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Introduction
Proton beam therapy (PBT) has expanded rapidly in the 
last decade as a treatment for cancer. For many treatment 
sites, the physical characteristics of protons make PBT 
dosimetrically superior to photon radiotherapy. However, 
protons are believed to be only slightly more effective 
than photons at inducing biological damage for the same 
physical dose.1 This is reflected by the universal adoption 
of a constant relative biological effectiveness (RBE) of 1.1 
in both tumour and normal tissues. An increasing body 
of experimental data, however, strongly suggests that the 
RBE is not spatially invariant and depends on a multi-
tude of parameters, both biological and physical.2,3 The 
use of a constant RBE has led to concern for end-of-range 
effects, which may influence treatment planning decisions 
for beam configurations with sites bordering on sensitive 
organs.3 Since many other sources of uncertainty already 
exist, an RBE value of 1.1 as a conservative estimate might 
actually be satisfactory.4 However, as sources of error in 
delivery techniques are reduced and more patient treat-
ment response data are collected, the clinical evidence of 
RBE variability may become more evident and therefore 
important for optimizing treatment.

The use of a constant RBE of 1.1 was based on measured RBE 
values in vivo from some of the very first proton studies.5,6 
There is substantial evidence that numerous factors 

influence proton RBE, including physical parameters of the 
beam (proton energy, scanning technique, number of treat-
ment fields), dose, cell type, oxygenation, intrinsic radio-
sensitivity, and the biological or clinical endpoint of interest 
(local tumour control or treatment complication).2,6 The 
majority of studies investigating the dependency of RBE on 
various parameters for local tumour control assess in vitro 
clonogenic cell survival, using mostly Chinese hamster cell 
lines for doses between ~1 and 10 Gy7. There is a paucity of 
data on RBE variation in human tumours and even more 
so in healthy human tissue.2 Despite decades of research, 
we still do not fully understand which underlying biological 
mechanisms contribute to RBE variations. This is a major 
limitation in our understanding of RBE and the potential to 
optimize PBT by identifying patients with tumours partic-
ularly sensitive to protons and to curtail serious toxicities 
in healthy tissue.

Investigating and developing accurate proton RBE models 
is a very active area of research. Despite the development 
of numerous models, none are currently used in clin-
ical treatment planning because the uncertainties in the 
published RBE values are still too large to sufficiently allow 
clinically precise RBE predictions.4 However, RBE end-of-
range effects are generally indirectly considered in clinical 
decisions by trying to avoid placing the distal edge close 
to sensitive organs.8 To implement a proton RBE model in 
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Abstract

Dose in proton radiotherapy is generally prescribed by scaling the physical proton dose by a constant value of 1.1. Rela-
tive biological effectiveness (RBE) is defined as the ratio of doses required by two radiation modalities to cause the 
same level of biological effect. The adoption of an RBE of 1.1. assumes that the biological efficacy of protons is similar to 
photons, allowing decades of clinical dose prescriptions from photon treatments and protocols to be utilized in proton 
therapy. There is, however, emerging experimental evidence that indicates that proton RBE varies based on technical, 
tissue and patient factors. The notion that a single scaling factor may be used to equate the effects of photons and 
protons across all biological endpoints and doses is too simplistic and raises concern for treatment planning decisions. 
Here, we review the models that have been developed to better predict RBE variations in tissue based on experimental 
data as well as using a mechanistic approach.
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the clinic would require accurate predictions of the radiation-
induced biological response with both simplicity and robust-
ness. Currently, RBE models are either phenomenological, fitting 
a radiobiological model to empirical data, or biophysical and 
based on a mechanistic approach.

A mechanistic approach aims to accurately predict biological 
damage induced by both physical and chemical interactions of 
radiation within the cell (e.g., DNA strand breaks) and the subse-
quent biological processes (e.g., cell repair) to quantify lethal cell 
damage. Damage to DNA by ionizing radiation may be caused 
by direct effects, an ionization or excitation event produced by 
primary or secondary particles within the DNA molecule itself. 
Or by indirect effects, DNA damage resulting from interactions 
from the chemical species formed from the dissociation of water 
molecules. Although the total number of double strand breaks 
(DSBs) for photon or proton irradiation of a cell for the same 
dose may not be different, especially at low proton LET, small 
differences in the distribution or complexity of the breaks may 
initiate a different biological repair pathway and subsequently 
an overall different biological response.9 Protons induce slightly 
more clustered damage than photon irradiation. Accurate mech-
anistic approaches are challenging since so few of the biological 
pathways involved are well understood. Furthermore, linking 
the distribution of nanoscopic energy depositions to the cell 
response is already a complex task but to then connect this to 
a macroscopic clinical quantity, such as the tumour response or 
toxicity in an organ, is an especially difficult multiscale problem.10 
Mechanistic models do currently exist but vastly approximate the 
overall process.

In this article, we review both the empirical and biophysical 
models available to predict and understand variable proton RBE 
in tissues. We also review limitations of the models and suggest 
approaches to aid in the development of a comprehensive mech-
anistic model for the prediction of proton RBE at multiple scales.

Proton RBE models
Phenomenological RBE models
Numerous proton RBE models have been developed to predict 
the variation of RBE with both physical and biological factors. 
The majority of the models are phenomenological, based on the 
well-established linear-quadratic (LQ) model, and use mostly 
empirical data of clonogenic cell survival for fitting. The LQ 
model relates the surviving fraction of cells to the dose, taking 
into account the radiosensitivity of the cells.11 It should be noted 
that the LQ model has been used to predict other endpoints, 
including chromosome aberrations and the onset of oncogen-
esis, which also seem to correlate with a quadratic dose–response 
curve for clinical doses.

Table  1 presents a comparison of 10 phenomenological RBE 
models, all based on the LQ model, fitted to different exper-
imental datasets of clonogenic cell survival. These models all 
predict that the proton RBE is dependent on the dose averaged 
LET (LETd), the proton dose per fraction (Dp) and cell specific 
parameters (‍α, β‍) for the reference photon radiation and is 
based on the following LQ formulism:
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RBEmin and RBEmax correspond to the asymptotic values of the 
RBE at dose 0 and ﻿‍∞‍, respectively.23 The models in Table 1 only 
differ in how RBEmin and RBEmax terms are defined. The majority 
of the models assume that RBEmax is dependent on LETd. Some 
of the models assume that the RBEmin term also has a depen-
dency with LETd, but the majority set this term to 1.

A recent comparison of 11 phenomenological proton RBE 
models, showed that the data sets used to fit the models have 
large variations in both the range of ‍

(
α/β

)
x‍ values as well as 

the LETd.12 These models are summarized in Table  1 with the 
exception of the model by Mairani et al24 which was originally 
designed for He ions. In a comparison between models for 
patient cases, Rørvik et al12 found that the average RBE calcu-
lated for the PTV was in the range of 1.09–1.2,12 which is a 
reasonable estimate for the tumour volume and is aligned with 
the goal of selecting a conservative value of 1.1 for the target. The 
greatest variation between models appeared in tissue with a low 

‍
(
α/β

)
x‍ (~2.0–3.1 Gy) at the end-of-range LET elevation. This 

would correlate to late responding organs at risk (OARs) distal to 
the target. Figure 1 illustrates this particular case, by showing the 
predicted biological dose for a spread-out Bragg peak (SOBP) 
for five representative models, for the case of a low ‍

(
α/β

)
x‍ value 

of 2 Gy. Each of the empirical models predict an increase of the 
biological dose with increasing LETd, at the distal edge of the 
SOBP. This could be problematic for an OAR distal to the treated 
tumour, as indicated by the shaded regions. In general, the avail-
able data predicts an increase of RBE with LETd,7 however, there 
is some evidence that the dependence of RBE on LETd might not 
be linear.25–27

Proton RBE models based on the LQ model are appealing since 
the implementation into treatment planning systems could be 
done.28 Empirical models connect to clinical endpoints (e.g. 
tumour control or normal tissue complication) by scaling the 
dose in each CT voxel with an RBE correction. However, the 
Achilles’ heel of these models is the experimental data used 
for fitting. The cell line data for proton RBE studies from the 
published literature, summarized in Paganetti,7 is shown in 
Figure 2. The available data shows an astoundingly large spread 
for the same reported cell line and LETd (e.g. V79), possibly due 
to inconsistencies in experimental design amongst different labs 
as well as large uncertainties in the dosimetry.29 The histogram in 
Figure 2 (right panel) shows the classification of cell lines used in 
the experiments. Table 2 lists the cell lines with numbers corre-
sponding to the histogram. Non-human cell lines comprise the 
majority of the data (mostly Chinese hamster lung fibroblasts 
V79 or CHO Chinese hamster ovary cells). Fewer studies have 
used human cancer cell lines and the least amount of data exists 
for human normal tissue. These discrepancies as well as lack of 
human samples in the data question the accuracy of the models, 
particularly for clinical cases. Furthermore, the validity of cell 
survival as the biological endpoint for defining clinical RBE is 
not indisputably justified. It can be argued that cell survival is 

http://birpublications.org/bjr


3 of 11 birpublications.org/bjr Br J Radiol;93:20190334

BJRModelling Variable Proton RBE for Treatment Planning

Table 1. Summary of phenomenological RBE proton models based on a similar formalism of the LQ model (equation 1)12 13

Model
Cell lines
(size) RBEmax RBEmin

Parameter values

p0 p1 p2 p3

Carabe14 V79
(44) ‍

p0 + p1
LETd(
α/β

)
x ‍ ‍

p2 + p3
LETd(
α/β

)
x ‍

0.843 0.413644 1.09 0.01612

Chen15 V79
(14) ‍

p0
αx + 1−e−p1LET

2
d

αxp2LETd ‍

1.0 0.1 0.0013 0.045 --

McNamara16 Multiple
(285) ‍

p0 + p1
LETd(
α/β

)
x ‍ ‍p2 + p3

√(
α/β

)
xLETd‍

0.99064 0.35605 1.1012 −0.0039

Peeler17 Multiple
(48)

‍
p0 + p1

LET3d(
α/β

)
x ‍

‍p2 + p3
(
α/β

)
x LET

3
d‍

0.75 0.00143 1.24 0.00074

Tilly18 Multiple
(11) ‍

1 + p1
LETd(
α/β

)
x ‍

1.0 0.309* or
0.550964

-- -- --

Rørvik12 Multiple
(85) ‍

p0 + p1
LETd(
α/β

)
x ‍

1.0 1.0 0.645 -- --

Wilkens19 V79
(19) ‍

p0+p1LETd
αx ‍

1.0 0.1 0.02 -- --

Wedenberg20 V79
(19) ‍

p0 + p1
LETd(
α/β

)
x ‍

1.0 1.0 0.434 -- --

Model Cell lines
(size)

RBEmin Other

Belli21 V79
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1
0.13
´∞
0 α

(
E
)
d
(
E
)
dE‍

‍
1

0.214

√´∞
0 β

(
E
)
d
(
E
)
dE‍ ‍α

(
E
)
‍and ‍β

(
E
)
‍ are biological weighting 

functions

Jones22 Multiple
(28) ‍1 +

LETd−0.22
30.28 ×‍

‍
(

αu
αx

− 1
)

‍ ‍

√
1 + LETd−0.22

30.28

(
βu
βx

− 1
)

‍ ‍
αu = 2.696

(
1− e−3.92αx

)
‍

‍
βu = 0.06

(
1− e−50βx

)
‍

RBE, relative biological effectiveness.
The definition of the RBEmin and RBEmax functions for each model differs as shown, and the fit parameters (p0, p1, p2 and p3) are summarized were 
applicable. The type of in vitro data and size of each dataset used in the fitting is indicated. The last two models have been separated from the table 
since the formulations differ. Only the linear fit of the Rørvik et al13 is shown here for simplicity. *For low and high (α/β)x, respectively.

Figure 1. Biological dose (left hand scale) for five representative phenomenological RBE models for a simulated SOBP with mod-
ulation width and range of 100 mm and 250 mm, respectively, for a dose of 2 Gy. The physical dose is shown by the black solid 
curve, while the physical dose scaled by an RBE of 1.1 is shown by the red curve. The ‍

(
α/β

)
x‍ ratio was 2 Gy. The corresponding 

LETd distribution is also shown (orange solid curve, right hand scale). The case of an OAR distal to the target tumour volume is 
indicated by the shaded regions. LET, linear energy transfer; OAR, organ at risk; SOBP, spread-out Bragg peak; RBE, relative bio-
logical effectiveness.
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most relevant for tumour control. However, the relevancy of the 
available in vitro data for human tumours, given the consider-
able genomic heterogeneity across cancers even for the same type 
and histology, remains an unanswered question.2 The rationality 
of using in vitro data for predicting in vivo responses is disput-
able. Although, Kellard et al30 found that the in vivo response 
of irradiated human cervix carcinomas followed the trends of in 
vitro data, this may not be the case for all organs. In vitro data 
not only fails to account for tissue and tumour heterogeneity 
in a single individual but would also fail to capture some non-
targeted effects, such as those mediated by interactions between 
cells and their microenvironment as well as neglects the role of 
the immune system. Lastly, models based on the LQ model may 
not accurately capture the full cellular response, since there is 
evidence of the model failing at very low and high doses.31–33 To 
meticulously assess the variability of RBE for the clinic, data from 
both in vivo studies as well as clinical outcomes are necessary.

Mechanistic models
The effect of radiation on living cells depends on a complex 
sequence of physical, biochemical and biological processes. 
The goal of mechanistic models is to understand the radiation 
response of tissue using a ground-up approach.34 It is based on the 
premise that the distribution of energy depositions, pertaining 
to the incident particle track structure, on a subcellular level is 
the key driver for the variability of the RBE. A true mechanistic 
approach would be multitiered, combining several mathematical 
models to cover the initiated response from the molecular scale 
to an organ scale (Figure  3). Modelling would ideally start by 
generating the nanoscopic physical and chemical interactions 
in the cell, to calculate a distribution of biological damages, e.g. 
DNA lesions. This damage distribution could be used in the next 
stage of modelling to predict the subsequent biological processes 
(e.g. DNA repair) to generate a cellular response (e.g. apoptosis). 
Other than the induction of DNA damage, radiation can have 

secondary effects such as the activation of the immune system 
and may also modify the tumour phenotype or microenviron-
ment.35 DNA-mediated effects such as apoptosis, senescence or 
mitotic catastrophe are better understood, and thus currently 
more modellable, than the non-targeted effects. However, to 
arrive at the end goal of mechanistic models, that is connecting 
the nanoscopic distribution of energy depositions to a clinical 
outcome (e.g. tumour control, healthy tissue complications), 
requires a better understanding of these non-targeted effects. 
This is a complex multiscale problem and each modelling step 
requires a comprehensive understanding of the physical, chem-
ical and biological processes occurring. A large amount of effort 
has been put into the development of track structure modelling 
with accurate model representations of DNA geometry, and 
other biological targets, to predict damage distributions.36 DNA 
damage predictions can be combined with repair models to 
predict the cellular response. On the opposite side of the model-
ling scale, normal tissue complication probability (NTCP) and 
tumour control probability (TCP) models are commonly used to 
assess the outcomes of radiotherapy. Presently, the missing link 
in true mechanistic modelling, is the ability to combine these two 
scales. This requires more knowledge on the intracellular radia-
tion responses (e.g. inflammation response) and the role of the 
immune system.37

Mechanistic models that are truly capable of modelling the radia-
tion response from the molecular to organ level do not currently 
exist, but a few mechanism-inspired models for proton RBE have 
been developed.

Modelling of DNA radiation-induced damage
Monte Carlo (MC) track structure algorithms are commonly 
used to determine the induction of radiation damage in cellular 
components, predominantly the nuclear DNA. In the early 
codes, track structure modelling was limited to electrons in water 

Figure 2. Cell line data used for proton RBE in vitro studies.7 The left panel (a) shows the spread in the available data as a function 
of the reported ‍

(
α/β

)
x‍ and the LETd. The right panel shows a histogram of the cell line data, with classifications shown for human 

cancer and healthy tissue cell lines as well as non-human cell lines. The majority of the data is for Chinese hamster fibroblasts 
(V79) and ovary cells (CHO). Data for normal human cell lines are derived mostly from skin fibroblasts (AGO1522) while cancer 
lines are derived from HSG. See Table 2 for the corresponding names to the cell line plot numbers. HSG, human salivary glands; 
LET, linear energy transfer; RBE, relative biological effectiveness.
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vapour.38 Over the last few decades, modelling has expanded to 
include other particle interactions within both liquid water and 
some nucleic acid materials, as well as modelling of the phys-
icochemistry stage, within accurate representations of nuclear 
DNA target models.39 The physical stage of track structure simu-
lations model the clustering of energy depositions (i.e. individual 
ionization and excitation events) along the particle track, down 
to very low energies (~few eV). When tracks are modelled within 
target volumes, e.g. a DNA double helix, an estimation of the 
number of single or double strand breaks can be calculated.40 In 
addition, some track structure simulations include the physico-
chemical stage occurring one ps after irradiation, where ionized 
and excited water molecules (H2O+, eeq-, H2O*) produced in the 
physics stage decay, producing hydrolysis chemical species (•OH, 
H• , •O• , H3O+, H2, eaq

_).38,41 The primary chemical species, 
*OH causes the most significant damage to the DNA. However, 
the other species may interact with each other forming highly 

reactive species such as H2, OH- and H2O2, which may diffuse 
and also interact with biological targets to initiate damage.42,43

Mechanistic-inspired models
In addition to the LQ model there are numerous mechanistic-
inspired dose–response models. Many of these models were 
developed for predicting RBE in heavy ion therapy, however, 
some are relevant for proton therapy applications. Here we 
summarize the models applicable to proton RBE, other reviews 
provide a more comprehensive overview of the models.44,45 
Mechanistic models are based on the premise that cell fate post-
irradiation will be determined by the repair of the initial DNA 
damage distribution. Very early radiation response models, 
such as the lethal–potentially lethal (LPL) model or dual action 
model,46 were successful at predicting the basic features of the 
experimental radiation dose response curve. These models have 

Table 2. Summary of the cell lines from Figure 2 for the experimental proton RBE studies

Human cancer cell lines Human healthy tissue cell lines Non-human cell lines
1 HeLa cervix cancer 22 NB1RGB skin fibroblast 29 V79 Chinese hamster lung 

fibroblasts

2 HMV melanoma 23 AG01522 fibroblast 30 V79/753B

3 SQ20B laryngeal squamous cell 
carcinoma

24 HFIB2/HFIB15/HFIB30 
fibroblasts pelvic region

31 V79-379A

4 HEp-2 larynx carcinoma 25 HF19 lung fibroblast 32 V79-WNRE

5 SCC61 tongue squamous cell 
carcinoma

26 M/10 epithelium 33 V79-4

6 SCC25 tongue squamous cell 
carcinoma

27 EUE embryonic human 
epithelium

34 CHO Chinese hamster ovary 
cells

7 HSG tumour 28 HFFF2 foetal foreskin 
fibroblasts

35 CHO-AA8

8 CAL4 melanoma metastatic 36 CH clone 431

9 HTB140 melanoma 37 Chinese hamster B11

10 LS-174T colorectal carcinoma 38 C1-1 Chinese hamster 
embryonic lung

11 DLD1 colorectal adenocarcinoma 39 B14 Chinese hamster fibroblasts

12 HCT116 colorectal carcinoma 40 H4 rat hepatoma

13 DU-145 prostate cancer 41 C3Hf mouse fibrosarcoma

14 A549 NSCLC 42 NFSa-mice lung fibrosarcoma

15 H460 NSCLC 43 HD1 rat-mouse hybrid

16 U87 glioma 44 PDV mouse skin cancer

17 ONS76 medulloblastoma 45 PDV57 mouse skin cancer

18 HT1080 fibrosarcoma 46 C3H10T1/2 mouse fibroblast 
(sarcoma)

19 MOLT4 lymphoblast, acute 
leukaemia

47 FRTL-5 Fisher rat normal 
thyroid

20 59M ovarian carcinoma 48 Mouse squamous carcinoma 
(epithelial cells) in vivo

21 U-138MG glioblastoma

HSG, human salivary gland; NSCLC, non-small cell lung cancer.
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been extended to be more mechanistic in order to better under-
stand the contribution of the underlying physics and biology to 
cell inactivation.

The LPL model46 is based on the assumption of repairable or 
non-repairable damage. Non-repairable lesions are responsible 
for the linear part of the dose–response curve, while repair-
able lesions include repair and binary misrepair. Furthermore, 
lesions are categorized into slow and fast repairing. At low 
doses, the model converges to the LQ formulation. Even though 
such models are capable of parameterizing RBE, they were not 
specifically designed for describing the difference between radi-
ation modalities. Three examples of biophysical or mechanistic-
inspired models that have been developed to calculate proton 
RBE are the Microdosimetric-Kinetic Model (MKM),47 the 

Repair-Misrepair-Fixation (RMF) model48 and a recent version 
of the Local Effect Model (LEM).49 All three models aim at under-
standing the dependency of the cell response on the physical 
particle characteristics of the incidence beam using the induction 
and biological processing of damage, i.e. repair of DNA double 
strand breaks (DSBs), to predict lethal damage such as chromo-
some aberrations. The models differ in the assumptions made 
about the damage induction mechanisms and in the way subcel-
lular target volumes (size and interaction between volumes) are 
handled. For example, in the MKM both individual and pairs of 
DSB repair events are the primary contributors to lethal damage, 
while in the RMF model it is assumed that misrepair or fixation 
of DSBs and chromosome damage, is the mechanism of impor-
tance for RBE variations. Although the RMF model itself does 
not predict DSB induction, it is frequently combined with the 

Figure 3. Illustration of a full mechanistic modelling approach capturing the effects of radiation on multiple scales.

Figure 4. Schematic of current biophysical models and the areas covered mechanistically.
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Monte Carlo Damage Simulation (MCDS) algorithm which 
provides the initial DSB distribution within the cell.50 Figure 4 
shows a schematic of the models.

LEM makes use of the concept of local dose and assumes that the 
same amount of “local dose” will initiate an equivalent biolog-
ical response, independent of the type of radiation. The particle 
effectiveness is determined from the microscopic dose distri-
bution within the nucleus. This local dose is calculated from an 
amorphous track structure representation of the energy deposi-
tion as a function of the radial distance to the particle path. The 
LEM has several implementations based on this general concept. 
Later implementations of LEM assume that the final biolog-
ical response of the irradiated cell is dependent on the initial 
DNA damage spatial distribution rather than just the local dose 
distribution.

While all three models use a microdosimetric approach, the 
MKM and LEM combine this approach with biological response 
data from X-ray irradiation to predict the RBE for high-LET 
particles. The nature of the models allowed both the MKM and 
LEM to be used clinically to calculate RBE weighted doses for 
carbon ion therapy. All three models have been implemented 
into research treatment planning systems as well as other RBE 
platforms.51 This shows the potential of semi-mechanistic 
models to support clinical decisions. As with empirical models, 
expected tumour control and normal tissue complication differ-
ences between photons and protons are predicted by scaling the 
dose in each CT voxel by a calculated RBE value.

Towards full mechanistic modelling
Differences in the local complexity of DNA damage as well as 
the initiation of different DNA repair pathways determine the 
biological effect. DNA repair mechanisms are highly efficient 
in most cells, with only a small fraction of DSBs leading to 
cell death.52 The complexity and the yield of clustered damage 
within DNA increases with the ionization density of the primary 
particle.40 More complex damage may lead to less efficient repair 
and lethality, through either repair failures or misrepair events, 
which may lead to serious chromosomal abnormalities.53 Slightly 
dissimilar distributions and complexities of DNA damage as well 
as the differences in the subsequent repair mechanisms initiated 
in response to the radiation may explain the higher observed 
cell killing of protons to photons, which is the subject of active 
research.

Cells repair radiation induced DSBs using two main pathways, 
non-homologous end joining (NHEJ) and homologous recom-
bination (HR). These two pathways are cell-cycle dependent but 
also differ biochemically with different substrate requirements. 
NHEJ is the main pathway of ionizing radiation-induced DSB 
repair in G1- and early S-phase cells, while both HR and NHEJ 
contribute to DSB repair in late S-/G2-phase cells. Although 
only a few studies have attempted to investigate the repair path-
ways instigated by protons or high-LET charged particles, there 
is evidence indicating that NHEJ is less capable of removing 
clustered DSBs induced by high-LET radiations as compared to 
low-LET radiations.54 Experimental measurements indicate that 

NHEJ is the major repair pathway for DSBs induced by photon 
radiation.55 Furthermore, accumulating evidence suggests that 
proton induced DSBs rely more heavily on the HR pathway for 
repair, supporting the notion that tumours with defects in HR 
may be more susceptible to protons than to photons.56 Proton 
RBE variations due to alternations in HR and associated repair 
pathways have been reported, suggesting some cancers might be 
more sensitive to protons.57,58 The majority of current published 
data support the idea that differential DNA repair capabili-
ties between tumour and surrounding normal tissues could be 
exploited to improve regimens of PBT. However, these exper-
iments have been limited to a few in vitro studies and further 
evidence in vivo and in clinical outcome data is required.2

Although the development of a true multiscale mechanistic model 
is currently beyond our ability, our capacity to model endpoints 
on cellular and subcellular scales is improving. MC track struc-
ture algorithms offer a powerful method of predicting the 
distribution of energy depositions on the subcellular level step-
by-step.59 Simulations are capable of modelling the interaction of 
physical, physicochemical and chemical processes within biolog-
ical structures to predict damage induction. MC toolkits, such 
as Geant4-DNA60 (TOPAS-nBio61) and PARTRAC39 are contin-
uously improving by expanding the physics process modelling 
in both water and biological materials, developing the chemistry 
processes for water radiolysis, optimizing simulation run-time 
and improving biological geometric models. Even though a 
wide range of models already exist for predicting the yield and 
distribution of DNA damage, the variation of the predictions 
is still significantly large. This is mostly in part due to different 
modelling assumptions because of the large uncertainties in the 
biological parameters and the difficulty in refining experimental 
measurements of DNA damage. This includes parameters such 
as the modelled DNA structure and hierarchy, the DNA break 
threshold energy as well as the likelihood of free radical species 
to interact with the DNA and cause damage. Recently, a new data 
standard for reporting on DNA damage has been proposed to 
facilitate efficient comparisons between models.62

To connect MC models with biological response, several DNA 
repair models have been developed in order to better understand 
what types of clustered DNA damage may lead to lethality.63 
These models generally focus on the repair of DSBs and consider 
proximity effects as the primary cause of misrepair, with dense 
clusters of damage having a high probability of leading to dele-
terious misrepair. The models are capable of inputting clustering 
distributions predicted from MC simulations to predict the yield 
of mutations and chromosome aberrations, which can be used 
to predict cell death and be experimentally tested. The models 
are, however, vastly limited as they do not yet include the full 
biochemistry of the pathways and are primarily focused on the 
NHEJ pathway.64 In a similar vein to DNA clustered damage 
modelling, the biological parameter space is extensive for model-
ling DNA repair with large uncertainties, making it difficult to 
refine and validate the models.

To date, radiation-induced damage in DNA has been the focus 
of radiobiology and all current mechanistic models are based on 
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initial damage to the DNA, but the cell may contain other radia-
tion targets (e.g. mitochondria, cell membranes) that may induce 
other significant biological responses. Damage to other cellular 
components may be important for determining toxicity effects 
in healthy tissue (e.g. dendrite morphological changes leading to 
cognitive dysfunction).

Connecting RBE to organ effects
Both tumour control and toxicity are the endpoints of impor-
tance in the clinic and both are likely related to DNA damage. 
It is however not clear how an endpoint would be affected by 
both the amount and the distribution of DNA damage within 
an organ or tumour. Cell killing is the most relevant effect for 
TCP models. However, other endpoints may be more relevant for 
NTCP models and may not directly correlate with cell survival 
and hence RBE. NTCP models generally depend on somewhat 
complex dose distributions in an organ. The current mechanistic-
based models do not consider the effects from organ dose distri-
butions, fractionation effects or multiorgan interplay (e.g. heart 
and lung) effects. In addition to this shortcoming, there is a 
lack of clinical evidence of patient under- or overdosing.65,66 
This could in part be due to the conservative and safe applica-
tion of radiation therapy and particularly patient variability in 
radiosensitivity.

Recently, studies have investigated alternative endpoints for 
normal tissue injury in retrospective patient data and did find 
a correlation between patient image changes (e.g. lung density 
changes) after proton therapy with proton dose and LET.67 
However, other studies that have investigated the correlation 
of high LET regions with toxicity, e.g. incidence of CNS injury, 
have found no significant correlation and found the incidence 
of injury to be similar to that reported for photon therapy.65 
Data are scarce for proton RBE in non-lethal injuries and such 
retrospective studies using clinical data are important for inves-
tigating the RBE for different biological endpoints.

The lack of biological input parameters makes the prediction of 
a variable RBE in all tissues for treatment planning challenging. 
Despite the large uncertainty in RBE, all the existing data strongly 
suggest that RBE increases with LET up to a given value, then 
decreases. For this reason, LET optimization has been proposed 
as a method of optimizing proton treatment planning.68,69

The need for more experimental data
For local tumour control, the most relevant cellular endpoint is 
clonogenic cell survival, which is also the most studied endpoint 
for proton RBE. In vitro studies offer valuable information to 
study the basic biological responses to proton and photon radi-
ation. Challenges, however, remain on how to standardize the 
in vitro measurements,70 to allow inter-institutional comparison 
and to limit the large uncertainties in the current data. Stan-
dardization techniques have been outlined in a recent report by 
Paganetti et al.71 More genomically characterized human cancer 
cell lines and normal human tissue would be valuable. There 
is considerable RBE heterogeneity between cell lines, which 
may be due to defective DNA repair pathways. In both human 
and CHO cells, it has been shown that defective HR increases 

the RBE for low-LET proton radiation. Patient variability and 
genomic heterogeneity may thus also affect the proton RBE. It is 
however clear that in vivo proton RBE studies are necessary. This 
is especially the case when considering alternative endpoints to 
cell survival which are likely to be important for normal tissue 
complications.

The relevance to human clinical endpoints, cost as well as ethics of 
animal in vivo studies makes it less desirable than in vitro studies, 
however it would be helpful in validating proton RBE models. 
Human tumour responses could be determined in vivo using 
measurements such as TCD50 (the dose for 50% local control of 
the tumour) using human tumour cells implanted in immune-
deficient animals.

In healthy tissue especially, retrospective patient studies inves-
tigating toxicity (e.g. lung fibrosis, bone fractures) are currently 
limited by the number of patients, but as more data are collected, 
they could become a statistically viable technique of estimating 
proton RBE using alternative endpoints. Robust biomarkers could 
be used to identify individual patients with proton-susceptible 
tumours and thus identify information on patient radiosensitivity. 
Since interpatient variability in tumour and OAR radiosensitivity 
may have an impact on proton RBE, it would be important to iden-
tify these patients for any clinical studies.

Prospective, randomized controlled trials will remain the gold-
standard for gathering clinical evidence in radiation oncology, 
and the results from photon vs proton trials would allow a direct 
comparison of the response of tumours to the two modalities. 
It has been suggested that using a model-based trial would help 
to select a subpopulation of patients expected to experience 
a clinically significant benefit from protons over photons and 
could improve the trial design allowing differences to be better 
investigated.72,73 Even with reliable clinical data, RBE extraction 
from the sigmoid-shaped curves for tissue response will still be 
challenging.

Conclusion
Knowledge of RBE in proton therapy is required to utilize our 
existing knowledge and experience of photon therapy. However, 
despite decades of research, RBE remains poorly understood and 
a constant dose scaling factor of 1.1 has been adopted in the clinic. 
In an attempt to better predict variable RBE, especially to account 
for end-of-range effects, several biophysical models have been 
developed.

Empirical models are based mostly on clonogenic cell survival and 
the applicability of these data for patients is questionable, particu-
larly since some normal tissue toxicity endpoints may not be related 
to cell survival alone. Furthermore, phenomenological models may 
be able to predict RBE trends (e.g. RBE increasing with LET) but 
are unlikely to provide an in-depth understanding of the under-
lying physical and biological processes responsible. Ultimately, 
optimized PBT requires a multiscale understanding of RBE, incor-
porating the physical and chemical processes occurring on the 
subcellular scale with the initiated biological processes on both the 
cellular and intracellular (organ) scale.
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Although a true mechanistic modelling approach does not yet exist, 
a few mechanistic-inspired models have been developed for proton 
therapy. Linking the distribution of energy depositions on a nano-
scopic level to an RBE outcome in the clinic is still a challenging 

problem. Currently, there is still an inadequate amount of data on 
the clinical dose–response of human tissues on which to reliably 
derive RBE model parameters.
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