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Abstract
Background.  Primary central nervous system lymphoma (PCNSL) is rare and there is limited genomic and immu-
nological information available. Incidental clinical and radiographic responses have been reported in PCNSL pa-
tients treated with immune checkpoint inhibitors.
Materials and Methods. To genetically characterize and ascertain if the majority of PCNSL patients may poten-
tially benefit from immune checkpoint inhibitors, we profiled 48 subjects with PCNSL from 2013 to 2018 with (1) 
next-generation sequencing to detect mutations, gene amplifications, and microsatellite instability (MSI); (2) RNA 
sequencing to detect gene fusions; and (3) immunohistochemistry to ascertain PD-1 and PD-L1 expression. Tumor 
mutational burden (TMB) was calculated using somatic nonsynonymous missense mutations.
Results.  High PD-L1 expression (>5% staining) was seen in 18 patients (37.5%), and intermediate expression (1–5% 
staining) was noted in 14 patients (29.2%). Sixteen patients (33.3%) lacked PD-L1 expression. PD-1 expression (>1 
cell/high-power field) was seen in 12/14 tumors (85.7%), uncorrelated with PD-L1 expression. TMB of greater than 
or equal to 5 mutations per megabase (mt/Mb) occurred in 41/42 tumors, with 19% (n = 8) exhibiting high TMB (≥17 
mt/Mb), 71.4% (n = 30) exhibiting intermediate TMB (7–16 mt/Mb), and 9.5% (n = 4) exhibiting low TMB (≤6 mt/Mb). 
No samples had MSI. Twenty-six genes showed mutations, most frequently in MYD88 (34/42, 81%), CD79B (23/42, 
55%), and PIM1 (23/42, 55%). Among 7 cases tested with RNA sequencing, an ETV6-IGH fusion was found. Overall, 
18/48 samples expressed high PD-L1 and 38/42 samples expressed intermediate to high TMB.
Conclusions.  Based on TMB biomarker expression, over 90% of PCNSL patients may benefit from the use of im-
mune checkpoint inhibitors.

Key Points

•	 Primary CNS lymphoma frequently expresses high PD-L1 and tumor mutational burden.

•	 Further study of checkpoint inhibitor therapy in primary CNS lymphoma is warranted.

Primary CNS lymphoma commonly expresses immune 
response biomarkers
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Primary central nervous system lymphoma (PCNSL) is an ag-
gressive extranodal form of non-Hodgkin’s (eg, diffuse large 
B cell) lymphoma that is restricted to the brain, eyes, spinal 
cord, and surrounding cerebrospinal fluid. The incidence of 
PCNSL in immunocompetent patients is relatively rare, con-
stituting 4% of all intracranial tumors and from 4% to 6% of 
all extranodal lymphomas.1 In recent years, the incidence in 
the elderly has been increasing.2 Although there have been 
significant advances in treatment with the use of high-dose 
methotrexate and rituximab, which has improved survival 
tremendously, overall survival relative to other forms of non-
Hodgkin’s lymphoma remains poor, and disease recurrence 
is very common. Up to 50% of patients with PCNSL will re-
lapse, and 10–15% demonstrate primary refractory disease, 
indicating a significant unmet therapeutic need.3

Immunotherapy in cancer, under development for many 
decades, reached a seminal moment in 2011, with the FDA 
approval of ipilimumab, which targeted CTLA-4 (cytotoxic 
T-lymphocyte-associated protein 4), shown to be therapeu-
tically effective in metastatic melanoma.4 The PD-1–PD-L1 
axis inhibits T-cell proliferation and antitumor immune ef-
fector activity in the latter stages of the immune response 
in the tumor microenvironment.5–7 The early successes of 
immune checkpoint inhibition targeting the PD-1–PD-L1 
(programmed death 1 and its ligand) axes in metastatic mel-
anoma and non-small cell lung cancer8–12 firmly established 
the importance of tumor-mediated mechanisms for evading 
immune response and triggered enthusiasm for the use of 
immunotherapies against a multitude of other solid tumors 
including lymphoid malignancies.13 Anti-PD-1 has dem-
onstrated therapeutic effects in preclinical models of lym-
phoma14 and in a small cohort of patients with PCNSL.15

Currently, it is unclear whether immune checkpoint inhi-
bition would be universally beneficial in treating patients 
with PCNSL or if a companion biomarker needs to be con-
sidered in the context of large-scale clinical trials. Thus far, 
there has been no prior systematic examination of pre-
dictive biomarkers for response to checkpoint inhibition 
in PCNSL. Tumor and tumor-infiltrating lymphocyte (TIL) 
expression of PD-L1 is recognized as one of the predictive 
biomarkers for immune checkpoint inhibitor responses in 
various solid tumors16–19 and for Hodgkin’s lymphoma.20 
Concomitant immunogenicity, as characterized by tumor 
mutational burden (TMB) and hypermutability secondary 
to defective DNA mismatch repair, is also considered an 
enrichment biomarker for response to immune checkpoint 

inhibition.21–24 In view of ongoing studies of the use of 
immunomodulatory therapeutics for PCNSL, we analyzed 
PCNSL patients using immunohistochemistry (IHC) and 
next-generation sequencing (NGS) to ascertain the inci-
dence of response biomarkers to immune checkpoint in-
hibitors and performed genetic characterization to ascertain 
the potential therapeutic opportunities for targeted therapy.

Materials and Methods

Ethics Statement

Human subjects were de-identified prior to analysis, 
and this research is exempt under the Code of Federal 
Regulations 45 CFR 46.101(b)(4) from 45 CFR part 46 re-
quirements. We analyzed reported results for 48 patients 
from a database of PCNSL patients who underwent tumor 
profiling with Caris Life Sciences (Irving, TX), a CLIA-
certified laboratory, from 2013 to 2018. Specimens were 
obtained from multiple research centers within the United 
States and had limited clinical annotation.

Next-Generation Sequencing

NGS was performed on genomic DNA isolated from 
formalin-fixed paraffin-embedded tissue using the Illumina 
NextSEQ platform, a 592-gene panel (n = 36) or 45-gene 
panel (n = 6) used to identify mutations and gene ampli-
fication as described (http://www.carislifesciences.com) 
in which there was sufficient tissue to identify potential 
therapeutic targets. Because synonymous and exonic mu-
tations do not guide the selection of therapeutics at this 
time, these were not reported. Variants were detected with 
greater than 99% confidence based upon allele frequency 
and amplicon coverage, with an average sequencing depth 
of coverage greater than 500× and analytic sensitivity of 
5% variant frequency. Variants were classified according to 
the American College of Medical Genetics and Genomics 
guidelines.25 Microsatellite instability (MSI) was tested by 
NGS. TMB was calculated using somatic nonsynonymous 
missense mutations in accordance with the TMB har-
monization project (http://www.focr.org/tmb), adding 
nonsynonymous, nonsense, in-frame indel, and frame-
shift variants after filtering out presumed germline variants 

Importance of the Study

As knowledge of the role of targeted ther-
apies and immunotherapies in primary CNS 
malignancies continues to mature, the ne-
cessity of identifying biomarkers that can 
reliably predict response to treatment is of 
paramount importance. Our study represents 
the largest cohort of primary CNS lymphoma 
tumors that have been analyzed to date 
for immune checkpoint inhibition-related 

biomarkers, including PD-1/PD-L1 IHC, tumor 
mutational burden, and microsatellite insta-
bility as well as next-generation sequencing 
to identify key pathways for potential ther-
apeutic targeting. We find that a significant 
proportion of PCNSLs appears to harbor fea-
tures signifying potential responsiveness to 
immune checkpoint inhibition and targeted 
molecular therapy.

http://www.carislifesciences.com
http://www.focr.org/tmb
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determined from the Genome Aggregation Database (re-
lease 2.1), the Single Nucleotide Polymorphism Database 
human build 151, and the Caris in-house benign database. 
Per tumor sample, a total of 1.4 Mb was sequenced.26 Low 
TMB was defined as less than or equal to 6 mutations per 
megabase (mt/Mb), intermediate TMB was defined as in-
clusive of 7 and 16 mt/Mb, and high TMB was defined as 
greater than or equal to 17 mt/Mb based on cut points es-
tablished in other malignancies.27,28

Immunohistochemistry

PD-L1 IHC (SP142, rabbit) and PD-1 IHC (MRQ-22, mouse) 
expression was evaluated in tumor cells and in tumor-
infiltrating immune cells as previously described.29 The 
respective negative controls were the Dako FLEX rabbit 
immunoglobulin fraction of serum from non-immunized 
rabbits, solid phase absorbed, code IS600, and the Ventana 
antibody (monoclonal, catalog number 760-2014). Low 
staining intensity was defined as 0%, intermediate staining 
intensity was defined as 1–4% (inclusive), and high PD-L1 
staining intensity was defined as greater than or equal to 
5% based on the cut point for clinical responses to immune 
checkpoint inhibitors.17,30

Statistical Analysis

Kruskal–Wallis, Pearson correlation coefficient, and linear 
regression tests for statistical significance were per-
formed using GraphPad Prism version 9.2.1 for Windows, 
GraphPad Software, San Diego, CA, www.graphpad.com.

Results

Characteristics of the Analyzed Patient Cohort

Our study analyzed 48 patients diagnosed with PCNSL, 
ranging from 39 to 84 years old (mean age 66.9 years) with 
an even sex distribution (Table 1). Of the 31 tumors whose 
sampling sites were recorded, most were from the frontal 
lobe (n  = 11), followed by parietal lobe (n  = 5), temporal 

  
Table 1  Characteristics of Patients With Primary Central Nervous 
System Lymphoma and Their Tumor Samples

Average Age 66.9 years

Age Range 39–84 years

Specimen Site N Female Male

Frontal lobe 11 5 6

Parietal lobe 5 1 4

Temporal lobe 3 0 3

Ventricle 2 2 0

Occipital lobe 2 2 0

Thalamus 2 1 1

Basal ganglia 3 2 1

Cerebellum 1 1 0

Corpus callosum 1 0 1

Hypothalamus 1 1 0

Brain, NOS 17 9 8

Total 48 24 24
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Fig. 1  Bar chart of the total number of primary central nervous system lymphomas (PCNSLs) detected with an alteration above the total N 
tested, shown in parentheses. Molecular alterations were detected by next-generation sequencing (NGS) in a total of 42 sequenced PCNSLs. 
NGS: mutations in DNA; CNA: copy number amplifications in DNA; Fusion: genetic fusion detected in RNA.
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lobe (n = 3), basal ganglia (n = 3), occipital lobe (n = 2), ven-
tricle (n = 2), thalamus (n = 2), cerebellum (n = 1), corpus 
callosum (n = 1), and hypothalamus (n = 1).

Mutations Identified by NGS and RNA 
Sequencing

Mutations were found in 26 genes, the most frequent of 
which were in MYD88 (81%, 34/42), CD79B (55%, 23/42), 
and PIM1 (55%, 23/42). Other mutations were found in 
CARD11 (9.5%, 4/42), KMT2D (11.9%, 5/42), TP53 (13%, 6/46), 
CCND3 (7.1%, 3/42), PTEN (6.3%, 3/48), and CDKN2A (6.7%, 
2/30) (Figure  1). Genetic co-amplification of PD-L1 and 
PD-L2 was seen in one sample. Of the 10 samples tested 
with RNA sequencing, one ETV6-IGH fusion was found. 
Most mutations in MYD88 and CD79B led to changes in 

the L265P and Y196 residues, respectively. Other genes, 
eg, PIM1 CARD11, KMT2D, and TP53, were found to have a 
variety of different mutations (Table 2). There was an asso-
ciation of changes in MYD88 and CD79B with frontal lobe 
tumors (Supplementary Figure S1); however, this was not 
statistically significant and is likely related to the minimal 
neurological risks of sampling a multifocal disease in this 
location.

Tumor Mutational Burden and Microsatellite 
Instability

TMB was quantified via the 592-gene panel, and of the 42 
samples from which we could obtain these data, 8 (19%) 
samples exhibited high TMB (≥17 mt/Mb), 30 (71.4%) sam-
ples exhibited intermediate TMB (7–16 mt/Mb), and 4 
(9.5%) samples exhibited low TMB (≤6 mt/Mb) (Figure 2A). 
No samples exhibited high levels of MSI (Figure 2C).

Expression of PD-L1 and PD-1

High PD-L1 expression (>5% staining) was seen in 18 cases 
(37.5%), intermediate expression (1–5% staining) was 
noted in 14 cases (29.2%), and 16 cases (33.3%) showed 
no PD-L1 expression (Figure  2B and C). PD-1 expression 
in TILs (>1 cell/high-power field) was seen in 12/14 tumors 
(85.7%), but there was no association with concomitant 
PD-L1 expression (Figure 2C).

Immune Checkpoint Biomarker Association

Overall, 54.8% of tumors expressed either high PD-L1 ex-
pression or high TMB. PD-L1 and TMB did not co-associate 
(Figure 3). Additionally, location was not significantly asso-
ciated with either high TMB (P = .576) or PD-L1 expression 
(P = .0542) (Supplementary Figure S2). TMB was not signif-
icantly associated with MSI. The most common mutations 
such as MYD88, CD79B, and PIM1 were usually detected 
in cases that had high or intermediate TMB but not neces-
sarily high PD-L1 expression (Figure 4). Based on the ex-
pression of either high PD-L1 expression or intermediate to 
high TMB, 37.5–90% of PCNSL patients may respond to im-
mune checkpoint inhibitors. In addition, 85.7% of patients 
had positive PD-1 expression and 42.8% of patients with 
positive PD-1 expression also had high PD-L1 levels.

Discussion

The purpose of this study was to determine the frequency 
of expression of immune checkpoint biomarkers and their 
association with known genetic alterations in PCNSL. To 
characterize the immunogenicity of PCNSL, we examined 
TMB and found nearly 90% of our tested cohort to have in-
termediate to high TMB. Based on their expression of either 
high PD-L1 or intermediate to high TMB, it appears that the 
majority of PCNSL patients may respond to immune check-
point inhibitors. Higher rates of nonsynonymous TMB have 

  
Table 2  Protein Changes Seen for the Top 6 Most Frequently 
Mutated Genes in Patients With Primary Nervous System Lymphoma

Gene Protein Change N Total

MYD88 L265P 33 34

V217F 1

CD79B Y196 21 23

L199P 2

CARD11 E626K 2 4

C49Y 1

D230N 1

KMT2D C189X 1 4

Q1557fs 1

R2687X 1

S3443fs 1

TP53 R196X 1 6

R209fs 1

R333fs 1

R337C  
I255N

1

V218_P222del 1

PIM1 E135K 9 49

G28D 6

M1I 6

P33S 5

G99D 4

E30K 3

K24N 3

L184F 3

E79D 2

P125S 2

S146R 2

S97N 3

K71N 1

  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa018#supplementary-data
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been associated with favorable overall response rate, clin-
ical benefit, and progression-free survival in patients who 
received anti-PD-1/PD-L1 monotherapy.7,22 The cut point at 
which TMB correlates with therapeutic responses may be 
lineage specific and may be as low as 6 mt/Mb.31 Based on 
our results and those of other researchers, it is likely that 
PCNSL patients with a high TMB—with or without concom-
itant high PD-L1 expression—may benefit from checkpoint 
inhibition. Interestingly, systemic lymphomas have a higher 
TMB32 than PCNSL, and it would be interesting to identify in 
matched secondary CNS lymphomas if TMB is lower than in 
the primary. As such, PCNSL may have less response to im-
mune checkpoint inhibitors than other types of lymphoma, 
but further clinical study will be necessary to refine and vali-
date TMB cutoffs in the PCNSL patient population.

Though MSI is known to be an important mechanism 
of neoantigen generation in a number of solid tumors 
(eg, colorectal, endometrial, and gastric) and HIV-related 
lymphomas, we did not find any evidence of MSI in our 
samples.33 MSI is characteristic of a tumor phenotype 

caused by defective DNA mismatch repair (leading to the 
accumulation of somatic mutations at repetitive microsat-
ellite sequences contained in various target genes impli-
cated in human cancers).34 Our findings are consistent with 
previous reports,28,35,36 which suggest that this mechanism 
is probably not a significant driver of mutational burden or 
PD-1–PD-L1 axis blockade efficacy in PCNSL.

The most common genes found to be altered in PCNSL 
were MYD88, CD79B, and PIM1 consistent with prior ana-
lyses.37,38 These genes are oncogenic drivers of the NF-kB 
pathway,39,40 which has been shown to be associated with 
PCNSL.41 There is preclinical data that HDAC inhibitors (eg, 
panobinostat) work synergistically with ibrutinib in lym-
phoma cases harboring MYD88 mutations, and patients 
with CD79B mutations tended to respond to ibrutinib.42,43 
An ongoing clinical trial of ibrutinib and nivolumab in re-
fractory PCNSL patients at MD Anderson Cancer Center 
open for accrual (NCT03770416). Notably, point mutations 
in the kinase PIM1, via altered interactions with upstream 
regulators as well as downstream signaling, in particular, 
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have recently been shown to reduce the sensitivity of 
the activated B-cell subtype of diffuse large B-cell lym-
phoma to ibrutinib.44 A potential role for PIM1 as a driver 
of disease recurrence has also been described.33 CARD11, 
found to be mutated in 11% of our samples, is an impor-
tant scaffold protein involved in signaling that controls 
antigen-induced B and T lymphocyte activation during the 
adaptive immune response, and gain-of-function muta-
tions here lead to constitutive activation of NF-kB, JNK, 
and mTOR.45 KMT2D encodes a DNA methyltransferase 
important for global H3K4 methylation in germinal-center 
B cells, and its inactivation early in B-cell development 
results in increased proliferation of germinal-center B 
cells.46 According to the literature, B-cell receptor/NF-kB 
signaling pathways are altered in more than 90% of 
PCNSLs, highlighting this receptor’s value for targeted 
therapy.39 Specific NF-kB inhibitors have been developed 
but are not yet available for use in clinical trials.

Despite promising findings, our study has notable lim-
itations. We do not have the survival statistics of the pa-
tients whose samples were analyzed, which limits the 
predictive significance of our findings. A  clinical trial 
evaluating the prognostic significance of PD-L1 is underway 
(NCT04158128) and transcript variants of high PD-1 ex-
pression were shown to confer a negative prognostic out-
come.47 Second, it should be noted that patients who lack 
high TMB or PD-L1 expression can still have a clinical ben-
efit from checkpoint inhibition,8,13,48 and we did not assess 
for other markers of potential response such as neoantigen 
burden or T-cell receptor clonality.49–51 There are likely other 
biomarkers at play that have not yet even been considered 
and/or devised. Third, with an arguably greater therapeutic 
need for relapsed or recurrent PCNSL, our findings do not 
distinguish between newly diagnosed and recurrent or re-
lapsed disease. This concern may be mitigated by the prior 
work of McGranahan et al.,52 which supports the idea that 
clonal neoantigens—that is, those that occur early on in tu-
morigenesis rather than later subclonal neoantigens—are 

more important in responsiveness to immune checkpoint 
inhibition. Finally, as it has been previously shown that 
the relationship among TMB, MSI, and PD-L1 varies signif-
icantly by cancer type, biomarkers such as PD-L1 and TMB, 
although investigated in other solid tumors, have yet to be 
thoroughly validated in the PCNSL patient population. Our 
data would support the use of either anti-PD-1 or anti-PD-L1 
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therapy in a clinical trial in “all comers” with PCNSL with a 
retrospective determination of which biomarker correlated 
with potential clinical response. Clinical trials of patients 
with PCNSL being treated with anti-PD-1 are currently under 
way (NCT04052659; NCT03255018).

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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