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Proton therapy (PT) has been administered for many
years to a number of cancers, including brain tumours.
Due to their remarkable physical properties, delivering
their radiation to a very precise brain volume with no
exit dose, protons are particularly appropriate for these
tumours. The decrease of the brain integral dose may
translate with a diminution of neuro-cognitive toxicity
and increase of quality of life, particularly so in children.
The brain tumour patient’s access to PT will be substan-
tially increased in the future, with many new facilities
being planned or currently constructed in Europe, Asia
and the United States. Although approximately 150’000
patients have been treated with PT, no level | evidence
has been demonstrated for this treatment. As such, it
is this necessary to generate high-quality data and
some new prospective trials will include protons or will
be activated to compare photons to protons in a rand-

INTRODUCTION

Radiotherapy (RT) is an important treatment modality in
the management of Central Nervous System (CNS) tumours
for the optimization of tumour local control. Unlike other
non-CNS malignancies, brain tumours have rarely a
propensity for distant non-CNS metastases and consequen-
tially local control is key for the cure of these challenging
malignancies. Recent advances in radiation techniques
include the use of intensity- (IMRT) or volumetric- modu-
lated radiotherapy/arc therapy (VMAT), stereotactic radio-
surgery/fractionated RT (SRS/SFRT) and particle therapy
(mostly protons and carbon ions). As a result of optimal
dose conformation provided by the latter modality, parti-
cles can be used in a dose-escalation paradigm and/or
for dose sparing of critical structures/organs at risks. The
former could be applied to radio-resistant CNS tumours,'
such as skull base chordoma and chondrosarcoma, or

omized design. PT comes however with an additional
cost factor that may contribute to the ever-growing
health’s expenditure allocated to cancer management.
These additional costs and financial toxicity will have to
be analysed in the light of a more conformal radiation
delivery, non-target brain irradiation and lack of poten-
tial for dose escalation when compared to photons. The
latter is due to the radiosensitivity of organs at risk in
vicinity of the brain tumour, that photons cannot spare
optimally. Consequentially, radiation-induced toxicities
and tumour recurrences, which are cost-intensive, may
decrease with PT resulting in an optimized photon/
proton financial ratio in the end.

Advances in knowledge: This review details the indica-
tion of brain tumors for proton therapy and give a list of
the open prospective trials for these challenging tumors.

non-benign meningiomas” and the latter in patients with
a favorable prognosis, such as those with benign/low-grade
brain tumours. For children, RT has been associated with a
number of acute and late adverse events detailed later in this
paper. Protons may decrease the rate of acute-> and, more
importantly, late toxicity* usually seen with photon therapy
and would thus increase substantially the therapeutic ratio
of RT. The present paper details the most recent data for
proton therapy delivered to patients with CNS tumours.
Noteworthy, no data regarding carbon ions for CNS malig-
nancies will be summarized in this manuscript and we have
included skull base tumors in this brain tumor review, as it
is a major indication for protons. First, this paper will detail
the rational of using protons for treating brain tumors.
Second, an overview of the existing trials will be described
and an attempt to discuss the limitations of such studies
will be made. A summary of existing data for CNS tumours
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in adults and children alike will be provided and each section
will finish with statements pertaining to the informed analysis.
Finally, the additional costs and potential financial toxicity for
patients of protons will be discussed at the end of this paper.

Proton beam therapy for brain tumours

This section elaborates on the physical rationale and dosimetric
evidence for PT. Dose distribution in PT is characterized by a
well-defined maximum range, which is a function of the initial
energy, and a sharply defined Bragg Peak, where the bulk of
the dose is deposited.” Beyond the Bragg Peak, the dose drops
to zero within a few millimetres. Compared to photons, this
dose deposition results in a superior dose conformality and
lower total integral dose delivered to surrounding tissue. This
remarkable dose-profile is even more pronounced for Intensity
Modulated PT (IMPT) available for Pencil Beam Scanning (PBS)
systems, which can achieve particularly steep dose gradients.®
CNS tumours are inevitable in vicinity to many critical organs
at risk (OARs),” making them an especially relevant indication
for PT. This rationale is supported by clear evidence for a dose-
response relationship for many radiation-induced toxicities seen
after RT for brain tumours. As an example, dose to the hypo-
thalamus and pituitary correlates with the degree of endocrine
dysfunction,® and dose to the hippocampus correlates with
memory outcomes.”

The dosimetric advantage of PT compared to photons is undis-
puted, but the magnitude of clinical benefit is unknown. This
benefit may substantially differ from individual cases to cases
and is to a large degree dependent on tumor location. Adeberg et
al'® evaluated the relative benefit of protons for five typical brain
tumor locations and suggested that in general parietal tumours
seem to benefit the most in terms of brain sparing. An exemplary
PT dose distribution for a parieto-frontal located brain tumor
is shown in Figure la. Even for very complex target volumes
(Figure 2) involving large parts of the brain, such in whole-
ventricular RT for intracranial germ cell tumours, a dosimetric
comparison study showed an approximately one-third reduction
in integral dose to the brain, and also a better sparing of the circle
of Willis with PT."! This may be clinically significant, as radiation
dose delivered to the circle of Willis was recently proposed as the
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best predictor of stroke in childhood brain cancer survivors.'?
Moreover the dosimetric advantage is particularly striking for
large target volumes, such in the case of craniospinal irradia-
tion (CSI), where PT is able to completely spare OARs anterior
to the vertebrae, as it is demonstrated in Figure 1b. Compared
with modern photon techniques, PT obtained the lowest mean
doses for OARs in CSI, with dose reductions of >10.0 Gy for
parotid glands, thyroid and pancreas.”> Figure 2 details the
decrease of dose delivered with PT as opposed to IMRT to the
hippocampus and cochleas’ for a supra- and infratentorial tumor,
respectively. Tamura et al** estimated by in silico modelling that
the use of PT instead of photons may result in a decrease in the
lifetime attributable risk of radiation-induced secondary cancer
after CSI. Although these results of in silico modelling have
been confirmed by a previous study,'® caution should be taken
not to over interpret these data stemming from a modelling
computational paradigm, which do not represent ‘real-life’ data.
Preliminary evidence suggests that this PT dosimetric gain also
translates into a clinical benefit such as, for example, reduced
neuro-cognitive disability'® and improved quality of life.!”

The superior dose conformality of PT (Figure 2) has also
however its dose-delivery hazards, in terms of increased sensi-
tivity to range and setup uncertainties, particularly so for IMPT.
Robust planning'® and robust optimization'® can help to miti-
gate these dosimetric uncertainties. Another concern is the
clinically use of a constant value of 1.1 for the relative biological
effectiveness (RBE) for PT planning, whereas it is well known
that RBE increases with increasing linear energy transfer (LET),
thus presenting the highest value in the distal fall-off.? Other
factors, not limited but including total dose, fractional dose,
biological endpoint, oxygenation and tissue or cell type (char-
acterized normally by a/B) have an influence on RBE.***' LET/
RBE evaluation and LET optimization of PT plans can avoid high
LET areas, and therefore unintended increase in biological dose,
in critical structures such as the brainstem?* or periventricular
area® where the brain stem-cells are located. There is a concern
within the community that high-LET values at the distal range
of the beam may cause toxicities be it radiological®** or clinical.*”
For example, adjusting treatment field angles for posterior fossa
tumours can substantially reduce LET values in this OAR.*

Figure 1. Sagittal, axial and coronal views of proton dose distribution for a parieto-frontal tumor. PTV is shown in yellow. Figure 1b.
Sagittal view of proton dose distribution for craniospinal irradiation. PTV is shown in yellow.Noteworthy, the color wash dose level
display all dose levels. As such, absence of colors equals to absence of dose.
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Figure 2. Supratentorial meningioma case. Doses as % of the prescribed dose and minimum dose level set at 20%. (a) IMRT dose
distribution; (b) PBS dose distribution; (c) DVHs for homolateral (red) and controlateral (green) hippocampus. VOIs represented
are PTV, brainstem, optic nerves and contralateral hippocampus. Infratentorial ependymoma case. Doses as absolute (GyRBE),
minimum dose level set at 15GyRBE. (e) IMRT dose distribution; (f) PBS dose distribution; (g) DVHs for both cochleas (red and

green). VOIs represented are PTV and both cochleas.

Future developments in these and other areas are likely to only
enhance the benefits of PT even further.

Establishing the role of proton therapy for the
management of brain tumours: clinical trials

In the era of evidence-base medicine (EBM), high quality of
data® is needed to justify the additional cost factor associated
with proton therapy for brain and non-CNS tumours alike.
Although some authors have challenged the hierarchal evidence
paradigm in EBM,® it remains that randomised controlled trials
(RCTs), representing the so-called level I evidence, are of para-
mount importance in the assessment of the ‘value’ of any treat-
ment modality in cancer care. The ethical issues of such RCTs for
proton therapy have been long debated and are not the focus of
this section.?? Clinical validation of proton therapy can also be
achieved with a non-RCT paradigm: specifically, a model-based
driven validation approach, with an enrichment of the experi-
mental arm.” It is foreseeable that a combination of these trial
strategies will best generate data that will create scientifically
sound evidence on how best to select patients for protons and
increase the therapeutic balance of a number of malignancies,
including CNS tumours for value-based cancer management.
Caution however should be stressed that, depending on the
selected study endpoint, such as late toxicity including but not
limited to radiation-induced tumours, the event can be observed
after a long interval after PT. As such, the follow-up time of
studies should be consequentially sufficient, which creates a
significant challenges for prospective trials, one of which is the
trial funding that should be appropriate to fund an extended
period of follow-up.

A number of RCTs and prospective Phase II trials have been
proposed and are currently accruing patients worldwide. Exclu-
sion criteria of the majority of trials are previous radiation to the
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head and neck or brain and very extensive lesions, which would
have been previously defined as gliomatosis cerebri. Several
databases were queried (clinicaltrials.gov, CTSU/NRG, EORTGC,
PTCOG) and 43 prospective brain tumour trials activated
between 1996 and 2019 were identified. Trials that assessed the
value of targeted agent/immune checkpoint inhibitors or hypoxic
target agents with RT including protons were excluded. Median
accrual target of these trials was 80 patients, ranging from 12 to
625. Only a minority (n = 3; 7%) of trials had no age limit. Most
trials were for adults (n = 23; 53%) or pediatric (n = 12; 30%)
patients. Three (7%) studies were for children and adolescent
and young adults. Interestingly, a substantial number of studies
(n=9; 21%) were for all brain tumours. The most common brain
tumours for these trials were chordoma or chondrosarcoma (n
= 7; 16%), meningioma (n = 6; 14%) and low-grade glioma (n
= 6; 14%). Most of the studies were however not accruing (n =
17; 39%) or were in the process of activation (n = 2; 5%). Five
(12%) studies were closed and 3 (7%) had an unknown status.
The 16 (37%) remaining studies accruing patients in Europe and
in the United States are detailed in Table 1. One of the low-grade
glioma trials has been recently closed, achieving target-accrual.
Noteworthy, WHO grade II glioma patients could be included
in this trial from Boston, providing that progressive/recurrent
disease was observed, neurological symptoms were uncontrolled
and/or patient was aged >40 years or presented MIB-1 of >3%.
Mean age of this cohort was 37.5 years (range, 22-56) and the
gender male/female ratio was 1.9. 40% of the cohort have been
followed at 5 year. The results will be published soon.

Table 1 displays also a number of tumour registries that are
active in the United States, one of which is dedicated to children
only. The target of total number of patient’s registration is over
28°000. In Europe, it is also foreseen to have a prospective data
collection of patients treated with protons in the framework of
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Proton therapy for brain tumours

In summary, it is unlikely that proton therapy delivered for
high-grade brain tumors might translate into a substantial clin-
ical benefit for CNS-tumor patients. Protons could however be
administered to low-grade (i.e. glioma) or benign (i.e. menin-
gioma) brain tumors, as these patients experience substantial
long survival times, in order to possibly decrease the probability
of long term toxicity. Alternatively, proton therapy could be
administered to patients with non-benign meningioma with a
dose-escalation paradigm.

SKULL-BASE TUMOURS

Skull-base chondrosarcoma (sbChS) and chordoma (sbC) are
very rare tumours with an incidence of <1 per million.*® They
are usually in direct vicinity of OARs, including but not limited
to the optic apparatus, brainstem, pituitary gland and cochleae
and are considered radio-resistant.*”** Local tumour control is
associated with overall survival and is thus of paramount impor-
tance.*”® SbChS and sbC are usually managed with cytoreduc-
tive surgery and postoperative radiotherapy. The importance of
optimal surgery (i.e. optimizing the tumor geometry/debulking)
with potentially sequential surgical procedures, before radio-
therapy has been advocated by many groups.”*~>* The outcome
of patients with sbChS/sbC treated with adjuvant or salvaged
photon radiation therapy is not optimal. When gauging the
benefit of protons for these skull-base tumours, it is important to
acknowledge that, due to the rarity of this condition, only obser-
vational studies stemming usually from one institution, with few
exceptions,”® have been published. Consequentially, no level I or
IT evidence have been proven on the superiority of protons over
photon radiotherapy, although the outcome data published by
non-particle radiotherapy is somewhat poor. Two photon series
reporting on 17 and 48 sbC and extra cranial chordomas patients
have shown that delivering a median dose of 50 Gy with conven-
tional radiotherapy resulted in a 5 year PFS and 5 year LC of 17
and 23%, respectively.”>® As such, conventional radiotherapy
may provide valuable palliation for these challenging patients
but chordomas are rarely cured with this therapeutic modality.
It has been claimed that historical photon series, such as those
reported above, do not reflect the accurate efficiency of modern
photon radiotherapy series. A recent study from the UCLA group
reported on 57 sbC patients treated with a median dose of 17.8
and 63.4 Gy delivered with SRS and SFRT, respectively.”’ The
observed 5 year PFS for the entire cohort was only 35.2%. Of note,
SRS and SFRT produced comparable rates of tumour control.
Numerous modern SRS and SFRT series have shown suboptimal
outcomes for sbC patients treated with these radiation modali-
ties.”’ ™ These suboptimal results may be best explained by the
stereotactic margins defined during the planning process and
radiation dose delivered to these patients. Regarding the former,
Snider et al have shown undisputedly the importance of margins
for extracranial chordomas.®® The seminal paper by Pearlman et
al have shown a dose-response for chordomas.*” More recently,
a South Korean study reported on 35 sbC patients treated with
a median 75.5 EQD2 delivered by proton therapy. The observed
5 year local tumour control was 92.8 and 63.0% for patients
treated with >69.6 and<69.6 Gy, respectively.®' Likewise, an anal-
ysis of 863 chordoma patients captured in the National Cancer
Data base has shown undisputedly that dose for chordoma was

BJR

associated with a significant increase in OS on univariate anal-
ysis.! Other proton series have shown such a dose-response with
sbC.%? This dose-response relationship has also been observed
with photons®>® : in the above-referred US series, higher dose
of SFRT was associated with a significant higher rate (p = 0.013)
of tumour local control.”” As such, high-dose radiation therapy,
with non-stereotactic margins, have to be delivered to chor-
doma patients postoperatively. Table 3 details the outcome and
prognostic factors of sbChS and sbC adult patients treated with
proton therapy, mostly delivered with a passive scattering para-
digm. Noteworthy, the prognostic impact of gender is unproven,
as all but two series with contradictory results,**”® have shown
that chordoma is gender-neutral. Tumour volume before proton
therapy, with various cut-offs ranging from 20 to 70 cc, is a major
prognosticator. Interestingly, the outcome of sbC and scChSa
patients have improved substantially in recent years (Table 3).
Finally, delivering high dose proton radiation to the skull base
tumours may induce toxicity,”>*>"%*""7* including but not
limited to the brainstem. At the Paul Scherrer Institute, we have
seen no brainstem radiation toxicity in adult skull-base tumour
patients treated with protons. Debus et al reported on 367 skull
base tumours patients treated in Boston with combined proton/
photon radiotherapy.*’ Brainstem toxicity was observed in 4.6%
of cases and the estimated toxicity-free survival was 88%.

Protons should thus be the standard of care for sbC or sbChSa, as
a dose escalation can be achieved with this treatment modality,
maximizing the chances of cure for these challenging patients.

Pediatric brain tumours

Cancer affects more than 380’000 children aged 0-19 every year
globally”® and is the leading cause of childhood death by disease
in high-income countries (HIC). Nevertheless, cancer cure
rates in HIC currently are near 80% and are on the rise thanks
to new advances in medical treatments This leaves many child-
hood cancer survivors (CCS) with a potentially normal lifespan,
during which maintaining both good health status and quality
of life is of paramount importance.”® Treatment-related toxicity
brings a significant morbidity burden on CCS, most of all for
patients with primary brain cancers.”” Reasons for this are an
increased sensitivity due to ongoing tissue growth and neuro-
cognitive development, smaller anatomic dimensions bringing
critical organs closer to treatment areas and a longer lifespan left
to develop side-effects. The most significant toxicities associated
with brain tumor irradiation are vascular complications such as
radiation necrosis (RN) and Moya-Moya syndrome, impairment
of neurocognitive development, including loss of IQ scores,
visual, hearing or endocrine deficits as well as skin changes
such as alopecia. In the case of CSI (Figure 1b), neck, thoracic,
abdominal and pelvic organs can develop late sequelae of radi-
ation therapy. As an example, vertebral body irradiation leads
to decrease of adult height’®® with a reported incidence rate
of 3-26%.8" RN can result in numerous symptoms or deficits,
depending on its location, such as seizures or motor impairment.
Seven papers reported on RN induced by proton therapy in pedi-
atric patients (Table 4). Sample sizes ranged between 17 and 313
patients, with ages between 19 months and 10 years. Time to
RN ranged between 3 and 9 months. Median PT doses of 54 Gy
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RBE were used across all seven studies. Grade 3-4 RN ranged
between 2 and 3.6% at 5 years.*>"® PT has demonstrated its
ability to better spare uninvolved normal tissues including crit-
ical OARs compared to standard photon therapy. It has therefore
become a widely accepted radiation modality for several child-
hood malignancies. Advantages of PT for the irradiation of brain
tumours reside in a better sparing of healthy brain tissue and
other OARs (Figure 2), not limited but including the cochlea, the
pituitary gland, the hippocampus, the optic structures and the
brainstem.® For the spinal cord, posterior proton field arrange-
ments (Figure 1b) allow for an excellent sparing of all organs
anterior to the vertebral bodies as described above.”® Pediatric
brain tumours, for which PT has been most commonly used,
are craniopharyngiomas,”’ ependymomas (Figure 2),”> germ
cell tumours,” low-grade gliomas,” medulloblastomas and
atypical teratoid/rhabdoid tumours (ATRT)®>*° (Table 5). Four

and 7y, Cataract two pts, BS injury one pt,

Ototoxicity G3 + 12% at 3y and 16% at
Endocrine deficit 27%, 55 and 63% at 3, 5
Stroke two pt

5y and 7y, FSIQ decline by 1.5 point/y,

Late Toxicity

; DBF, distant brain failure; DC, distant control; FFS, failure free

survival;FSIQ, full scale intelligence quotient; FU, follow-up; G, toxicity grade;GH, growth hormone; GyRBE, Gray in relative biological effectiveness; IF, involved field;LC, local control; LF, local failure;MI, mean

22 retrospective studies, published with exclusively ependymoma
%2 patients, reported OS and PFS rates ranging from 84-100% to
S 92,97-99 ¢ 100,102,103
TEET 76-80%.7" In medulloblastoma studies, """~ sample
S 2= sizes ranged between 15 and 59 patients, with ages between 2.9
g %; %; %; and 6.6 years. The context of re-irradiation also makes a partic-
e ularly strong case for the use of very conformal RT modalities
such as PT, as treatment of recurrences can still lead to cure in
some instances, such as for localized ependymoma relapses.'®!
iy —
E =3 = . . . .
5 g® 2 The administration of protons to children with brain tumors
SPEE ;¢ represent an unique opportunity to decrease the likelihood of
late CNS toxicity by decreasing the integral dose to the brain,
especially so in very young patients with tumors such as ATRTs,
— ependymomas or medulloblastomas.
\O
.
—_— o
g . 5 O }ré Costs considerations/financial toxicity
TE&xg| 2 Across HICs, cancer management costs are escalating, driven
SAaCE25 . oo - .
=E|823 mainly by consumerism in health care, the demographic transi-
tion of a growing elderly population and by the delivery of costly
g ) new therapies. Although there is an association between high-
é & § spending health care systems and lower cancer mortality,"* it is
e questionable if the growth in cancer spending is sustainable in
the long-time in high-income countries.
1<
&l . Proton therapy is an expensive anti cancer treatment, with a cost
H* i

factor of approximately 2.5, when compared to modern RT tech-
niques.'” This is certainly due to the considerable investment
costs but also due to the high operation and maintenance costs.
Ongoing technical developments may lead to cost reduction but
itis not expected that a dramatic decrease in costs will be reached
in the near future.'® As a result, there is an ongoing debate on

Tumor type
Medulloblastoma

intelligence; NC, neurocognitive; NR, not reported; OAS, overall adaptive skills; OS, overall survival;PFS, progression free survival;RF, risk factor; RFS, recurrence free survival;RN, radiation necrosis; SF, spinal

NS, not statistically significative. WBRT, whole brain radiotherapy; AT/RT, atypical teratoid/rhabdoid tumor; CSI, craniospinal irradiation
failure, PT: proton therapy;VA, visual acuity; VF, visual field; WVRT, whole ventricle radiotherapy; mo, months;pts, patients.

the value of proton therapy and its cost-effectiveness (CE).'*”!8
z As care for medical conditions, such as cancer, usually involves
3 =} o multiple disciplines and numerous interventions at different time-
g = points, the true value cannot be determined by simply comparing
£ costs of two treatment modalities. Consequently, CE analysis must
5 5 also consider patient's longtime outcome, toxicity and quality of
S % g life by tracking patient outcomes and costs longitudinally.'®’
W S| s
= 5 g Four publications on CE of proton therapy in brain tumours
A could be identified, of note all in pediatric cohorts (Table 6). All
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Table 6. Cost-effectiveness studies for proton vs photon therapy of brain tumors

BJR

Author Statistical Model Included
[ref] year | Tumor type Study design Method Parameters Results
Lundkvist 2005 Pediatric Comparison PBT Markov cohort Risk of hearing loss, Gain of QUALY of 0.68 per patient;
etal 110 medulloblastoma vs IMRT simulation model 1Q loss, GHD, Estimated cost difference (protons
hypothyroidism, vs photons) per patient
osteoporosis, cardiac —23,646.5 EUR
disease, fatal and nonfatal ICER of —34,622 EUR/QUALY
SMN >Cost effective
->Cost saving
Mailhot 2013 Pediatric Comparison of Monte Carlo Risk of GHD, hearing Gain of QUALY of 3.46;
Vega et medulloblastoma PBT vs photon simulation loss, hypothyroidism, Total difference in costs (protons vs
al RT congestive heart failure photons): - 32,579.1 Dollar
coronary artery disease, ICER of -9,416 Dollar/QUALY
ACTH deficiency, >Cost effective
gonadotropin deficiency, >Cost saving
SMN, death
Hirano et 2014 Pediatric Comparison of Markov cohort Risk of hearing loss due Gain of QUALY between 0.98 and
al 12 medulloblastoma PBT vs IMRT simulation model to cochlear dose for three 1.82 and ICER of 11,773 and 21,716
different QoL measures Dollar/QUALY dependent on QoL
(EQ-5D, HUI3, SF-6D) measure used
>Cost effective
Mailhot 2015 Pediatric CNS Comparison Markov cohort Risk of GHD Hypothalamic proton doses
Vega et tumors of PBT vs simulation model between 5 and 25 Gy can be cost-
al 13 photon RT in effective, between 5 and 20 Gy even
hypothalamic cost saving in some scenarios
dose sparing

ACTH, adrenocorticotropic hormone; GHD, growth hormone deficiency; ICER, incremental cost-effectiveness ratio; IMRT, intensity modulated
radiation therapy; IQ, intelligence quotient; PBT, proton beam therapy; QoL, quality of life; QUALY, quality adjusted life years; RT, radiation

therapy; SMN, secondary malignant neoplasm.

110,112,113 11

used Markov modelling and Monte Carlo simulations’
to compare proton vs photon therapy. All investigators have
shown that proton therapy is cost-effective with regard to long-
term risk of radiation side-effects. Three studies even demon-
strated a cost saving effect of proton therapy.

These analyses are based on theoretical modelling concepts using
assumptions, which remain questionable. Empirical comparative
data establishing the clinical advantages and health economic
appropriateness of proton compared to photon therapy is lacking
but urgently needed. It is foreseen that costing data will be
captured in the EORTC 1811 protocol/ParticleCare.

Most insurances reimburse the costs of proton therapy for brain
tumours listed in this manuscript. Nevertheless, patients may
experience expenses to cover costs for housing and traveling
during 6-7 weeks treatment, special food and potentially lose
wages. For some patients, these out of pocket payments can cause
substantial financial distress that adversely affects a patient’s
quality of life, treatment choice, treatment compliance, and
treatment outcome.''* Treatment related financial distress can
be just as toxic as the effects of chemotherapy or radiation and

was therefore defined as a treatment related financial toxicity.'*®

Approximately 16% of patients undergoing proton therapy for
brain tumours in Switzerland experience moderate to severe
financial distress (unpublished own data). However, very limited
evidence is available about the incidence of financial toxicity, its
associated morbidity and its preventability in proton therapy.

CONCLUSIONS

The dose deposition advantage of PT for the treatment of brain
tumours are instantly apparent when planning comparisons of
proton vs photon are made. Evidence for PT in adult benign and
low-grade tumours is however limited on retrospective analyses.
The available data suggests that proton therapy achieves good local
control in some high-grade tumours with acceptable toxicity and
that the toxicity profile for low-grade tumours warrants prospec-
tive analyses. For skull-base, radio-resistant tumours, high-dose
(i.e. >70 GyRBE) proton therapy, with non-stereotactic margins,
have to be delivered to patients postoperatively. Delivering protons
to children with brain tumours may increase the therapeutic ratio.
In the era of EBM, high-quality data needs to be rapidly generated
to justify the higher costing of this radiation modality, which can
have substantial financial toxicity to the patients and their families.
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