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Abstract

Purpose of Review: After decades of hype, cell-based therapies are emerging into the clinical 

arena for the purposes of promoting recovery after stroke. In this review we discuss the most 

recent science behind the role of cell-based therapies in ischemic stroke and the efforts to translate 

these therapies into human clinical trials.

Recent Findings: Preclinical data support numerous beneficial effects of cell-based therapies in 

both small and large animal models of ischemic stroke. These benefits are driven by multifaceted 

mechanisms promoting brain repair through immunomodulation, trophic support, circuit 

reorganization, and cell replacement.

Summary: Cell-based therapies offer tremendous potential for improving outcomes after stroke 

through multimodal support of brain repair. Based on recent clinical trials, cell-based therapies 

appear both feasible and safe in all phases of stroke. Ongoing translational research and clinical 

trials will further refine these therapies and have the potential to transform the approach to stroke 

recovery and rehabilitation.

Keywords

neurogenesis; stem cells; transplantation; stroke recovery; neuroplasticity; brain regeneration

Introduction

Stem cell therapies are emerging in the clinical arena, and bringing with them renewed hope 

for novel therapeutic approaches to promoting brain repair after stroke. The concept of 

regenerative medicine in central nervous system injury dates back more than a century, when 

Santiago Ramon y Cajal observed, “In adult centers the nerve paths are something fixed, 

ended, immutable. Everything may die, nothing may be regenerated. It is key for the science 

of the future to change, if possible, this decree.”[1] Over several decades we have learned 

much about the potential for regeneration in the CNS, with the recognition of neural stem 

and progenitor cells (NSPs) persisting in the brain throughout life. Reynolds and Weiss first 

demonstrated the ability to isolate multipotential progenitors from the brains of adult 

rodents.[2] Animal models then demonstrated increased neurogenesis from these progenitors 

after stroke in both the immature and aged brain. Attention has more recently turned toward 
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transplantation of exogenous cells to support and augment endogenous repair mechanisms. 

Originally stymied by ethical considerations surrounding the use of embryonic stem cells 

(ESCs), the brakes have been released by a plethora of mechanisms for generating neural 

progenitors from adult tissues. These include most notably induced pluripotent stem cells 

(iPSCs) which can be generated from an individual’s own somatic cells. Today we have 

tremendous capabilities to generate many different specific cell types. In many ways this has 

outpaced our ability to study the effects of different cell types as means of therapy. In this 

review article we will discuss the variety of cell-based therapies under investigation, possible 

mechanisms of action, and the current evidence available from human clinical trials. Finally 

we propose a roadmap for future research to accelerate the development and optimization of 

cell-based therapies as critical treatments for stroke recovery.

Pathways for Cell-Based Therapies

The term “stem cell” has existed in the literature for more than a century, and by strict 

definition necessitates the characteristic capacities for self-renewal and differentiation into 

other cell types.[3] Stem cells range from pluripotent ESCs from which entire organisms 

arise, to more restricted organ-specific stem cells. Experimental observations also suggest 

that stem cells and their progeny exist on a continuum, with at least some potential of 

bidirectional phenotypic lability.[4] As applied to regenerative medicine, the key 

characteristics of stem cells present a double-edged sword. The expansion and multipotential 

differentiation capacities are therapeutically promising, but also present the feared 

possibility of tumorigenicity.[5-7] Many of the cell types that have been investigated in 

stroke have been are either more restricted progenitors or stem cells that have been modified 

to limit this risk, but nonetheless are commonly referred to collectively as stem cell therapy.

Exogenous Cell Administration

ESCs are derived from blastocysts and represent the most pluripotent cell state available for 

potential therapeutic purposes.[8-10] This pluripotency also raises concerns regarding 

tumorigenicity following transplantation.[5, 11] These cells can be directed in vitro toward 

neural lineages, as reviewed elsewhere.[12-14] Most experimental approaches have used 

such directed differentiation prior to transplantation to reduce the risk of uncontrolled 

expansion. After transplantation in preclinical stroke models, ESCs have can engraft and 

survive for up to 12 weeks.[15-18] Some studies have demonstrated migration of 

transplanted cells whether transplanted ipsilesionally or contralesionally,[16] but others have 

not observed significant migration.[15] These cells can differentiate into multiple neuronal 

subtypes as well as glia,[16, 17] develop electrophysiological properties of mature neurons,

[16] and form structural connections within the host brain.[18]

NSPs are more restricted stem cells. They are able self-replicate, but differentiation is 

restricted neuronal and glial subtypes.[19, 20] In addition to ESCs and iPSCs, NSPs can be 

derived from fetal and adult tissue.[21, 22] Adult NSPs reside in the subventricular zone 

(SVZ) in the wall of the lateral ventrical and the subgranular zone (SGZ) of the dentate 

gyrus in the hippocampus.[23] While in general considered multipotential, NSPs may 

actually have region-specific lineage restrction.[24] NSPs have been administered directly 
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into the brain either through stereotactic neurosurgery or intra-arterially in preclinical animal 

models of stroke, and a recent meta-analysis found many pleiotropic benefits on behavioral 

and structural outcomes.[25, 26]

Mesenchymal stem cells (MSCs) reside in tissue of mesodermal lineage such as adipose 

tissue, bone marrow, umbilical cord blood, and others.[27] The first identified and most 

commonly used MSCs are bone-marrow derived MSCs, a subset of bone marrow 

mononuclear cells (BMMNCs).[28] Along with the ability to differentiate into a range of 

mesenchymal tissue, MSCs can also differentiate into ectodermal and endodermal lineages, 

including neural cells.[29, 30] This possibly due to an even more specific subset of MSCs, 

the recently described multilineage-differentiating stress enduring (Muse) cells that 

comprise a small portion of bone marrow-derived MSCs.[31] These cells may also play a 

role in the unique ability of MSCs to migrate towards areas of injury and spontaneously 

differentiate and integrate with damaged tissue. [32, 31, 33] MSCs can be isolated and 

expanded from patients as an autologous source of cells, thus reducing the risk of immune 

system activation.[34-36] MSCs have both anti-inflammatory and neurotrophic effect with 

the ability to secrete multiple factors including BDNF, NGF, FGF, and VEFG.[37]

Induced pluripotent stem cells (iPSCs) are dedifferentiated somatic cells, most commonly 

fibroblasts, transformed via induction of defined transcription factors.[38-40] Similar to 

ESCs, iPSCs are returned to their pluripotent state and have the ability to differentiate into 

different neuronal cell types, including NSCs.[41, 42] Unlike ESCs, however, autologous 

iPSCs have less immunogenicity due to their derivation from the patient’s own tissue, avoid 

the moral and legal issues surrounding the cultivation and use of ESCs, and afford nearly 

limitless customization.[43-45]. Transplantation of iPSC-derived NSPs leads to regeneration 

of mature and functional neurons and axonal projections through trophic support and 

enhances neurogenesis and angiogenesis following ischemic stroke, promoting improved 

neurologic outcomes.[46-49]

Endogenous Neurogenesis

Once considered to be a static organ, we now know that the brain has the capacity to 

generate new cells during postnatal neurodevelopment and long after. Joseph Altman first 

demonstrated new cells being born in the adult rodent brain using 3H-thymidine 

incorporation assays.[50] Kaplan and Hinds later confirmed similar results demonstrating 

newly born neurons in the rat dentate gyrus and olfactory bulb using electron microscopy.

[51] Adult neurogenesis is now a well-established feature of the rodent brain, occurring in 

discrete neurogenic niches: the subventricular zone of the lateral ventricles and the 

subgranular zone of the dentate gyrus.[52, 53] Despite these early findings, the issue of adult 

neurogenesis remained contentious due to the unknown source of these cells and primate 

research that suggested adult neurogenesis may be limited to rodents.[54] Postnatal 

neurogenesis has since been confirmed in the human hippocampus, taking advantage of 

patients who had received the thymidine analog bromodeoxyuridine (BrdU) as 

chemotherapy and thus labeled newborn cells at the time of treatment.[55] More recent 

studies suggest that basal levels of endogenous neurogenesis in humans are very low, with 

the possible exception of the perinatal period.[56, 57] Animal models have repeatedly 
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demonstrated increased neurogenesis after stroke, both in immature and adult rodents.

[58-63] Key questions remain as to the functional importance of this apparent regenerative 

response, but numerous studies have demonstrated correlations between behavioral recovery 

after stroke.[64] In humans, evidence is much more sparse given technical limitations, but 

some studies hint that a similar phenomenon may occur.[65, 66]

Other avenues for promoting cell-based therapy

In addition to stem cells themselves, a number of adjunctive technologies are emerging with 

the potential to further advance these therapies. The use of bioscaffolds such as biologically 

derived and synthetic hydrogels greatly aid in the transplantation and subsequent 

survivability of exogenous stem cells in the stroke cavity.[67, 68] These substances allow for 

in situ tissue regeneration and provide a non-reactive matrix that can act both as structural 

support system for stem cells as well as a vehicle for drug delivery.[69, 70] Imaging 

techniques including optical imaging, magnetic resonance imaging (MRI), and positron 

emission tomography (PET) offer the ability to track and monitor cells from the point of 

administration[71-73] Cells to be transplanted are labelled with magnetic markers, typically 

superparamagnetic iron oxide (SPIO) nanoparticles. In addition to the primary function as 

MRI markers, SPIO-labeled cells can be physically manipulated via an external magnet 

through fluid compartments, potentially indicating a method of manual direction through the 

ventricular system.[74]. These technologies may open even further avenues for the 

application of cell-based therapies in stroke.

Mechanisms of Action

The holy grail of stem cell therapy is to replace cells that are lost or damaged as a 

consequence of disease or injury. In the context of stroke, this is an enormous ask given that 

a stroke indiscriminately destroys all brain tissue, often leaving behind a region devoid of 

the infrastructure that was laid down during development. In order to achieve cell 

replacement, therapies will have to accomplish (i) delivery of cells to the infarct territory; 

(ii) allowing or promoting the differentiation of those cells into a diverse population 

including various types of neurons, glia, and blood vessels; and (iii) re-establishment of 

complex connections and networks both locally and remotely. Fortunately cell-based 

therapies provide numerous mechanisms for enhancing repair of the brain following injury, 

independently of actual cell replacement.[75]

Modulation of neuroinflammation

Stroke represents an evolution of injury over time, from acute necrosis due during ischemia 

to secondary cell death due to inflammation.[76] An overly simplistic view of inflammation 

would suggest that proinflammatory cytokines and the cellular immune response aggravate 

injury, impair neurogenesis, and impede neural repair after stroke.[77, 78] The true 

interaction between inflammation and the regenerative response to the brain is likely much 

more complex, and some inflammatory mediators may actually help to promote repair.[79, 

80] Microglia play a biphasic role in ischemic stroke with shifting polarization between pro-

inflammatory and anti-inflammatory phenotypes, a phenomenon that can be targeted 

therapeutically with cell-based therapy in preclinical models.[81-83] Accumulating evidence 
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in both humans and animals support a significant role for immunomodulation as one pillar of 

stem cell therapies in enhancing recovery after stroke.[84-88] This mechanism of action is 

particularly applicable to peripherally administered stem cells because they can exert their 

effects through the systemic immune system rather than requiring direct localization near the 

stroke.

Remodeling of Neural Networks and Cell Replacement

Data from animal models human patients suggests that after ischemic stroke neural circuitry 

in areas surrounding damaged tissue reorganizes to regain previously lost function.[89] 

These changes include axon sprouting, dendritic remodeling, and new synapse formation, 

and can be facilitated by functionally-directed rehabilitation.[90-94] Expanding evidence 

suggests that stem cells promote neural circuit regeneration through multiple intertwined 

mechanisms, promoting repair reorganization of existing cells as well as limited 

incorporation of new cells into the regenerating circuit.

One important mechanism through which stem cells promote neural circuit remodeling is 

secretion of neurotrophic factors. Infusion of mesenchymal stem cells engineered to express 

brain-derived neurotrophic factor (BDNF), placental growth factor (PGF), glial cell-line 

derived neurotrophic factor (GDNF), or vascular endothelial growth factor (VEGF) and 

angiopoietin into rodent models of ischemic stroke improved functional outcomes.[95-98] 

The functional improvement in these experiments correlated with decreased infarct volume 

and improved vascular regrowth into the injured parenchyma. Although cells can be 

engineered to overexpress neurotrophic factors, MSCs exposed to the ischemic post-stroke 

environment also appear to inherently upregulate production of neurotrophic factors.[99] 

Neurotrophic factors are known to be crucial to neural circuit development at sequential 

stages of development, from promoting neurogenesis, through dendrite and axon growth, to 

synaptogenesis and synaptic refinement.[100] Cell-based therapies may act in part by re-

inducing developmental programs of neural circuit formation.[101] Emerging evidence also 

suggests that exosomes may provide a critical mechanism by which stem cells exert their 

effects in promoting remodeling after injury.[102]

Indeed, all of the anticipated effects of neurotrophic signaling in the stroke-damaged brain 

have been observed after stem cell transplant. When transplanted into the ischemic brain, 

exogenous NSPs can augment neurogenesis and angiogenesis from resident precursors thus 

increasing the population of cells that may potentially be integrated into the recovering 

circuit.[103-105] Transplanting human NSPs into stroke-injured brain also promotes 

remodeling of both neuronal axons and dendrites, with increased connectivity within 

damaged circuits and improved axon function as evidenced by increased cargo transport 

along the length of axons.[106] Accompanying in vitro studies suggest that these effects 

were at least in part mediated by VEGF and thrombospondin.

Bystander or paracrine effects are clearly important factors underlying the efficacy of stem 

cells in promoting repair and regeneration, but cell replacement likely has a role as well. 

Arvidsson and colleagues observed that less than 20% of newly generated cells survived and 

matured into NeuN-expressing neurons.[59] Despite this sobering fact, a minority of cells do 

survive, migrate into sites of injury, and even functionally integrates into local circuitry, 
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developing similar electrophyiological signatures compared to pre-existing neighbors.[107] 

There is evidence that stem cells can generate mature neurons that form functional afferent 

and efferent connections. Neural precursor cells derived from explants of immature medial 

ganglionic eminence (which developmentally is the source of inhibitory interneurons) were 

directly implanted into stroke-damaged brain, and found to differentiate into neurons.[108, 

109] These explant-derived neurons received functional synaptic connections, as measured 

electrophysiologically by postsynaptic potentials, and were able to generate action 

potentials, although the target of their connectivity was not defined. Following 

transplantation, iPSCs that had been primed toward cortical neuronal phenotypes also 

functionally integrate into damaged circuitry following transplantation.[49] These cells 

differentiated into both excitatory and inhibitory mature neurons (as assessed both 

immunohistochemically and electrophysiologically) and received functional synaptic inputs 

from native cortex. While most effort has emphasized neuronal production, some 

investigators have also observed oligodendrogenesis.[110] Understanding the role of glia in 

both promoting and limiting regeneration in the brain will be critical for further promotion 

of cell-based therapy.[111, 112]

Clinical Trials of Cell-based Therapy in Stroke

Based upon encouraging results from preclinical studies of cell-based therapies in animal 

models of stroke, investigators have embarked on pioneering human studies over the past 

two decades. Most of these have been small, open-label, single arm studies. Table 1 

summarizes many of the published trials to date. The majority of these clinical trials have 

been initial phase I/II trials of feasibility and safety, with small numbers of patients and 

often not randomized or controlled.

In one of the earliest efforts, Kondziolka and colleagues investigated the effects of 

stereotactic transplantation of human embryonic carcinoma-derived precursor cells (termed 

LBS-neurons) in chronic basal ganglia stroke. In their first study they found slight 

improvements in the European Stroke Scale at 6 months compared to the patients’ baseline, 

but in their follow up phase II study there were no significant differences between 

transplanted patients and control patients.[113, 114] In both studies there were no adverse 

cell-related events, although procedure-related complications did occur. One of the major 

criticisms of these studies was the use of a cancer-derived cell line and the risk for 

tumorigenicity given limited follow up of only one year. This led to a pilot study of porcine 

embryonic precursor cells derived from the lateral ganglionic eminence, but this study was 

terminated by the FDA after 2/5 patients developed adverse events.[115]

An alternative approach has utilized an immortalized human neural stem cell line derived 

from fetal cortical brain tissue (CTX0E03 cell line). These cells have been engineered with a 

retrovirally-delivered c-mycERTAM transgene to allow large scale expansion and banking.

[116] In vivo models have demonstrated rapid epigenetic silencing of this transgene within 

the first week after transplantation, supporting a low risk of uncontrolled expansion and 

tumorigenicity.[117] In a phase I safety trial (PISCES), Kalladka and colleagues 

transplanted increasing doses of these cells into the ipsilesional putamen of 11 men with 

ischemic stroke 14-51 months prior to enrollment.[118] Importantly their trial did not 
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include immunosuppression as preclinical models suggested that low immunogenic 

responses to the CTX0E03 cells. The primary outcome of this phase I trial was safety, and 

they saw no significant adverse events that they attributed to the cell therapy, but several 

related to the neurosurgical procedure. While not powered or designed for efficacy, several 

patients did experience improvements in multiple measurement scales including the 

modified Rankin scale. While typically patients are not expected to make significant 

improvements at the timepoints in this study, it is not possible to attribute causality to the 

cell therapy in the absence of a control group. An important caveat to this study is that only 

men were included to reduce the risk of incidental exposure to tamoxifen, a commonly used 

treatment for breast cancer, because the transgene is under control of a tamoxifen-inducible 

promoter. Whether the safety of this treatment will be generalizable to women remains to be 

seen. A phase II has recently been completed, but not yet published. The company’s website 

indicates that although the primary endpoint was not met, but enough benefits were observed 

in some subjects to prompt planning of a definitive trial.

The previously described studies used neuronal precursors, others MSC transplantation has 

also been explored in clinical trials. Steinberg and colleagues used bone marrow-derived 

MSCs that had been transiently transfected with Notch1 to promote differentiation to a 

neuronal lineage.[119] These cells were stereotactically implanted to multiple locations in 

the peri-infarct tissue under MRI guidance, with a goal of bracketing the stroke with stem 

cells. Transplantations were performed in the chronic phase at a mean of 22 months after 

stroke (range 7-36). Similar to prior studies, adverse events were rare and largely attributable 

to the neurosurgical procedure rather than the cells. In 18 patients, there were only 4 

treatment-emergent adverse events that were possibly related to cell therapy and none that 

were probably or definitely deemed attributable to cell therapy, but there were 22 adverse 

events with a possible/probable/definite relationship to the neurosurgical procedure (most 

commonly headache). Similar to the PISCES trial, it is difficult to draw strong conclusions 

on efficacy in the absence of a control group, but the investigators observed statistically 

significant improvements in the European Stroke Scale, the NIH Stroke Scale, and the Fugl-

Meyer at timepoints when substantial improvement would typically be unexpected.

Honmou and colleagues investigated IV infusion of autologous MSCs in the subacute to 

chronic phase of ischemic stroke, and they observed no significant adverse effects.[120] 

Interestingly they did see an increased rate of improvement in NIHSS in the first 1-2 weeks 

post-infusion, but there was no control group and evaluators were not blinded. Additionally, 

many of these patients received infusion within 3 months after stroke, a time window in 

which some spontaneous recovery of impairment is expected. They also saw progressive 

reduction of lesion volumes, reaching a mean of 20% reduction at 1 week post-infusion 

compared to 1 day after infusion, at a time when such lesion evolutions may not be 

expected.[121]

The application of cell-based therapies during the acute phase of stroke has mostly been 

limited to systemic administration of bone marrow derived precursors (MSCs, MAPCs, 

BMMCs). The MASTERS trial is one of the largest studies to date and was performed in a 

multicenter, placebo-controlled, double-blinded fashion.[85] Bone marrow derived stem/

progenitor cells were administered intravenously between 24 and 48 hours after stroke onset. 
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There was no difference in the primary or secondary safety endpoints of dose-limiting 

toxicity, neurological worsening due to the investigational product, secondary infections, or 

laboratory/cardiac abnormalities. While overall the frequency of treatment emergent adverse 

events were more common in the treatment group, these were mostly deemed mild to 

moderate. The primary efficacy endpoint was the multivariate global stroke recovery at 90 

days (mRS ≤ 2, 75% improvement in NIHSS, and Barthel Index ≥ 95). Exploratory analyses 

suggested benefit in terms of excellent outcome (defined as mRS ≤ 1, BI ≥ 95, and NIHSS ≤ 

1) at one year. Additionally when considering only those patients treated within 24-36 hours, 

mRS shift analysis and excellent outcome at 90 days both favored MAPC treatment, and the 

one year outcomes were even more strongly in favor of MAPC treatment. The authors 

interpretation of these results posited that MAPC treatment may ameliorate secondary 

inflammation after stroke, and that these benefits may take even more time to become 

evident than our typical 90 day outcomes. They also note the suggestion that time window of 

treatment may be important.

Conclusions

The momentum behind cell-based therapies for stroke recovery remains substantial, but 

while early studies have shown hints of promise true efficacy has not yet been achieved. In 

2007, investigators from academia, government, and industry convened a consortium to lay a 

path forward, and from this emerged the Stem Cells as an Emerging Paradigm in Stroke 

(STEPS) series of guidelines.[122-124] Preclinical studies have shown that stem cells 

through both immunomodulatory mechanisms and through post-stroke neural circuit 

remodeling in a twofold manner: by enhancing mechanisms of intrinsic circuit remodeling 

(secreting neurotrophic factors, increasing neurogenesis, and promoting plasticity), and by 

maturating into neurons that directly incorporate into the neural circuit. Whether these 

mechanisms are independent or synergistically bound requires further exploration. While the 

quality of clinical evidence remains limited, safety and feasibility have been demonstrated 

for multiple cell types, routes of administration, and times of administration. Future studies 

should establish biomarkers so that as clinical trials progress we will be able to re-evaluate 

biological targets to optimize efficacy. An iterative process between the clinic and the 

laboratory is essential to refine the approach for cell-based therapy and ultimately reach the 

desired endpoints. Bioengineering advances promise to allow customization of both cells 

and scaffolds to enhance therapeutic benefits.[125-127] No therapies in current standard 

clinical practice improve outcomes beyond the proportional recovery expected from 

spontaneous biological repair mechanisms.[128] Cell-based therapies offer the potential to 

dramatically shift the paradigm of stroke rehabilitation and recovery. It is imperative that we 

continue to refine and drive these therapies toward the goal of improving functional 

restoration in our patients.
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