Table 2. Evaluation metrics of three learning models from classification tests.
The highest performance values are achieved using filter-bank method.
SVM | k-NN | Decision trees | |||||||
---|---|---|---|---|---|---|---|---|---|
Filter-bank | CCV | DCT | Filter-bank | CCV | DCT | Filter-bank | CCV | DCT | |
Accuracy [%] | 99.03 | 96.65 | 94.10 | 99.01 | 97.37 | 95.49 | 93.45 | 91.40 | 83.86 |
Sensitivity [%] | 98.06 | 93.30 | 88.19 | 98.01 | 94.74 | 90.98 | 86.91 | 82.81 | 67.72 |
Specificity [%] | 99.35 | 97.77 | 96.06 | 99.31 | 98.25 | 96.99 | 95.64 | 94.27 | 89.24 |
PPV [%] | 98.14 | 93.51 | 89.18 | 98.09 | 94.98 | 89.26 | 87.26 | 83.26 | 66.31 |