, PDGF, TGF-ß), dense (5-HT, Ca, ADP, ATP), and 
lysosomal (Flaumenhaft & Sharda, 2019). Resting platelets 
circulate at the margins of blood vessels and are maintained 
in their resting state primarily by the release of endotheli-
al-derived mediators such as nitric oxide (NO) and pros-
tacyclin (PGI2) (Andrews & Berndt, 2004; Aytekin et al., 
2012; Willems & Aken, 1979). With endothelial dysfunction 
and injury, NO and PGI2 release by the endothelium is de-
creased, platelets adhere to the subendothelial matrix, aggre-
gate and release their granule contents including 5-HT via 
exocytosis (Aytekin et al., 2012; Koupenova & Freedman, 
2019; Ranchoux et al., 2018). Platelet 5-HT activates pulmo-
nary vascular receptors increasing pulmonary vascular tone 
and smooth muscle cell proliferation. In addition, platelet 
5-HT can act in autocrine way by enhancing local platelet 
activation and aggregation through the platelet 5-HT 2A R 
(Mammadova-Bach, Mauler, Braun, & Duerschmied, 2018).

Whether platelets contribute to the pathogenesis of neo-
natal PH and are a source of increased circulating mediators 
known to cause PH is unknown. Our study utilized a murine 
bleomycin model of PH to study the hypothesis that platelets 
from mice with PH circulate in an activated state and that 
circulating and lung platelet-derived factors, as well as the 
number of platelets in the lungs of neonatal mice with PH, is 
significantly increased.
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2  |   METHODS

2.1  |  Mouse model

The University of Colorado Denver Institutional Animal 
Care and Use Committee (IACUC) approved all animal 
studies. Beginning on days 1–2 of life, C57BL/6 wild-type 
mice (Jackson Laboratory) were injected with intraperitoneal 
phosphate-buffered saline (PBS) or bleomycin (3  units/kg, 
dissolved in PBS) (Hospira) three times per week for 3 weeks 
(total nine injections, 10  μl). This murine injury model of 
PH and BPD produces similar major pathologic findings to 
infants with PH and BPD including; impaired alveolar de-
velopment (decreased radial alveolar counts, increased mean 
linear intercept and increased air space area), vascular re-
modeling (decreased vessel density, muscularization of small 
vessels, medial wall thickening), and PH (right ventricular 
hypertrophy and elevated right ventricular systolic pressure 
Delaney et al., 2018; Delaney et al., 2015; Sherlock et al., 
2018). Bleomycin doses were adjusted for body weight at 
each injection. Mice were euthanized for tissue harvesting at 
3 weeks of age.

2.2  |  Preparation of mouse blood, 
platelets, and plasma

Mice were anesthetized with isoflurane and blood was ob-
tained via cardiac puncture of the right ventricle after per-
forming a bilateral thoracotomy using a 21-gauge needle 
containing the appropriate anticoagulant (3.8% ACD or 
heparin). Complete blood counts were obtained within 
60  min after blood collection using the veterinarian hema-
tologic analyzer Heska HT5. Platelet-rich plasma (PRP) was 
obtained by centrifugation of whole blood at 100  ×  g for 
10 min. PRP was supplemented with PGI2 (1 µg/ml) and in-
cubated at room temperature for 3 min prior to centrifuga-
tion at 2,000 g × 2 min to obtain platelet poor plasma (PPP) 
or platelet pellets for further washing using PGI2-containing 
Tyrodes buffer at 2,000 g × 2 min.

2.3  |  Whole blood microfluidic flow assays

Clean glass slides were functionalized with (tridecafluoro-
1,1,2,2tetrahydrooctyl) trichlorosilane (FOTS) via vapor 
deposition (Mayer, Boer, Shinn, Clews, & Michalske, 
2000). Collagen-related peptides (CRP), integrin α2β1  li-
gand (GFOGER), and von Willebrand factor binding peptide 
(VWF-BP) were patterned on glass to simulate the major 
interactions between platelets and type I collagen. These 
peptides mimic the binding domains on type I collagen for 
platelets’ GPVI and integrin α2β1 receptors as well as the 

binding domain for the A3 domain of VWF. The peptides 
were mixed to a final concentration of 250 µg/ml each in 
10 mm acetic acid, incubated for 2 hr at room temperature in 
a microfluidic channel (l = 49 mm, w = 100 µm, h = 50 µm), 
and rinsed with 0.1% (w/v) Texas Red in 10 mM acetic acid 
to locate the strip by fluorescence. A microfluidic device 
consisting of 32 parallel channels (w = 300 µm, h = 50 µm) 
was placed perpendicular to the strip of peptides. Channels 
were blocked with 2% bovine serum albumin in PBS pH 
7.4 for 45 min. Mouse blood samples were incubated with 
DiOC6 in DMSO (final concentration 1  µM) at 37°C for 
10 min. Blood was then added to reservoirs on the device 
and perfused for 5  min at 300  s−1 and 1,500  s−1 using a 
syringe pump (Harvard PhD Ultra) in withdraw mode. Four 
technical replicates were performed on each sample and 
each condition was repeated twice on separate days. Platelet 
accumulation was measured by fluorescent images captured 
in each channel using motorized stages on an inverted mi-
croscope (Olympus IX83—40X objective—NA 0.6).

2.4  |  Assessment of platelet activation by 
flow cytometry

Assessment of platelet activation by flow cytometry was 
performed by diluting washed platelets (1 × 106 platelets/
ml) in Tyrodes buffer containing 1  mM CaCl2. Murine 
platelets were activated with thrombin (0.1  IU/ml) in the 
presence of anti-mouse CD41-BV421 antibody (Biolegend, 
Clone # MWReg30; 1:50), anti αIIbβ3 in active confor-
mation (Emfret; clone JON/A-PE; 1:25), P-selectin-APC 
(Biolegend, clone APM-1; 1:25), or bovine Lactadherin-
FITC (Haematologic Technologies; 10 µg/ml). The activa-
tion was quenched at 5 min using ice-cold 1% PFA Tyrodes 
buffer. Samples were run in the Gallios analyzer (Beckman 
Coulter). Studies were performed with n = 3–5 mice/day per 
group and repeated at least twice. Flow cytometry data were 
analyzed using Kaluza flow analysis software (Beckman 
Coulter) and Flowjo (Flowjo, LLC). Gating strategy as pre-
viously described (Davizon-Castillo et al., 2019).

2.5  |  Measurement of 5-HT and PF4 
by ELISA

Platelet-rich plasma and PPP samples were obtained as de-
scribed above. Studies were performed with n = 8–19 mice 
and ELISAs were run on two separate days. Total lung ho-
mogenates were prepared in lysis buffer containing protease 
and phosphatase inhibitors. PF4 and 5-HT levels were meas-
ured using mouse ELISA kits (Abcam, Cambridge, MA and 
GenWay Biotech, respectively) following the manufacturer's 
instructions.
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2.6  |  Platelet 2A and SERT 
protein expression

Platelets were pooled from several mice from different lit-
ters to obtain 20 million platelets per sample and Western 
blot was performed on a single day with an n of 4–5 as pre-
viously described (Nozik-Grayck et al., 2014). One sample 
from the bleomycin group was excluded from analysis as the 
result was 2 standard deviations outside of the mean. The 
following antibodies were used: 5HT 2A R (1:500, Santa 
Cruz), SERT (1:500, Abcam), and β-actin (1:10,000, Sigma-
Aldrich). The same membrane was cut in two and probed 
separately for the 5-HT 2A R and SERT. The full represent-
ative blots are shown in Figure 5. The 5-HT 2A R antibody 
has been previously validated (Lofdahl et al., 2016) and the 
SERT antibody has been validated using a transfected cell 
line by the manufacturer. The species-appropriate secondary 
IgG antibody was used (1:2,000, Millipore).

FACS: 15  µl of whole blood was incubated with 2  µl 
of CD41-BV421 (MWReg30, 1:50, Biolegend), 5-HT 2A 
R-FITC (1:50, Abcam), and SERT-PE (1:50, LS Bio) for 
15 min at room temperature in the dark. Whole blood was 
then fixed and lysed using 500  µl 1-step Fix/Lyse solu-
tion for 20 min. Cells were then analyzed on a Beckman 
Coulter Gallios flow cytometer. Platelets were defined 
by their overall low forward and side scatter along with 
positive staining for CD41-BV421. After which, 2A and 
SERT expression was determined using shifts in the Mean 
Fluorescence Intensity. Flow studies were performed on 2 
separate days for 5-HT 2A R and a single day for SERT 
with an n of 4–7.

2.7  |  Lung platelet quantification

Histology and Immunohistochemistry: Lungs were flushed 
with PBS then inflation-fixed at 25  cm H2O for 30  min 
with 4% paraformaldehyde for paraffin embedding. 
Immunohistochemistry was performed for CD41 using the rab-
bit polyclonal antibody (1:200, GTX113758, GeneTex) diluted 
in Dako Antibody Diluent (S0809 Agilent Dako). Sections 
were developed with Dako EnVision+ Dual Link System-HRP 
(DAB+) (K4065 Agilent Dako) and counterstained with Light 
Green (STLGC100 American MasterTech Scientific).

FACS: 100  µl of a 1:10 dilution of CD41-BV421 
(Biolegend, Clone # MWReg30) in PBS was retro-orbit-
ally injected into the mice 5 min before collecting lungs to 
label intravascular platelets. Studies were performed on a 
single day with an n of 5–7. Lungs were homogenized as 
previously described (PMID 30024304). Whole lung digests 
were then stained with CD41-APC (Clone # MWReg30, BD 
Biosciences) and CD42b-FITC (Clone # Xia.G5, Emfret) to 
label whole lung platelets. Interstitial platelets were defined 

for positive staining for CD41-APC and CD42b-FITC but 
negative staining for CD41-BV421 (CD41-APCHi, CD42b-
FITCHi, CD41-BV421Lo). Quantification was performed 
using 123eCount beads (Thermofisher) as previously de-
scribed (Good et al., 2018).

2.8  |  Antibody validation

All antibodies used in this study have undergone validation 
in the course of this study or have been previously validated. 
Representative full-length blots and details of antibody vali-
dation are presented in the methods.

2.9  |  Statistical analysis

Data were analyzed using Prism (GraphPad Software) by 
unpaired t test, or two-tailed t test. Data were expressed as 
mean ± SE and significance defined as p < .05.

3  |   RESULTS

3.1  |  Bleomycin induces greater platelet 
accumulation in whole blood microfluidic flow 
assays

We performed whole blood microfluidic flow assays compar-
ing platelets from mice treated with bleomycin to those treated 
with PBS. Blood was perfused over a patterned substrate of 
the collagen-related peptides CRP, GFOGER, and VWF-BP 
that mimic the functionality of type I collagen in terms of 
platelet adhesion, activation, and aggregation (Pugh et al., 
2010). Assays were run for 5 min at 300 s−1 and 1,500 s−1 to 
mimic venous and arterial shear rates. At both shear rates, we 
observed an increase in platelet buildup in platelets from mice 
treated with bleomycin (Figure 1a). By quantifying the maxi-
mum fluorescence intensity of DiOC6-labeled platelets, we 
saw an approximate twofold increase in platelet fluorescence 
in blood from mice with experimental PH and BPD (p < 1E-3 
for 1,500 s−1 and p < 1E-4 for 300 s−1) (Figure 1b,c).

3.2  |  Platelet surface markers of 
activation are increased in neonatal murine PH

The activation profile of washed platelets from mice with 
experimental PH showed a subtle but significant increase in 
baseline (circulating) activation of the αIIbβ3 integrin, the 
main fibrinogen receptor (Figure 2a). Platelets from PH mice 
and control mice exhibit similar active αIIbβ3 integrin on 
their surfaces after activation with thrombin (0.1 IU/ml) for 
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5 min (Figure 2b). In addition to exhibiting higher levels of 
active αIIbβ3 at baseline, platelets from PH mice have sig-
nificantly higher levels of phosphatidylserine (PS), whose 
primary role is to provide a phospholipid platform for the as-
sembly, activation, and amplification of the coagulation cas-
cade in vivo. This difference is evident at baseline and upon 
activation with thrombin (Figure 2c,d). Despite these signifi-
cant differences in phosphatidylserine and active αIIbβ3 inte-
grin, we did not observe differences in P-selectin at baseline 
or upon activation with thrombin (0.1 IU/ml) (Figure 2e,f). 
To determine whether bleomycin itself activates platelets, 
we incubated washed platelets with comparable plasma con-
centrations of bleomycin and found that bleomycin does not 

lead to platelet activation of the αIIbβ3 integrin or increased 
exposure of PS or P-selectin (Figure 2g).

3.3  |  Plasma levels of platelet-specific 
alpha and dense granule factors are increased 
in experimental neonatal PH

To further assess whether experimental PH induces platelet 
activation, we measured PPP levels of the platelet-specific 
alpha granule protein PF4 and the dense granule factor 5-HT. 
In our murine model of bleomycin-induced PH, platelet-poor 
plasma levels of PF4 and 5-HT are significantly elevated 

F I G U R E  1   Platelets from mice 
with bleomycin-induced PH demonstrate 
increased buildup during in vitro flow 
assays. Assays were run for 5 min at 300 s−1 
and 1,500 s−1 to mimic venous and arterial 
shear rates. (a) Representative images of 
DiOC6-labeled mouse platelets (scale 
bar = 50 µm) (b) Representative time series 
curves of platelet DiOC6 fluorescence. 
Green and grey regions depict assay shear 
rates of 300 s−1 and 1,500 s−1, respectively. 
Filled x's represent bleomycin-treated mice, 
while open circles represent PBS treated 
mice. (c) Summary statistics of maximum 
DiOC6 FI for each assay. A single dot 
represents one assay, middle line shows 
the mean, and error bars display SD. At 
a given shear rate, blood from mice with 
experimental PH show an approximate 
twofold increase in platelet fluorescence. 
*** and **** denotes p < 10−3 and 
p < 10−4, respectively. Four technical 
replicates were performed on each sample 
and each condition was repeated twice on 
separate days, n = 4, PBS (1M, 1F), Bleo 
(1M, 1F), analysis by two-tailed t test. PBS, 
phosphate-buffered saline; PH, pulmonary 
hypertension
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suggesting that baseline platelet activation of the αIIbβ3 inte-
grin and PS exposure are accompanied with alpha and dense 
granule release (Figure 3a,b).

3.4  |  Platelet hematologic indices from mice 
with experimental PH are similar to controls

To determine whether bleomycin-induced PH is associated with 
significant changes in bone marrow output, we obtained com-
plete blood counts from control and PH mice. Total numbers of 
leukocytes, hemoglobin, platelets, and the mean platelet volume 

were not different between groups and suggests that bleomycin-
induced PH has no significant effect on bone marrow output of 
neonatal mice and that the increased platelet adhesion observed 
in the microfluidics assay is not due to the presence of higher 
platelet numbers in mice with PH (Figure 4a–d).

3.5  |  Platelet 5-HT 2A receptor expression is 
increased in murine PH and BPD

The SERT is responsible for platelet 5-HT uptake and 
the 5-HT 2A R enhances local platelet aggregation and 

F I G U R E  2   Platelets from mice are activated at baseline. (a) Platelets from mice with bleomycin-induced PH have higher levels of active 
αIIbβ3 (main fibrinogen receptor) at baseline (unstimulated), *p < .05 by unpaired t test, n = 8 PBS (sex, not recorded), n = 8 Bleo (sex, not 
recorded). (b) Platelet activation after thrombin stimulation (0.1 IU/ml) for 5 min is similar between PBS and bleomycin. (c) Platelets from 
bleomycin-induced PH exhibit significantly higher procoagulant potential by exposing higher amounts of phosphatidylserine on their surface at 
(c) baseline and after activation with (d) thrombin, **p < .0001 by unpaired t test, n = 7–8. Platelet degranulation as determined by measuring 
surface P-selectin at (e) baseline and (f) after activation with thrombin are similar between groups, groups n = 8 PBS, n = 8 Bleo. (g) Incubation of 
pooled washed platelets from neonatal mice with comparable plasma concentrations of bleomycin does not lead to platelet activation of the αIIbβ3 
integrin, PS or P-selectin, n = 6 mice/group, pooled whole blood from 2 mice for each data point (4M, 2F). PBS, phosphate-buffered saline; PH, 
pulmonary hypertension

a b

c d

e f

g
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activation. After 3  weeks of treatment with either PBS or 
bleomycin, we analyzed protein expression of washed plate-
lets by Western blot and platelets within whole blood by 
FACS to determine whether changes in 5-HT 2A R and/or 
SERT were associated with the development of bleomycin-
induced neonatal PH. We found increased expression of the 
platelet 5-HT 2A R protein by both Western blot of isolated 
platelets and FACs of circulating platelets (Figure 5a,b). 
Bleomycin-induced PH did not change platelet SERT ex-
pression (Figure 5c,d).

3.6  |  Platelets are increased in the lungs of 
mice with experimental neonatal PH

Lung sections of bleomycin-treated mice showed increased 
amounts of platelets by immunohistochemistry (Figure 
6a–d). Therefore, we quantitatively analyzed the absolute 
numbers of intravascular and interstitial platelets present 
in homogenized lung tissues using reference counting 
beads. Intravascular platelets were labeled with anti-CD41-
BV421. We considered CD41-APC/CD42b-FITC double-
positive and CD41-BV421-negative platelets as interstitial 
platelets. We report that the number of interstitial platelets 
was significantly higher in lungs from bleomycin-induced 
PH (Figure 6e). These results are in accordance with the 
elevated lung levels of the platelet-specific protein, PF4 
(Figure 6f).

F I G U R E  3   Plasma levels of platelet-specific alpha (PF4) and 
dense granule (5-HT) proteins are increased in experimental neonatal PH. 
(a) Platelet-poor plasma PF4 levels from neonatal mice following IP PBS 
or bleomycin treatment, *p < .05 by unpaired t test, n = 8 PBS (6M,2F), 
n = 16 Bleo (9M, 7F). (b) Platelet-poor plasma 5-HT levels from 
neonatal mice following IP PBS or bleomycin treatment, **p < .0001 by 
unpaired t test, n = 8–19 (sex, not recorded). PBS, phosphate-buffered 
saline; PF4, platelet factor 4; PH, pulmonary hypertension
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F I G U R E  5   Western blot and FACS 
analysis for platelet 5-HT 2A R and platelet 
SERT in mice treated with IP PBS or 
bleomycin. Bleomycin treatment increases 
platelet protein expression of the 5-HT 
2A R. (a) 5-HT 2A R expression relative 
to β-actin, **p < .005, by unpaired t test, 
n = 4–5 (pooled platelets from several mice, 
varied sex). One sample from the bleomycin 
group was excluded from analysis as the 
result was 2 standard deviations outside of 
the mean. (b) 5-HT 2A receptor positive 
platelets in whole blood, **p < .005, by 
unpaired t test, n = 7 PBS (7M, 4F), n = 7 
Bleo (4M, 7F). (c) SERT protein expression 
by relative to β-actin, ns, n = 4–5 (pooled 
platelets from several mice, varied sex). 
One sample from the bleomycin group was 
excluded from analysis as the result was 2 
standard deviations outside of the mean. (d) 
SERT-positive platelets in whole blood, ns, 
n = 7 PBS (5M, 2F), n = 4 Bleo (2M, 2F). 
(e) Representative full-length Western blots. 
PBS, phosphate-buffered saline; SERT, 
serotonin transporter
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4  |   DISCUSSION

We previously reported that pharmacologic blockade of 
the 5-HT 2A R prevents bleomycin-induced PH and pul-
monary vascular remodeling (Delaney et al., 2018). As 
platelets contain 99% of circulating 5-HT, which is re-
leased upon activation, we tested the hypothesis that cir-
culating platelets are activated and increased in the lungs 
of neonatal mice with bleomycin-induced PH. Through 
an extensive characterization of the functional status of 
platelets from bleomycin-treated mice, we demonstrate 
that mice with bleomycin-induced PH exhibit qualitative 
but not quantitative changes in circulating platelets. We 
show that circulating platelets from mice with PH exhibit 
a subtle but significant increase in platelet activation at 
baseline as evidenced by the higher percentage of circulat-
ing platelets with active αIIbβ3, the main platelet integrin 
involved in platelet aggregation. Moreover, we also show 
that these differences are functionally relevant as platelets 
from PH mice demonstrate greater accumulation than con-
trol littermates using our microfluidic assays. Similarly, 
significantly elevated plasma levels of the platelet-specific 
proteins PF4 and 5-HT further demonstrate higher base-
line platelet activation in mice with PH. We also found that 
the absolute number of platelets within the lungs of mice 

with PH is significantly higher, altogether suggesting that 
platelets could directly be promoting PH. Ongoing work in 
our group focuses on the elucidation of the specific aspects 
of platelet function that directly favor the development of 
PH. Whether platelet adhesion to endothelial vasculature, 
platelet degranulation, transmigration, or platelet aggrega-
tion are required to promote PH remain to be studied.

Our data show that platelets from mice with PH appear 
to circulate in a “primed” state as evidenced by significantly 
higher levels of active αIIbβ3 and PS at baseline. Active 
αIIbβ3 has a high affinity for fibrinogen and fibrin and el-
evated baseline levels of active αIIbβ3 may favor platelet 
aggregation and adhesion to endothelial surfaces (Huang 
et al., 2019). Although the difference in baseline activation of 
the αIIbβ3 integrin is significant but subtle, higher baseline 
levels of active αIIbβ3 integrin detected by flow cytometry 
directly and functionally correlate with increased platelet 
accumulation on collagen. Upon platelet activation, platelets 
also expose PS. Exposed PS provides the phospholipid sur-
face required for the assembly and amplification of the coag-
ulation system. Therefore, the elevated amounts of PS on the 
surface of platelets from mice with PH in addition to the ele-
vated levels of active αIIbβ3 are not only suggestive of higher 
platelet activation but also of increased procoagulant poten-
tial of platelets from mice with PH. Interestingly, recent work 

F I G U R E  6   Platelets are increased 
in the lungs of mice with bleomycin-
induced PH. (a–d) Representative CD41 
staining in 3-week-old mice treated 
with IP (a) PBS-20 × magnification, 
(b) PBS-40× magnification, (c) 
bleomycin-20× magnification, or (d) 
bleomycin-40× magnification, black 
filled scale bars = 100μm, grey filled 
scale bars = 50μm. (e) Interstitial platelets 
in neonatal mice following IP PBS or 
bleomycin treatment, **p < .005 by 
unpaired t test, n = 5 PBS (4M,1F), n = 7 
Bleo (5M, 2F). (f) PF4 levels in whole lung 
homogenates from neonatal mice following 
IP PBS or bleomycin treatment, *p < .05 by 
unpaired t test, n = 8 PBS (6M, 2F), n = 8 
Bleo (3M, 5F). PBS, phosphate-buffered 
saline; PF4, platelet factor 4; PH, pulmonary 
hypertension
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has shown that platelet PS can mediate the formation of neu-
trophil macroaggregates that promote pulmonary thrombosis 
in a model of murine intestinal ischemia/reperfusion (Yuan 
et al., 2017). Altogether, our results demonstrate that circu-
lating platelets from mice with experimental PH have higher 
levels of active αIIbβ3 integrins that favor aggregation with 
other platelets and potentially to endothelial surfaces through 
immobilized fibrinogen or von Willebrand Factor (Kauskot 
& Hoylaerts, 2012). Ongoing work in our laboratory is aimed 
at investigating the mechanisms for increased platelet αIIbβ3 
and PS observed in mice with PH and the functional signifi-
cance as it relates to the pathogenesis of PH.

In addition to the functional platelet changes, we observed 
significantly higher levels of the platelet-specific molecules 
PF4 and 5-HT in the plasma of bleomycin-treated mice sug-
gesting ongoing alpha and dense granule release. As platelet 
activation is usually associated with release of all alpha gran-
ule contents, we were surprised by our results that despite 
observing higher plasma levels of the alpha granule, PF4, 
there is no difference in platelet expression of alpha gran-
ule, P-selectin, between control and bleomycin-induced PH 
mice. It is conceivable that this is due to previously described 
age-related low expression and storage of P-selectin in alpha 
granules of platelets from human neonates, murine fetal and 
neonatal platelets or due to neonatal agonist-specific degran-
ulation hypo-responsiveness (Baker-Groberg, Lattimore, 
Recht, McCarty, & Haley, 2016; Stolla et al., 2019).

Platelet-derived PF4 inhibits endothelial cell proliferation 
in vitro and increased levels after birth are associated with 
higher rates of later pulmonary vascular disease in former 
preterm infants (Gengrinovitch, 1995; Maione., 1990; Wagner 
et al., 2018). 5-HT release by activated platelets promotes pul-
monary vasoconstriction, mitogenesis, and further platelet ac-
tivation (Delaney, Gien, Grover, Roe, & Abman, 2011; Dunn, 
Lorch, & Sinha, 1989; Fanburg & Lee, 1997; Mammadova-
Bach et al., 2018; Walther et al., 2003; Yabanoglu et al., 2009). 
While higher levels of plasma PF4 and 5-HT could reflect dif-
ferences in clearance between control and bleomycin-induced 
mice, it is more likely that these are the result of in vivo platelet 
degranulation as we observed a significantly higher pool of cir-
culating activated platelets in bleomycin-treated mice and no 
difference in SERT expression in platelets isolated from bleo-
mycin-treated mice. 5-HT further enhances local platelet ag-
gregation and activation via the platelet 5-HT 2A R (McBride, 
1990; Meuleman et al., 1983). We have previously reported 
that pharmacologic blockade of the 5-HT 2A R with ketanse-
rin prevents bleomycin-induced PH and pulmonary vascular 
remodeling. Interestingly, we now show that platelets from 
mice treated with bleomycin demonstrate increased 5-HT 2A 
R expression providing further evidence for platelet activation 
and serotonin signaling in this model and leads to the possi-
bility that one mechanism for protection observed in ketanse-
rin-treated mice is blockade of platelet serotonin signaling.

A key finding of our study is the increased accumula-
tion of platelets in the lungs of mice with experimental PH. 
This observation strongly suggests that platelets from bleo-
mycin-induced PH either adhere to the pulmonary vascula-
ture or transmigrate into the perivascular space where they 
could directly deliver their granule contents. Increased lung 
intravascular and extravascular platelets have been reported 
in experimental models of acute lung injury, allergic lung 
inflammation, and sepsis (Cleary et al., 2019; Ortiz-Munoz 
et al., 2014; Pitchford et al., 2008; Yuan et al., 2017). To our 
knowledge, this is the first report of increased extravascular 
lung platelets in a model of PH.

Our knowledge about platelet and megakaryocyte biology 
in neonates is relatively scarce. Findings from recent clini-
cal studies suggest that elevated platelet counts at baseline in 
preterm infants and platelet transfusions may have deleterious 
effects on neonatal outcomes. High platelet counts after birth 
are an independent predictor of moderate and severe BPD 
and increased PF4 after birth is associated with increased 
rates of later pulmonary vascular disease in former preterm 
infants (Chen et al., 2019; Wagner et al., 2018). Preterm ne-
onates randomized to receive platelet transfusions to main-
tain a higher baseline platelet count (50K) showed increased 
mortality when compared to preterm neonates with a lower 
transfusion threshold (25K) (Curley et al., 2019). Moreover, 
preterm neonates in the high transfusion baseline group had 
an increased incidence of BPD. Whether these complications 
are directly caused by platelets is difficult to establish; how-
ever, they illustrate the need to expand our knowledge on neo-
natal platelet biology and the interplay between platelets and 
neonatal lung disease.

There are a few potential limitations that warrant further 
investigation. While we measured plasma PF4 and 5-HT as 
indicators of platelet activation, we recognize that platelets 
store hundreds of factors, including chemokines, growth 
factors, and vasoactive substances. Many of these factors 
have been implicated in the pathogenesis of neonatal PH 
promoting aberrant angiogenesis, increasing vascular tone, 
and inducing inflammation. However, it is conceivable to 
think that platelets could have a protective role in PH and 
BPD and future studies will focus on determining whether 
platelet activation is protective or promotes the develop-
ment of neonatal PH. Another limitation of this study was 
the inability to definitely determine the source of increased 
lung platelets and the mechanisms leading to increased 
platelets within the lung including whether exposed colla-
gen, fibrinogen, or VWF mediate increased platelet adher-
ence. Our data demonstrate significantly higher numbers of 
platelets in the lungs of mice with PH; however, the num-
ber of circulating platelets remained comparable between 
control and PH mice. Given that the lung is a known site 
for extramedullary platelet biogenesis, it is possible that the 
increased number of lung platelets in mice with PH was due 
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to higher lung megakaryocyte platelet production and not 
necessarily due to the recruitment of circulating platelets 
(Kaufman, Airo, Pollack, & Crosby, 1965; Lefrancais et al., 
2017; Zucker-Franklin, 2000). Future experiments utilizing 
transfusion of radiolabeled platelets will help address this 
question. Lastly, while our data demonstrate a clear associa-
tion between platelet activation and neonatal PH, it remains 
unanswered whether platelets themselves or a secreted fac-
tor influence the phenotype of pulmonary vascular cells di-
rectly contributing to the pathogenesis of PH. Future studies 
by our laboratory will address these remaining questions.

In summary, we report that platelets are activated in 
neonatal murine PH in the setting of BPD, demonstrated 
by increased accumulation to collagen under physiologic 
flow conditions, increased platelet markers of activation, 
and increased plasma levels of alpha and dense granule 
stored factors. Our observations are in concordance with 
previously reported work in adults with PH where platelets 
exhibit increased in vivo activation and platelet hyperreac-
tivity ex vivo, supporting our hypothesis that platelets are 
key players in the pathogenesis of PH (Maeda, Bydlowski, 
& Lopes, 2005; Nakonechnicov et al., 1996; Yaoita et al., 
2014). In addition, we show that platelets from mice with 
experimental PH have increased expression of the 5-HT 
2A R which could further enhance local platelet aggrega-
tion and activation. Finally, we demonstrate that platelets 
are increased in the lung interstitium of mice with PH. We 
speculate that pharmacologic strategies targeting platelet 
activation in PH in the setting of BPD may provide a novel 
therapeutic strategy.

ORCID
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