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Statement of search strategies used 
and sources of information
PubMed literature searches were carried out using the 
terms children, child, paediatric, infant, proton therapy, 
radiation therapy, supplemented with the appropriate terms 
of the different tumour types.

Introduction
More than 300,000 children worldwide are diagnosed with 
cancer every year.1 The most frequent paediatric cancers 
are leukaemias (31%), followed by brain tumours (about 
24%) and lymphomas (about 11%). The survival rates 
have improved significantly up to 80% nowadays.2 Radio-
therapy (RT) is recognized as an important therapeutic 
component in children with cancer and is frequently used 
in multimodal therapy strategies for solid tumours of the 
central nervous system (CNS), bone and soft tissue. In 
contrast, it is rarely used in leukaemia. In tumours such 
as lymphomas, nephroblastomas or neuroblastomas, RT 
is used according to risk grouping with regard to tumour 
stages, age, response to therapy and other parameters. For 
many patients, RT was deintensified over time establishing 
dose or volume reduction.3 In addition, the development of 
precise, highly conformal radiation techniques were able to 
further reduce dose to normal tissues and therefore the risk 

for therapy-related adverse events. Due to this evolution, 
RT is becoming better feasible in the treatment of paedi-
atric cancer, even for very young patients, if needed. Proton 
beam therapy (PBT) is one of the most attractive tools 
to deliver local therapy with minimal dose distribution 
to the uninvolved tissue and with reduced integral dose. 
Although, numerous dosimetric comparisons demonstrate 
the superiority of irradiation with protons when compared 
to photons, the corresponding risk reduction by protons 
compared to photons has to be proved biologically and, 
most notably, clinically.4 Since the majority of published 
studies compare the outcome of PBT with historical photon 
two-dimensional and three-dimensional cohorts, compari-
sons with state-of-the art photon techniques, such as inten-
sity modulated radiation therapy (IMRT), are performed 
predominatly in silico trials. Therefore, more clinical data 
and comparisons have to be collected in future in order 
to be able to draw reliable conclusions. This is a partic-
ular challenge, as randomized trials in children will not be 
carried out due to ethical.

PROTON BEAM THERAPY
The therapeutic potential of protons was first recognized in 
1946 in a report by Wilson5 and as early as 1954, the first 
patient was irradiated with protons at the University of 
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ABSTRACT

Proton beam therapy is a highly conformal form of radiation therapy, which currently represents an important thera-
peutic component in multidisciplinary management in paediatric oncology. The precise adjustability of protons results 
in a reduction of radiation-related long-term side-effects and secondary malignancy induction, which is of particular 
importance for the quality of life. Proton irradiation has been shown to offer significant advantages over conventional 
photon-based radiotherapy, although the biological effectiveness of both irradiation modalities is comparable. This 
review evaluates current data from clinical and dosimetric studies on the treatment of tumours of the central nervous 
system, soft tissue and bone sarcomas of the head and neck region, paraspinal or pelvic region, and retinoblastoma. To 
date, the clinical results of irradiating childhood tumours with high-precision proton therapy are promising both with 
regard to tumour cure and the reduction of adverse events. Modern proton therapy techniques such as pencil beam 
scanning and intensity modulation are increasingly established modern facilities. However, further investigations with 
larger patient cohorts and longer follow-up periods are required, in order to be able to have clear evidence on clinical 
benefits.
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California.6 Due to the physical properties of protons, the beam 
ensures a maximal dose delivery to the tumour region while 
protecting the surrounding healthy tissue from low and medium 
dose. Protons are characterized by a steep dose fall-off distal to 
the target volume and medium dose load along the travel path. 
These characteristics result in a reduction of the dose burden and 
consequently a reduction of the risks for long-term side-effects 
as well as secondary malignancy induction. However, the biolog-
ical effectiveness of protons is comparable to that of photons.7

PBT is considered as an innovative and conformal type of RT 
and has obtained increasing importance in oncology, espe-
cially for the treatment of childhood tumours as the immature, 
growing tissue of children makes them particularly vulnerable 
to radiation injury and the induction of secondary tumours8 
(Figure 1). Due to its superior dose conformity and lower normal 
tissue dose, PBT offers the chance of decreasing acute and late 
radiation-related sequelae, thus allowing a better Quality of Life 
(QoL) for childhood cancer patients and survivors.

To date, more than 60 proton beam facilities are operational and 
even more are under construction or in planning status world-
wide (http://​ptcog.​web.​psi.​ch/​patient_​statistics.​html). Different 
PBT application modes are in use, such as passive scattering, 
uniform-scanning and pencil beam-scanning (PBS) techniques. 

For passively scattered protons, individually manufactured hard-
ware devices (collimators and compensators) are needed to fit 
the beam to the target volume. PBS protons are essential for 
the application of intensity modulated PBT (IMPT), the most 
conformal proton modality particularly in larger and complex 
shaped volumes.

Paediatric PROTON BEAM THERAPY: CLINICAL 
EXPERIENCES
Due to the improved sparing of normal tissue, an increasing 
number of children are receiving PBT resulting in a growing 
body of literature and clinical experiences (Figure  2a). Paedi-
atric patients with tumours of the CNS, such as ependymomas, 
medulloblastomas, craniopharyngiomas, germinomas and low-
grade gliomas, comprise now a large proportion of patients 
receiving this treatment modality.9 Similarly, in non-CNS 
tumours, PBT is applied for a significant number of paediatric 
patients with soft tissue and bone sarcomas of head and neck 
(H&N) as well as paraspinal or pelvic regions, for retinoblas-
tomas and neuroblastomas.10 Though clinical experience on 
PBT in paediatric oncology is now starting to emerge, clinical 

Figure 1.  Positioning and immobilization of a child with an 
anaplastic ependymoma treated with pencil beam scanning 
proton therapy.

Figure 2.  Evidence of paediatric PBT. All restrospective and 
prospective studies published in PubMed in the last ten years 
(2009–2019) on paediatric proton therapy are presented 
(a) with regard to mean number of patients and median FU 
period (b); FU (mo), follow up in months; CNS, central nervous 
system; FU, follow-up; PBT, proton beam therapy.
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evidence is still scarce due to small cohorts and short follow-up 
times (Figure 2b). Potential advantages and previous experiences 
in PBT for the most common indications of childhood tumours 
are presented below.

CNS—tumours
Treatment of brain neoplasms represents a particular challenge 
due to the sensitivity of various important critical anatomical 
structures (Figure 3). Late radiation-related adverse events can 
comprise neurological deficits, endocrine dysfunction, growth 
retardation, hearing impairment, vascular disorders, social 
and cognitive problems as well as secondary cancer incidence.8 
Furthermore, an increased risk of cardiomyopathy or coronary 
vascular impairment arise when craniospinal irradiation (CSI) is 
performed.11 Several authors have reported a beneficial clinical 
outcome in terms of reduced acute toxicity and less late effects 
after PBT for embryonal tumours of the CNS, ependymomas, 
gliomas, craniopharyngiomas, germ cell tumours, meningiomas, 
pituitary adenomas and pineoblastomas.12–17

Medulloblastomas
PBT has gained significant importance in the treatment of paedi-
atric medulloblastomas (MB) because of the typically young age 
at presentation and the need for CSI due to frequent dissemina-
tion throughout the neuroaxis. A dosimetric comparisons with 
conventional irradiation techniques demonstrated that protons 
could not only eliminate the exit dose into chest, abdomen and 
pelvis but also reduced the dose to the brain and to critical CNS 
structures like the cochlea, the pituitary and the hypothalamus.18 
Likewise, a dosimetric comparison of treatment plans for 18 MB 
patients revealed that CSI with protons reduced normal tissue 
dose compared to CSI with photons.19 However, both studies 
compare protons with outdated two-dimensional photon tech-
niques. Modern photon techniques such as IMRT would achieve 
a more conformal coverage of the target volume. Still, compared 
to IMRT, PBT showed a measurable dose attenuation for non-
target tissues outside the clinical target.20 Furthermore, the use 
of protons in CSI reduced the estimated risk of secondary cancer 
compared to conventional photons as revealed by compara-
tive dose studies for paediatric MB patients.21,22 Even though, 
similar survival outcome and patterns of failure after proton- or 

photon-based RT in children with MB are described in various 
studies,23–25 others have confirmed the benefit of PBT clinical 
outcomes concerning long-term toxicity. Within a small cohort 
of 15 very young MB patients (<60 months) receiving chemo-
therapy followed by PBT, even including CSI in some cases, only 
2 of 15 patients experienced ototoxicity and 3 of 15 required 
hormone replacement. Median CSI dose for this cohort was 
21.6 Gy (relative biological effectiveness, (RBE) followed by a 
median boost dose of 54.0 Gy (RBE). At a medium follow-up 
(FU) of 39 months 13 patients were alive without evidence of 
disease recurrence.26 Low incidences of early high-grade ototox-
icity were also observed in a cohort of 23 children with MB at a 
median age of 6 years (range, 3–16) who received PBT including 
CSI.27 Another prospective study of 59 paediatric patients with 
MB highlighted the benefit of protons on long-term toxicity for 
hearing, neuroendocrine and neurocognitive deficits compared to 
historical controls. The authors observed a lower decline of intel-
ligence (IQ), no cardiac, pulmonary or gastrointestinal sequelae 
after PBT. Median FU was 7.0 years, median CSI dose applied 
was 23.4 Gy (RBE) and a median boost was 54.0 Gy (RBE).24 A 
multi-institutional cohort study on 77 children with standard 
risk MB reported a reduced risk of hypothyroidism, sex hormone 
deficiency and a reduced requirement for any hormone replace-
ment therapy after irradiation with protons when compared to 
photons.28 Apart from the above presented data, which prove a 
benefit of PBT compared to RT with photons, comparable rates 
for CNS and brainstem injury were reported between proton and 
photon irradiation. In the report by Giantsoudi et al, 111 chil-
dren with MB were treated with protons and the 5 year cumu-
lative incidence of CNS injury was 3.6% at a median FU of 4.2 
years, similar to historical data with photons.29 Likewise, in 84 
children with MB, similar incidence of ototoxicity was reported 
when receiving PBT vs photon-RT.30

In summary, PBT for MB is considered as a chance to broaden 
the therapeutic window, especially with regard to young ages. 
Results on safety and efficacy are promising, particularly with 
regard to reducing late sequelae and the risk of secondary 
malignancies.

Ependymomas
Ependymomas are one of the most common tumours in children 
under 10 years of age, predominantly occurring in the brain. For 
paediatric ependymomas, best survival outcomes are reported 
after maximal surgical resection followed by focal cranial RT.31 
A series of first clinical experiences in the treatment of paediatric 
intracranial and spine ependymomas with PBT indicated safety 
and effectiveness of postoperative PBT with low toxicities and 
similar disease control when compared to photon irradiation.32–38 
In a cohort of 179 children with non-metastatic WHO Grade II/
III intracranial ependymomas, 3 year local control (LC)-, proges-
sion free survival (PFS)- and overall survival (OS)-rates of 85%, 
76% and 90%, respectively, were demonstrated with no unex-
pected toxicity.32 In a cohort of 79 children diagnosed with local-
ized intracranial ependymomas treated with either IMRT or PBT, 
3 year LC-, PFS- and OS-rates of 86%, 82% and 97%, respectively, 
were reported for proton irradiation and were comparable for 
both radiation modalities.33 50 paediatric ependymoma patients 
(WHO II–IV) treated post-operatively with PBT showed 5 year 

Figure 3.  Pencil beam scanning proton therapy plan (sagittal 
(a) and axial (b) view) for a child with an ependymoma (Ray-
Station®). Red area: covered by 95% isodose line, yellow: 90% 
isodose, light blue: 50% isodose, dark blue: 20% isodose.
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LC-, PFS- and OS-rates of 78%, 60% and 84%, respectively.34 
Considering the high grade histology in 92% of patients and 
the number of patients with residual tumour ≥1.5 cc (18%), this 
outcome was still comparable to published reports of photon-
treated cohorts. Furthermore, differences in the overall treat-
ment like administration of additional chemotherapy have to be 
taken into account when evaluating reported outcome. Another 
study showed that PBT could reduce the dose to normal brain 
by 28–64% (median, 47%) compared to photon RT for paediatric 
WHO Grade II/III ependymomas. In their cohort of six patients 
with a median age of 5 years (range, 2–6), the median FU period 
was 24.5 months (range, 13–44) and the median radiation dose 
was 56.7 Gy (range, 50.4 to 61.2). At last FU all patients were alive 
with only one patient having experienced a local recurrence. All 
patients developed an Alopecia and mild dermatitis, but no severe 
toxicity was reported.35 The results of 70 paediatric patients with 
ependymomas suggested effective disease control using post-
operative PBT with 3 year LC-, PFS- and OS-rates of 83%, 76% 
and 95%, respectively, few overall toxicities and no case of brain-
stem necrosis.36 In this cohort the median age at diagnosis was 
38 months (range, 3 months–20 years) and the median PBT dose 
delivered was 55.8 Gy (range, 50.4–60.0) and the median FU time 
was 46 months (range, 12 months – 11.7 years). Normal intelli-
gence was maintained and only a few patients developed growth 
hormone deficiency, hypothyroidism, or hearing loss after PBT.36

Since normal treatment effects observed in post-therapy imaging 
are difficult to distinguish from tumour recurrence, Gunther et 
al retrospectively evaluated imaging changes after post-operative 
PBT and IMRT in a cohort of 72 children with non-metastatic 
intracranial ependymomas. Imaging changes occurred in 6 
IMRT and 16 PBT patients being symptomatic in 3 IMRT and 
4 PBT patients, respectively. Grade 3 and 4 changes did occur 
in 4 and 2 patients in the PBT cohort only. One IMRT and one 
PBT patient each died due to disease progression and radiation 
necrosis, respectively. More aggressive treatment appears to be 
associated with an increased incidence of imaging changes. Not 
only age of diagnosis ≥3 years and time of radiation ≥3 years 
but also subtotal resection (STR) were associated with fewer 
imaging changes. Nevertheless, patients with imaging changes 
had a 4 year OS-rate of 90.4% compared to 82% in those without 
changes. The 4 year OS-rate of the individual PBT- and IMRT-
cohorts were 87.5% and 78.8%, respectively, considering that 
the IMRT group had a higher percentage of STRs than the PBT 
group (20% vs 3%).39

More recently, re-irradiation has been established for local recur-
rences and was evaluated in several retrospective studies.40–42 
One study demonstrated safety and efficacy of PBT for re-irra-
diation of intracranial ependymomas.43 CSI with protons in the 
case of disseminated disease recurrence has also been described 
with increased risk–benefit ratio.44 In summary, PBT is consid-
ered as a safe and effective treatment modality for paediatric 
ependymomas with low toxicities and similar disease control 
when compared to photon irradiation.

Low-grade gliomas
Low-grade gliomas (LGG) account for about 30%–40% of 
primary brain tumours in childhood.45 The median age of onset 

of the disease is 5–7 years. LGG grow slowly, displace locally 
and have an excellent prognosis for long-term survival. Surgery 
and RT are of major importance for local control, even if more 
recently systemic therapy was introduced to avoid or delay RT 
whenever possible in order to protect young children from signif-
icant late effects. PBT as a highly conformal RT technique was 
considered increasingly attractive for LGG in order to minimize 
dose burden in LGG patients. LGG is the fourth most common 
paediatric tumour to be treated with PBT. Although, dosimetric 
studies showed that PBT can reduce the low/intermediate radi-
ation dose to uninvolved tissue in children with LGG20,46—clin-
ical data on efficacy and toxicity remain limited.

In a prospective study, 174 children with non-metastatic LGG 
patients received PBT at a median age of 9 years (range, 2–21). 
The median FU was 4.4 years (range, 0.5–11.4) and 5 year LC-, 
PFS- and OS-rates of 85%, 84% and 92%, respectively, were 
described. Acute toxicities occurred to a small extent, since only 
22 patients had nausea or vomiting, while 2 patients required 
corticosteroids. In term of late sequelae, an increase of 1% and 
2% in the rate of visual deterioration and hearing loss, respec-
tively, was observed after PBT, a positive result compared to 
those reported after photon therapy.47 Another study of 32 paedi-
atric LGG patients demonstrated that PBT was effective and, 
depending on the tumour location, that it could spare dose to the 
temporal lobe, hippocampus and hypothalamic–pituitary–ad-
renal axis, correlating with less endocrine and neurocognitive 
complications. In this cohort the median age at diagnosis was 
7.4 years (range, 0.8–20.4) and the median interval to radiation 
treatment was 2.1 years. The median FU time and radiation dose 
was 7.6 years (range, 3.2–18.2) and 52.2 Gy (RBE) (range, 48.6–
54), respectively. 6 year and 8 year PFS-rates of 89.7% and 82.8%, 
respectively, were reported.48

Nevertheless, since pseudoprogression is a well-known phenom-
enon observed after RT in paediatric LGG patients, it should be 
considered when assessing the response to RT in LGG patients 
within the first year after RT. In a series of 83 paediatric LGG 
patients receiving IMRT (32) or PBT (51) with a median radi-
ation dose of 50.4 Gy (RBE) (range, 45–59.4) significant rates 
of pseudoprogression were observed, particularly in the PBT 
cohort. However, 5 year LC-rates were 78% for the IMRT- and 
90% for the PBT-cohort, with a trend toward improved LC with 
PBT (p = 0.099). The median FU was 5.6 years for the whole 
study cohort, with 6.1 and 4.2 years for the IMRT- and the PBT 
cohort, respectively.49

In summary, the presented data suggest the potential benefit 
of using PBT in the management of paediatric LGG. 5-year 
LC-rates were encouraging with only limited acute toxicity and 
reduced risk for endocrine and neurocognitive complication.

Sarcoma
Sarcomas are a heterogeneous group of malignancies, that origi-
nate from soft tissues (84%) or bones (14%).8 Although they can 
affect all age groups, they occur more frequently in the paediatric 
age group. In recent years, PBT was introduced into the multidis-
ciplinary management in order to reduce the risk of side-effects 
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(Figure  4). Though evidence is still scarce, published data on 
clinical outcomes in paediatric patients treated with PBT are 
encouraging.50–54 Mainly, sarcomas of the central axis, either in 
H&N region, spine or pelvis have been treated increasingly with 
PBT worldwide.

Rhabdomyosarcomas
Rhabdomyosarcoma (RMS) is a highly malignant, locally inva-
sive tumour and the most common soft-tissue sarcoma in 
childhood. The two most common histopathological subtypes, 
embryonal (75%) and alveolar (16%), differ in terms of age distri-
bution, primary tumour sites, propensity for metastases and 
long-term outcome.55 RMS can occur all over the body, however, 
most common sites are H&N and genitourinary/pelvic.56 25% 
of the H&N–RMS show a parameningeal localization that rarely 
allows extensive surgery57 and recur early with relatively poor 
prognosis.50 RMS are treated in a multimodality approach, with 
RT playing an important role even in very young children. Local 
treatment strategies vary according to primary tumour type/
site, age, histopathology and risk grouping. Local recurrence is 
the leading pattern of failure with relapse rates of 15%–37%.58 
Advances in radiotherapeutic techniques enabled a reduction 
of late sequelae as endocrine deficits, facial hypoplasia, visual 
or orbital complications, hearing loss, neurocognitive deficits 
and bone retardation.57,59 In several studies on paediatric RMS 
at different sites60–62 PBT offered dosimetric advantages over 
photon-based IMRT with improved sparing to normal tissues 
and critical structures.

Clinical experiences in the treatment of paediatric RMS with PBT 
indicated safety and effectiveness with low acute toxicities and 
disease control comparable to photon irradiation.50,52,57–59,61,63,64 
A retrospective observational study reported the clinical 
outcome of 55 children with a median age of 5 years (range 0–19) 

who received PBT for RMS in the H&N region (40), prostate (8) 
and others (7) with doses ranged from 36 to 60 Gy. The median 
FU time was 24.5 months (range, 1.5–32.3). 16% of the patients 
developed radiation-related acute toxicity of Grade ≥ 3, but 
recovered well after PBT. 87% of the patients experienced hema-
tologic toxicities of Grade ≥ 3, but very likely not only related to 
PBT. On a short term, PBT achieved the same treatment effect 
as photon RT.59 In another cohort of 39 children with PM–RMS 
after a mean FU time of 41 months (range, 9–106), 5 year OS-rate 
of 73% with a crude failure rate of 23% was achieved. 89% of 
failures were local relapses. A delay of RT in PM–RMS seemed 
to compromise clinical outcome.50 Leiser et al reported that PBT 
was well tolerated with no treatment interruption or acute Grade 
>3 toxicity observed in a cohort of 83 children receiving PBT 
for embryonal (74) and alveolar (9) RMS at different sites. The 
mean FU time was 55.5 months, the 5 year PFS-rate was 78.5%. 
16 children showed tumour recurrence or progression, 88% 
were in-field failures. Following univariate analysis, tumour site, 
Intergroup Rhabdomyosarcoma Studies Group Stage, Children’s 
Oncology Group-Risk group and tumour size were significant 
predictors of LC.63 A Phase II trial involving 57 patients with a 
median age of 3.5 years (range, 0.6–19.5), receiving a median 
proton radiation dose of 50.4 Gy (range, 36–50.4) and a mean FU 
time of 47 months (range, 14–102), described 5 year event-free 
survival (EFS-), OS- and LC-rates of 69%, 78% and 81%, respec-
tively. 16 patients recurred, 10 of them locally.52 Although EFS-, 
OS- and LC-rates were similar to those observed in comparable 
photon studies, acute and late toxicity rates were favourable.52 
Further clinical data demonstrated a reduction in late effects in 
a cohort of 17 patients with a median age of 3.4 years (range, 
0.4–17.6) receiving PBT for PM-RMS. After a mean FU time 
of 5.0 years, in the 10 patients without recurrence, late effects 
related to PBT included reduced height velocity (3), endocrinop-
athies (2), mild facial hypoplasia (7), failure of permanent tooth 
eruption (3), dental caries (5), and chronic nasal/sinus conges-
tion (2).57 Another study reported that PBT is well tolerated in 
a patient population of 7 children with bladder/prostate RMS 
treated with PBT at a median age of 30 months (range, 11–70) 
with doses ranging from 35 to 50.4 Gy. The mean FU time was 27 
months (range, 10–90).61 To summarize current literature, PBT 
is widely used for paediatric RMS, particularly for paramenin-
geal, paraspinal and pelvic sites. So far, acute and late toxicity was 
low and local control rates comparable to conventional radiation 
with photons be reported.

Ewing sarcoma
Ewing sarcomas (EWS) are aggressive, solid malignant tumours 
of childhood and adolescence with a peak incidence in the age 
group 10–15 years65. They predominantly occur in the bone, 
rarely in soft tissues. Most commonly affected site is the pelvis, 
followed by the long tubular bones of the femur, tibia and ribs. 
The multimodal treatment typically consists of an induction 
chemotherapy followed by local therapy by surgery with or 
without preoperative or adjuvant RT. If only biopsy is performed, 
definite RT can be a good option to achieve local control.66 After 
local therapy, chemotherapy is continued. Most recent data for 
EWS include results after photon-irradiation, reports on PBT in 
EWS are still limited.

Figure 4.  Pencil beam scanning proton therapy plan (sagittal 
(a), axial (b) and coronal (c) view) for a 11 year old child with 
an Ewing sarcoma of the thoracic (RayStation®). Red area: 
covered by 95% isodose line, yellow: 90% isodose, light green: 
80% isodose, dark green: 60% isodose, light blue: 40% iso-
dose, dark blue: 20% isodose.
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One recent study examined the role of PBT for 15 paediatric 
EWS patients with a median age of 4 years (range, 1–14). PBT 
was delivered with a median dose of 55.8 Gy (range, 45.0–55.8). 
The 4 year OS- and EFS-rates were 94.6% and 84.8%, respec-
tively, after a median FU of 52 months (range, 12–90). At start 
of PBT, either complete response (2) or partial response (13) 
was achieved. Generally, PBT was well-tolerated in this cohort 
with only few acute adverse effects.67 Furthermore, clinical 
outcomes of 38 children with EWS treated with PBS–PBT were 
published. The median age was 9.9 years (range, 0.4–38.9) and 
the median dose applied was 54.9 Gy (RBE) (range, 45.0–69.6). 
The estimated 5 year LC- and metastasis-free survival-rates were 
81.5% and 76.4%, respectively. PBS protons were associated 
with a low prevalence of high-grade late toxicity.65 In a cohort 
of 343 paediatric patients with different tumour types including 
30 EWS patients received PBT. The estimated 1-, 3-, and 5 year 
OS-rates were 88.6%, 73.1%, and 56.8%, respectively. In the EWS 
subgroup, toxicity ≥3 occurred in four patients. Grade III toxic-
ities (gastic ulcer and myelitis) and Grade IV toxicities (myelitis 
and dysopia) occurred in two patients each.68 Another retro-
spective analysis investigated 30 children with EWS at different 
sites.66 The median age of the cohort was 10 years, the median 
RT dose applied was 54 Gy (RBE). After a median FU of 38.4 
months, 3 year EFS-, LC- and OS-rates were 60%, 86%, and 89%, 
respectively. In summary, early results suggest that PBT for EWS 
is well-tolerated with encouraging tumour control rates.

Eye tumors
Treatment of eye tumours is one well-recognized domain of PBT. 
Historically, PBT was used mainly for uveal melanomas using 
passive scattering technique. It was demonstrated by various 
groups, that intensive local dose regimens were able to achieve 
high local control rates while preserving the eye and even vision 
for the majority of patients, despite the close proximity of crit-
ical structures to the target.69 Therefore, PBT was understood 
to be an attractive option to treat eye or orbit. In children, one 
major challenge is the treatment of retinoblastomas as it occurs 
in very young age.70 In addition, RB patients are prone to develop 
secondary malignancies due to genetic predisposition.70

Retinoblastoma
Retinoblastoma (RB) is the most common intraocular childhood 
malignancy with sporadic (60%) and inherited (40%) forms.70 
RB occurs unilaterally in 60%–70% of cases and bilaterally in 
30%–40% of cases.71 RT has a long history in the treatment of 
RB and was used with great success. However, RT was identi-
fied to increase the risk of secondary cancers particularly in 
children with hereditary RBs. And, RT will also have negative 
effect on the growth of the orbital soft tissue and bone. There-
fore, it is currently performed only in second or third line after 
treatment failure or in very large tumours and high stages.72 PBT 
was expected to reduce the probability of radiation-induced late 
effects, particularly secondary sarcomas. So far, tumour control 
rates with PBT were similar to historical series.

In a study on six patients, three children with RB received PBT 
after primary chemotherapy. All three patients were enucleated 
after PBT due to tumour progression. Since radiation-related 

orbital and periorbital complications may occur, in all three 
cases a significant reduction of enophthalmia and orbital volume 
(OV) developed only after enucleation of the irradiated eye. 
Therefore, it is difficult to assess the long-term effects of PBT 
alone without considering the contribution of enucleation to OV 
loss..73 Recently, clinical outcomes of 49 children with RB treated 
with PBT were published. The median age at diagnosis in this 
cohort was 6 months and the median FU time was 8 years (range, 
1–24). In 41 patients, tumour was bilateral and eleven of them 
underwent bilateral PBT with a median radiation dose of 44 Gy 
(RBE). Out of these 60 irradiated eyes from 41 patients, 11 eyes 
ultimately required enucleation. During FU, no patient died of 
disease, no patient developed either dissemination or an in-field 
second malignancy. Only one patient with hereditary disease 
developed an osteosarcoma of the femur 10 years after comple-
tion of RT.74 Recently, 12 additional paediatric RB patients were 
retrospectively studied by the group of Mouw et al. The median 
age at diagnosis in this cohort was 3 months (range, 1–20), the 
median PBT dose was 44 Gy (RBE) and the mean FU period was 
12.9 years (range, 4.8–22.2). However, all patients had bilateral 
disease, but only two patients underwent bilateral PBT. In 3 of the 
14 eyes treated with PBT enucleation was required due to disease 
progression. Seven of the non-enucleated eyes treated with PBT 
showed no or only mild visual impairment. None of the patients 
had abnormal reproductive hormone levels and all patients had 
normal sexual development.75 Another retrospective study of 86 
RB patients receiving proton (55) or photon (31) RT, compared 
the risk of second malignancy between both RT modalities. The 
median age at treatment was 14.8 months (range, 0.9 months–
12.1years) in the proton cohort and 10.0 months (range, 7 days–
4.7 years) in the photon cohort, respectively. The median FU 
was 6.9 years (range, 12.4 months–24.4 years) for protons and 
13.1 years (range, 17.1 months–23.9 years) for photons. In the 
proton cohort, one secondary malignancy (osteosarcoma of the 
distal femur) was diagnosed 9.0 years after RT. In the photon 
cohort, four in-field secondary malignancies (orbital sarcoma, 
maxillary sarcoma, temporary bone sarcoma and glioblastoma 
multiforme) developed 4.9–13.1 years after RT.76 Another study 
reported on three patients with sporadic RB (1, 4 and 5 years) 
which were managed with PBT due to failure of other treatments. 
PBT was effective in all three cases. Nevertheless, in two cases the 
tumour recurred after a few months, resulting in enucleation.77 
In summary, PBT as part of multimodal therapy seems to offer 
a chance in RB patients to reduce the risk for enucleation, visual 
impairment and secondary malignancies.

Conclusion
To date, the clinical results for high-precision proton therapy 
are promising, both with regard to tumour control and to the 
reduction of adverse events. However, further investigations 
with larger patient cohorts and longer follow-up are required in 
order to define the role of proton beam therapy for late effects 
reduction. Still, it can be assumed that PBT will be used more 
and more frequently in children with cancer and will represent 
an essential component of the multidisciplinary care for children 
suffering from cancer in future. To date, activities are ongoing 
to launch international registries for children collecting data on 
photon and proton RT with respect to adverse events. This seems 
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to be an important step forward in order to gain more knowledge 
on RT effects and benefits of modern RT technologies.
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