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Abstract

In this work, we developed an automatic convergence procedure for k-points and plane wave cut-

off in density functional (DFT) calculations and applied it to more than 30000 materials. The 

computational framework for automatic convergence can take a user-defined input as a 

convergence criterion. For k-points, we converged energy per cell (EPC) to 0.001 eV/cell tolerance 

and compared the results with those obtained using an energy per atom (EPA) convergence criteria 

of 0.001 eV/atom. From the analysis of our results, we could relate k-point density and plane wave 

cut-off to material parameters such as density, the slope of bands, number of band-crossings, the 

maximum plane-wave cut-off used in pseudopotential generation, crystal systems, and the number 

of unique species in materials. We also identified some material species that would require more 

careful convergence than others. Moreover, we statistically investigated the dependence of k-points 

and cutoff on exchange-correlation functionals. We utilized all this data to train machine learning 

models to predict the k-point line density and plane-wave cut-off for generalized materials. This 

would provide users with a good starting point towards converged DFT calculations. The code 

used, and the converged data are available on the following websites: https://jarvis.nist.gov/, and 

https://github.com/usnistgov/jarvis.

Introduction

Density functional theory (DFT) is one of the most successful quantum mechanical theory 

based tools to characterize properties of materials[1–3]. Although density functional theory 

is exact in theory, its implementation requires several approximations such as the choice of 

basis-set, exchange-correlation[4–6] functional, mesh-size for Brillouin zone[7, 8] (BZ) 

integration and plane-wave cut-off[1, 9] for plane-wave basis. A systematic statistical study 

of how these approximating “parameters” should be chosen is still missing. In this work, we 

focus on two of those approximations: the plane wave cutoff and the k-point density. They 

are examples of approximations that can be improved in a controlled, systematic way by 

increasing the computational cost of the calculations. In a plane wave basis code the more 

plane waves we include, the better the wavefunction is modeled[1, 9], and the plane wave 

cut-off is the parameter that controls such truncation. Similarly, the k-point mesh is the 
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parameter that controls the BZ integration and can play a huge role in getting accurate 

results, especially for metals.

The total energy of the system is the most important output of a DFT calculation, and it is 

obtained by numerically integrating the Hamiltonian over the Brillouin zone. The k-points 

are a generic way to discretize such as integral. The quality of the results heavily depends on 

the number of these points on the mesh-grid as well as the method generating the mesh-grid 

itself used in such integration[10, 11]. The number of points can be arbitrarily increased to 

increase the precision of calculations[12]. However, the higher the number of irreducible k-

points, the higher the computational cost. Therefore, finding the optimum number of k-

points to determine the total energy within a specified tolerance (i.e. “converging” on the k-

point mesh) is extremely important. While most of the important physical quantities are 

related to energy differences (such as elastic constants and phonons), having high precision 

on the total energy imposes a stricter requirement than converging energy differences 

because high precision in energy differences might occur due to error cancellations. In 

principle, each property under investigation, such as bulk modulus or phonons, should be 

converged directly on k-points and cut-off. However, this procedure is too computationally 

expensive for a high throughput approach.

There are several methods to identify mesh for BZ integration, one of the most popular 

being Monkhorst-Pack method[7, 8]. Similarly, in principle, any wave function can be 

described by the superimposition of an infinite number of plane waves. However, 

computational constraints enforce truncation of the such an expansion i.e. all plane waves 

with energy above a preset threshold are ignored. Again, this truncation leads to an error in 

the determination of the total energy. Such an error can be reduced to be below a chosen 

tolerance by increasing the cutoff value (“convergence” in cutoff), however increasing the 

cutoff value significantly increases the computational cost. More details about the k-point 

and cut-off inter-dependence are given in the method section. Generally, these parameters 

are converged before carrying out any DFT calculations. However, recently, large DFT 

databases such as materials-project (MP)[13], open quantum materials database (OQMD)

[14] and AFLOW[15] use fixed parameters for all the materials primarily due to their focus 

of quick screening. Specifically, they generally use 520 eV as plane wave-cutoff (with PAW 

pseudopotentials), and 1000/atom to 8000/atom k-points. Hence, it is important to 

understand the extent to which the choice of identical parameters for all materials is 

generalizable.

A recent work of Lejaeghere et al.[16] shows the reproducibility in DFT calculations across 

different codes, but a systematic study of the effect of plane wave parameters such as plane 

wave cut-off and k-points is still missing. It has been thought for years that no convergence 

plane wave cut-off is needed because it is determined by the elemental cut-off during PP 

generation. However, several recent studies showed[17–24] very high (up to 1400 eV[17–

24]) plane wave-cutoff and very high k-points grid densities are needed for some materials 

for accurately predicting their elastic constants[24–26], phonons[12] and magnetic 

properties[27]. Some important previous works in elaborating the effects of convergence 

were done by Milman et al[28] and by Payne et al[29]. Milman et al[28] investigated the 

effect of finite basis correction on the equation of state properties. Payne et al[29] discussed 
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the correlation between the k-points and plane wave-cutoff when determining total energies 

in the particular case of CoSi2. Well-established databases such as materials project (MP), in 

fact, recommend increasing the cut-off and k-points for elastic constant[30] and 

piezoelectric calculations[31]. MP uses 7000 per-atom for elastic constant calculations. 

OQMD performs a set of convergence for few cases for cut-off and k-points convergence.

It is challenging to optimize all the parameter settings in DFT calculations when populating 

a high-throughput DFT database due to the associated computational cost. However, as a 

starting point, we focused on k-point density and cutoff convergence, looking for a sweet 

spot in computational cost and precision in this work. While automation techniques are 

extensively used in the field of property calculations, an automatic procedure for finding 

optimum parameters in the initial set-up of DFT is still missing. Here, we developed such a 

set-up and used it to identify converged k-point and energy cutoff parameters for at least 

30000 materials. The property calculations performed with such parameters have populated 

the JARVIS-DFT database (https://jarvis.nist.gov). In fact, we find that simple energy 

convergence results can lead to accurate energetics[32], structural[32], optoelectronic[33] 

and elastic[34] properties. Although in this work we focused on total energy as the property 

of convergence, our flexible computational framework can be used to investigate the 

convergence of any other property. Similarly, it can be easily modified to investigate other 

DFT parameters, like smearing, for instance. The computational framework is publicly 

available at https://github.com/usnistgov/jarvis/.

Lastly, we used the converged k-points and energy-cutoff values to train machine learning 

models, so that users could predict these parameters for virtually any material with high 

precision before carrying out any DFT calculations. The trained machine learning models 

(JARVIS-ML) is also available publicly at https://www.ctcms.nist.gov/jarvisml. The training 

set included calculations for 30000 bulk materials available in JARVIS-DFT database. It 

must be noted that plane wave cut-offs are strongly correlated to the chosen pseudopotential, 

so our ML model predictions for cut-off values are only applicable to projector-augmented 

wave (PAW) calculations. The information available through the website and computational 

framework can be used as a fundamental tool for setting up DFT calculation before carrying 

out any DFT calculations.

Method:

The DFT calculations are performed using the Vienna Ab-initio Simulation Package (VASP)

[35, 36] and the projector-augmented wave (PAW) method[5]. The list of PAW potentials 

used in this work is provided in the supplementary section. Please note commercial software 

is identified to specify procedures. Such identification does not imply recommendation by 

the National Institute of Standards and Technology.

In general, the DFT wavefunction is expanded in terms of a plane wave basis set:

ψ(r) = ∑GcGei(G + k)r
(1)
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where, G is the reciprocal wave vector, k is k-point vector, CG are the expansion coefficients. 

There are an infinite number of allowed G, but the coefficient CG becomes smaller and 

smaller as G2 becomes larger and larger. The cut-off energy Ecut is defined[37] as:,

Ecut = ℏ2

2m Gcut
2 (2)

with |G + k| < Gcut

As shown in eq. 2, the k and G are inter-dependent, which means that the number of plane 

waves needed is different at each k-point. However, in our HT calculations, we decouple k 
and G during the convergence procedure due to computational cost. This way we might 

overestimate them, but the procedure is much faster and suitable for HT approaches. All 

crystal structures and their properties used in this work are available at JARVIS-DFT 

database. We used 0.001 eV per cell as convergence criteria for both k-points and energy 

cutoff. However, this value can be easily changed in the automatic procedure, because DFT 

calculations of some properties may require more stringent tolerances.

The k-points convergence procedure takes full advantage of the “Automatic k-mesh 

generation” as defined in the VASP manual. Here a “k-points line density” (L) is defined, 

which is related to the reciprocal lattice vectors by:

k = b 1
n1
N1

+ b 2
n2
N2

+ b 3
n3
N3

, n1 = 0…, N1 − 1, n2 = 0…, N2 − 1, n3 = 0…,
N3 − 1

(3)

N1 = max 1, L × b 1 + 0.5 (4)

N2 = max 1, L × b 2 + 0.5 (5)

N3 = max 1, L × b 3 + 0.5 (6)

Where b i are the reciprocal lattice vectors, and b i  their norms.

We use the Monkhorst-Pack scheme to generate k-points, but after the generation, the grid is 

shifted so that one of the k-points lies on the Г-point. We included the gamma-point because 

we were interested in computing quantities that require gamma-point contribution, such as 

optical transition for our optoelectronic database, gamma-point phonons for our elastic 

properties, finding multiferroic materials which have negative phonons at the gamma-point. 

The k-points are continuously stored in memory, to check that each of the new k-points 

generated by equation 3 is unique. The k-points line density starts from length 0, with Г-

point being the only k-point and is increased by 5 Å at each successive iteration if the 
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difference between the energy computed with the new k-points and the one computed with 

previous k-points is more than the tolerance. After the convergence with a particular 

tolerance, we compute five extra points to further ensure the convergence. This procedure is 

repeated until convergence is found for all 5 extra points. A similar convergence procedure is 

carried out for the plane wave cut-off until the energy difference between successive 

iterations is less than the tolerance for 6 successive points. The plane wave cut-off is 

increased by 50 eV each time, starting from 500 eV. In both convergence procedures, we 

perform only single step electronic relaxation, i.e. no ionic relaxation is considered. When 

starting the cut-off energy convergence, we used a minimal k-point length of 10 Å. 

Similarly, for the k-point convergence we started with a cut-off of 500 eV. Note that 

complete ionic and electronic relaxation for determining converged parameters might be 

needed for very sophisticated calculation (such as Raman intensity calculation), but those 

calculations are beyond the scope of this work.

We mainly used OptB88vdW method[38, 39] for our calculations, but we also carried out 

about 83 local density approximation (LDA) and generalized gradient approximation with 

Perdew-Burke-Ernzerhof (GGA-PBE)-based[4] calculations for benchmarking purposes. 

The plane wave cutoff is converged using the same procedure as for the 3D bulk materials. 

In this work, we used Gaussian smearing (with 0.01 eV parameter) which is recommended 

by several DFT codes, because it is less sensitive than other methods to determine partial 

occupancies for each orbital. This leads to an easier DFT-SCF convergence, especially when 

the materials are not apriori known to be a metal or insulator, which is always the case in 

this work. However, it is to be emphasized that, in principle, k-points and smearing 

parameters should be converged together, but this requires a very computationally expensive 

workflow. For this reason, we choose to converge k-points and cut-off only.

In this work, we related the number of band-crossings at the Fermi level and average slope at 

the crossings to the number of k-points needed to achieve convergence hoping to facilitate a 

reasonable guess of the required k-points. The slope at each band-crossing was obtained 

averaging the slope of two straight lines, one connecting the energy value in the band closest 

to the crossing to the one just before and one connecting the energy value in the band closest 

to the crossing to the one just after it. Slopes at all crossing were then averaged, resulting in 

a single, averaged value for each metallic material. At the time of writing, the JARVIS-DFT 

database consists of 30039 bulk and 816 monolayer 2D materials, with formation energies, 

OptB88vdW (OPT) and TBmBJ (MBJ)[40] bandgaps and static dielectric constants, bulk 

and shear modulus and exfoliation energies for 2D layered materials. The atomic structures 

in the JARVIS-DFT initially were obtained from the materials-project database (MP) which 

again holds origin in the Inorganic Crystal Structure Database (ICSD)[41]. After obtaining 

the MP-PBE[4] optimized structures, we further optimized the materials with OptB88vdW 

method using our convergence workflow. The Optb88vdW structures give better accuracy in 

the lattice parameters compared to PBE[42, 43]. More details about the workflow used in 

developing the database are given in ref. [42, 43]. The database includes quantities such as 

TBmBJ gaps and dielectric functions, elastic properties, spin-orbit coupling (SOC) included 

bandstructures and topological spillages, solar-cell efficiency. The database contains multi-

species materials up to 6 components, 201 space groups, and 7 crystal systems. Moreover, 

the dataset covers 1.5 % unary, 26% binary, 56 % ternary, 13 % quaternary, 2 % quinary and 
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1% senary compounds. The number of atoms in the simulation cell ranges from 1 to 96The 

k-points and the cut-off obtained from the energy convergence were used for calculating 

mechanical, optical and electronic properties.

Results and discussion:

As discussed above, the automation code takes an input structure and converges cut-off at 

fixed k-points and then converges k-points at fixed cut-off. An example of convergence data 

is shown in Fig. 1 (Bi2Se3, R3m). Here the cut-off seems to oscillate but, as the tolerance 

0.001 eV is maintained for all 5 extra steps, the cut-off energy convergence is stopped. Next, 

the k-points are converged in a similar way by incrementing the k-points length parameter 

by 5 Å each time. After the difference in energy between two consecutive k-points length 

parameters is smaller than the tolerance, we check 5 extra points to determine if the 

convergence was achieved in energy. An inset in k-points also confirms the point. The k-

point length is converted into a N1xN2xN3 Ni ∈ ℤ+  mesh (Eq. 4–6), which is then 

compared to the stored k-points list. It is to be noted that different, but similar, k-point length 

can give rise to identical (N1, N2, N3), hence it is important to ensure that we do not repeat 

an already done calculation. Although we converge on the energy per cell (EPC) with a 

specific tolerance, the energy-data can be normalized with the total number of the atoms in a 

cell to investigate the energy per atom (EPA) convergence as well. Due to numerical reasons, 

as EPC values are generally greater or equal to EPA, the EPA converges equally or faster 

than EPC. The EPA and EPC are the same say for single-atom systems. The EPA is 

traditionally more widely used than EPC for k-point convergence, because traditional 

quantities such as formation energy per atom are ‘per atom’ based, hence its reasonable to 

converge based on EPA only. However, quantities such as energy-based stress tensor and 

phonons are directly derived from the energy of the simulation cell, we argue its reasonable 

to converge EPC though it can be more expensive than EPA. Any standard DFT code such as 

VASP uses the total energy convergence rather than energy per atom during a SCF 

procedure. Although it is generally advised to converge the physical quantity of interest say 

bulk modulus with respect to k-points or cut-off, we find that our EPC based calculated 

properties such as elastic constants[42] and dielectric[33] function are in excellent 

comparison with experimental or other high-level DFT results. Also, we chose EPC because 

we needed to find a sweet spot between computational cost and precision especially from the 

perspective of a high-throughput database with thousands of materials.

The converged k-points and cut-off distributions for all the materials in the database are 

shown in Fig. 2. Fig 2a–d display data for all materials together, while Fig 2e–h (2i–l) only 

show results for non-metallic (metallic) systems, respectively. There are two ways of 

representing k-point densities: “length-based”, which used the “length” as defined in Eq. 3–6 

and it’s in units of Å (Fig 2a), and “reciprocal atom-based”, which is given by 

kat=(N1xN2xN3)*(number of atoms in the cell) (Fig. 2b) and it’s in the units of pra (per 

reciprocal atom). The overall behavior between the two ways of investigating k-point 

convergence is similar. However, the length-based k-points distribution varies from 10 Å to 

200 Å (Fig 2a), while the atom-based k-points can reach very high values, up to 

20000*atom, as shown in Fig. 2b. We observe similar behavior for both the EPA and EPC 
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methods. Based on the smoothness of decay, we suggest that the length-based k-points 

should be preferred over per-atom formalism. This finding is in agreement with the work of 

Wisesa et al10, which also provides a theoretical justification for using k-point length as a 

convergence parameter. Most DFT high-throughput workflows use kat <=8000. For instance, 

MP uses kat=1000 for most of its computed quantities, but kat=7000 for elastic constant 

calculations and OQMD uses kat up to 7500. Comparing the EPC and EPA length-based k-

point distributions (Figs. 2a–c-, e–g and i–k), we find that the range of the convergence 

values is smaller for EPA than EPC which can be explained based on a general EPC≥EPA 

for k-points argument. We further analyzed these distributions in terms of non-metallic (Fig. 

2e–h) and metallic (Fig. 2i–l) materials. We observe that the non-metals require relatively 

fewer k-points than metallic compounds. The electronic band crossing at the Fermi level that 

only happens in metals explains why more k-points are needed in these materials to 

precisely integrate over the Brillouin zone.

Next, the cut-off generally varies from 500 eV to 1400 eV, as shown in Fig. 3. Note we start 

sampling cut-off convergence from 500 eV. Therefore, the peak at 500 eV in Fig. 3, also 

includes materials that require cut-off less than 500 eV. This is because the goal of our work 

was to identify materials requiring high-cutoff. The 520 eV is usual choice of cut-off 

parameter in almost all the major DFT databases [13–15]. The Fig. 3b and 3c suggests that 

the cut-off for non-metals can be higher than the metals. The need for a larger cutoff in a 

non-metallic system can be explained by a general higher localization in the charge density.

Next, to gather insights into predicting converged values for k-points and cut-offs, we looked 

for correlations between converged values of cut-off and k-points and volumetric or basic 

electronic properties, such as density, volume per atom and number of electrons in a system. 

Our findings are displayed in Fig. 4, where we plotted the Pearson coefficient (PC)[44] for 

each of the examined properties. Unfortunately, none of the PC was found to be high, which 

means none of the examined quantities, by itself, is enough to determine what the converged 

values of cut-off and/or k-point length should be for a specific material. However, a 

combination of these quantities could be a good way to predict converged values for k-points 

and cut-off. The highest PC we found (0.637) was for the correlation between the maximum 

plane-wave cut-off used in pseudopotential generation (max_enmax) and the converged cut-

off energy (Fig. 4e), which was an expected correlation. Volume per atom and density are 

other important quantities for cut-off and k-points, respectively. We observe that length-

based k-points are more correlated to the physical quantities (as shown in Fig. 4a and 4c) 

than the reciprocal atom-based k-points for both EPC and EPA methods. This result also 

corroborates the length-based k-points to be more meaningful than the reciprocal atom-

based methods as discussed earlier.

In the case of metals, we also investigated the correlation between k-points convergence and 

number of band crossing and average slope of the bands crossing Fermi-level. An illustrative 

example of band-crossing points is shown in Fig. S1. We found that the number of band-

crossing is not significantly correlated to the number of k-points needed for convergence 

(PC=0.28 for EPC and 0.24 for EPA). However, the Pearson coefficient relating k-point 

length to average slope at the band crossings is among the highest PC we found, and higher 
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than any other PC related to k-points (PC=0.62 for EPC and 0.66 for EPA), implying a 

relatively strong correlation.

Now, we investigate the effect of crystal systems and the number of atoms per unit cell on 

the cut-off and k-points. In Fig. 5, we plot the average number of converged k-points and 

cut-off for each crystal system and the number of species in each simulation cell. As shown 

in Fig. 5a and 5c, cubic and hexagonal materials require higher k-points, but lower cut-off 

than any other system, while triclinic materials require fewer k-points but higher cutoff. Fig. 

5a and 5c hence suggest an inverse relationship. Moreover, we observe that as the number of 

species in a system increases, the k-points decreases while the cut-off value increases, as 

shown in Fig. 5 b, d. In addition to the length-based distributions in Fig. 5a and 5b, we show 

per reciprocal atom-based k-point results in Fig. S2, which clearly indicates similar trends 

for both types of k-points. A possible explanation for the trend in Fig. 5b is that the more 

atoms are in a cell, the larger the cell is expected to be. This leads to a smaller Brillouin zone 

and hence a smaller k-point length is needed for convergence. The trend in Fig. 5d could be 

explained based on the argument that more atoms are in a cell, the chance of one of them 

requiring high cut-off is high. More work is obviously needed to interpret the other two 

figures.

To investigate the effect of chemical species, for each element of the periodic table we 

averaged the converged k-point length of all the materials in the database containing that 

particular element. We followed the same procedure for cutoff. The periodic table heatmap 

in Fig. 6 clearly shows that systems containing Be, Y, Lu, Hf, Ru, Os, Rh, Ir, Pd, Pt, Ni, Cu, 

B, Al, Ga and In require a higher number of k-points compared to all other elements. 

Similarly, a high cutoff is generally needed for systems containing Cs, La, H, Li, Na, Ba, Tc, 

B, C, N, O, Zn, Bi and F elements as shown in Fig. 7. Further investigation is needed to 

explain this behavior, which could be due to the fact that sharper features need to be 

described for these elements. We find that the trend in k-points length and per-atom density 

are similar. However, the length-based results are more uniform than the reciprocal atom-

based ones, which again supports the fact that length-based formalism is a better choice for 

the k-point generation10. Interestingly, transition metals require more k-points in general, 

independently from being part of a metallic (Fig. 6c) or of a non-metallic (Fig. 6d) system. 

In terms of cut-off, highly electronegative element (such as O and F) containing compounds 

require a higher cut-off, as shown in Fig. 7. This is consistent with the fact that these 

materials generally form non-metals, which again require high cut-off as shown in Fig. 2. 

We emphasize that the periodic-table trends are based on all the materials (~30000) in the 

database rather than just elements. Note that the statistical interpretations are valid for cut-

off higher than 500 eV because we start convergence from 500 eV as mentioned above also. 

Again, the goal of the paper was to identify materials requiring higher than usual 500 eV 

cut-off. While increasing the computational cost, adding more planewaves increases the 

precision of the calculation. Therefore, higher cut-off doesn’t have any detrimental effects 

on the quality of the DFT data.

Next, we investigate if the choice of functional influences how many k-point or what cutoff 

is needed for convergence. We compare LDA, PBE, and OptB88vdW for 83 systems in Fig. 

8a,8b. The functional comparison results show that the PBE and OptB88vdW have very 
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similar values for convergences but LDA requires slightly fewer k-points and slightly higher 

cutoff. The similarity between OPT and PBE results could be attributed to the fact that both 

functionals utilize a density gradient, unlike LDA. However, overall the differences between 

convergence needs are very small among all three, hence convergence from one functional 

should be transferable to other functionals.

As no obvious trends were found for predicting converged cutoff and k-points during 

correlation study, we chose to use machine learning (ML) to predict these quantities. We 

train machine learning models for cut-off and k-points using Classical Force-field Inspired 

Descriptors (CFID)[45] and gradient boosting decision tree (GBDT). The complete dataset 

is available at https://figshare.com/articles/JARVIS-ML-CFID-

descriptors_and_material_properties/6870101. Different steps involved during the ML 

training are described in the Jupyter notebook: https://github.com/usnistgov/jarvis/blob/

master/jarvis/db/static/jarvis_ml-train.ipynb. More details about the ML training and 

validation are given in Ref [45]. The dataset was split into 90% and 10% for training and 

testing purposes. After training the ML models, the mean absolute errors (MAE) in cut-off 

and k-points were 85 eV and 9.09 Å for the 10 % held set. Compared to the spread of the 

distribution for the k-points and cut-off (Fig 2), these results promise reasonable ML 

predictions. This also implies the CFID are suitable descriptors for k-points and cut-off data. 

A web-app for predicting cut-off and k-points for a structure is available at https://

www.ctcms.nist.gov/jarvisml. Since we use GBDT during the ML training, the feature 

importance can be obtained for the ML models. The feature-importance plot for these 

models is shown in Fig. 9a and 9c. Clearly, the chemical and radial distribution function 

(RDF) are the most important parameters during ML training. The cell-based feature such as 

density and packing fraction descriptors are revealed as important features as also discussed 

in Pearson coefficient results (Fig. 4). Some of the important chemical features were: 

average ionic radii, the average of ratios of melting point and heat of fusion, and electron 

affinity of the constituent elements. The ML performance on 10% held data is shown in Fig. 

9b and 9d. The test set consisted of 998 non-metals and 1239 metallic systems. The 

predictions are discrete because the k-point and cut-off are increased in a step-wise manner 

during the actual DFT convergence.

Conclusions:

In this work, we investigated how to predict the plane-wave cutoff and the number of k-

points needed to reach a 0.001 eV/cell convergence in energy. Hence, we developed an 

automatic convergence procedure for k-points and cut-off and applied it to more 30000 

materials. The computational framework is very flexible to arbitrary convergence criteria 

and it is publicly available at https://github.com/usnistgov/jarvis. We determined the range of 

the k-points and cut-off distributions. Based on the comparison between two k-point 

representations, we suggest that the length-based k-points should be preferred over per-atom 

formalism. While we determined a mean of 44 Å k-points-length and 856 eV cut-off, we 

recommend converging these parameters for individual materials as large outliers that we 

found. We demonstrated relationships between k-points, cut-off parameters and material 

parameters, such as density, number of electrons, the maximum cut-off used in 

pseudopotential generation and crystal systems. We found that cut-off used during the 
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generation of the pseudopotential and volume per atom are highly correlated to the plane 

wave parameters. We also identified some of the material species that would require more 

careful convergence than others. We showed that the cut-off and k-points should be 

independent of the functional but mainly dependent on the type of materials. Although 

energy is chosen as the convergence property, any other property can also be converged with 

our computational set-up. We then developed a machine-learning model to predict the line 

density and cut-off for materials on-fly. We believe our results can be used as a guide before 

carrying out DFT calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example of convergence in a) cut-off and b) k-points for Bi2Se3 (https://

www.ctcms.nist.gov/~knc6/jsmol/JVASP-1067.html).
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Fig. 2. 
Histogram for ranges of the number of k-points. The ‘energy per cell’ and ‘energy per atom’ 

methods are denoted by ‘EPC’ and ‘EPA’ respectively. EPA values are derived from EPC. 

Fig. a) shows the length-based k-points distribution of all the materials in the database using 

EPC, b) the per reciprocal-atom-based distribution of k-points using EPC, c) length-based k-

points distribution of all the materials in the database using EPA, d) the per reciprocal atom-

based distribution of k-points using EPA. Similar distributions for non-metals are shown in 

e-h and for metals in i-l. Metals are in general observed to require more k-points.
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Fig. 3. 
Histogram for ranges of plane-wave energy cut-off. a) for all materials, b) for non-metals 

and c) for metallic systems.
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Fig. 4. 
The Pearson correlation (PC) coefficients for a-d) k-points density and e) plane-wave energy 

cut-off with density, packing-fraction (PF), volume per atom, molecular weight, maximum 

elemental cut-off energy (max. enmax) and number of electrons in a system (N. elects). Fig. 

a and c are EPC based while b and d are EPA based coefficients. Again, a and b are based on 

k-point length while c and d are based on k-point densities. The best PC value, 0.66 was 

found for slope at the band-crossings at the Fermi-level.
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Fig. 5. 
Correlation of k-points and cut-off with a, c) crystal system and b, d) number of unique 

elements in a simulation cell. The error bars indicate the standard deviation.
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Fig. 6. 
Periodic table trend for high/low k-points-requiring material constituents. The k-points of all 

the materials were projected on individual elements and their average contribution is shown. 

A) length-based k-points distribution, b) per reciprocal atom-based density distribution, c) 

length-based distribution for metallic materials only, d) length-based distribution for non-

metallic systems only. The colorbar is in the unit of Å for length-based distributions (a, c, d) 

and of per reciprocal atom for density distribution (b).
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Fig. 7. 
Periodic table trend for high/low cut-off-requiring material constituents. The cut-offs of all 

the materials were projected on individual elements and their average contribution is shown. 

A) cut-off distribution for all materials, b) cut-off distribution for metals, c) cut-off 

distribution for all non-metals. The colorbar is in the unit of eV.

Choudhary and Tavazza Page 18

Comput Mater Sci. Author manuscript; available in PMC 2020 March 12.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 8. 
Comparison of k-points and plane-wave cut-off for different exchange-correlation (XC). In 

Fig. a, the cut-off is compared for LDA, PBE and OptB88vdW for 83 materials. Similarly, in 

Fig. b k-points in length-based representations are compared for the XCs.
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Fig. 9. 
Machine learning prediction results for k-points and cut-off. a, c) feature importance plots 

for k-points and cut-off, b-d) prediction on 10% ML-training held set for k-points and cut-

off. Here ‘Chem’ represents chemical descriptors, ‘RDF’ radial distribution function 

descriptors, ‘NN’ nearest neighbor descriptors, ‘ADF’ angular distribution function upto 

first (a) and second (b) neighbors, ‘DDF’ the dihedral distribution function, and ‘Charge’ the 

charge distribution descriptors.
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